

Объединенный институт ядерных исследований дубна e t

5 812

P6-90-96

1990

С.Т.Бонева, Э.В.Васильева, В.Д.Кулик, Ле Хонг Кхьем, Ю.П.Попов, А.М.Суховой, В.А.Хитров, Ю.В.Хольнов

СПИН КОМПАУНД-СОСТОЯНИЯ ¹⁸°Hf, ВОЗБУЖДАЕМОГО ПРИ ЗАХВАТЕ ТЕПЛОВЫХ НЕЙТРОНОВ В ¹⁷°Hf

Направлено на Международную конференцию по ядерной спектроскопии и форме атомных ядер, Ленинград, 1990 г.

Методом суммирования амплитуд совпадающих импульсов (САСИ) нами изучены X - X -совпадения, связанные с реакцией захвата тепловых нейтронов ядрами ¹⁷⁹ Hf.

В настоящей работе мы обращаем внимание на значения суммарной интенсивности каскадов ΣI_{YY} для переходов с компаунд-состояния 180 Hf, возбуждаемых тепловыми нейтронами, на ряд низколежащих возбуждённых уровней этого ядра.

Экспериментальные значения $\Sigma I^{\Im}_{\jmath\jmath}$ приведены в табл.І.

Часть спектра сумм амплитуд, соответствующая каскадам переходов на первые 3 возбуждённых уровня вращательной полосы основного состояния ¹⁸⁰ Hf, приведена на рис.I.

Значения абсолютной суммарной интенсивности каскадов для переходов на указанные уровни ¹⁸⁰ Hf определены нами следующим образом.

В работе [1] даны значения абсолютной интенсивности ряда жёстких первичных у-переходов с захватного состояния ¹⁸⁰ Нf (тепловые нейтроны). Эти данные приведены в табл.2. Относительные интенсивности этих же переходов определены в [2] и также содержатся

Рис.I. Часть спектра сумм амплитуд совпадающих импульсов для реакции ¹⁷⁹ Hf(n,2s).

<u>Таблица I</u>

Сравнение экспериментальных и расчётных значений интенсивности каскадов переходов на уровни Е_f ¹⁸⁰нг

			ΣI3	${\mathcal Z}$ I $^{ extsf{T}}_{\partial artheta}$, $\%$ pacn.			$\gtrsim I_{rr}^{T^{\star}}$, % pacn.		
$^{\mathrm{E}}_{f}$, кэВ	I_{f}^{*}	I _j расч.	— - ₇₇ , % расп.	$I_c^{\overline{u}} = 5^+$	4+	80%4+,20%5+	$I_c^{\mathcal{R}} = 5^+$	4+	80%4+,20%5+
93,32	2+	2+	0,6±0,I	0,3	2,9	2,4	0,13	I,I	0,94
3 08,58	4+	4+	2,3 ± 0,4	5,8	8,2	7,8	2,5	3,I	3,0
640,85	6 +	6+	I,7±0,3	4,7	2,I	2,6	2,1	0,8	I,0 .
1199,8	2+	2*	< 0,2	0,06	0,9	0,8	0,03	0,3	0 ,3 I
1291,07	(3+,4+)	3+	< 0,2	0,84	Ι,5	Ι,4	0,37	0,6	0,55
1354,02	$(0^+, I_{-4}^{\pm})$	27	< 0,2	0,06	0,6	0,6	0,03	0,2	0,2
1369,71	(4+)	4+		ற ப்	4 0	າຊ	гo	тъ	тъ
1374,43	(3-,4-)	4-	£1,3-0,4	2,0	≁ ,∪	3,0	1,~	1,0	1,0
1429,88	(37)	3-	0,6 ± 0,3	2,0	3,2	3,0	0,9	1,2	I , 2
1482,74	(37,47,57)	5-	I,2±0,4	2,0	I,3	Ι,4	0,9	0,5	0,55
1607,735	(3+,4+)	4+	7						
1609,35	(4-,5-)	57	}I,8±0,4	3,9	3 , I	3,3	1,7	1,2	I,3
1613,16	(3-6-)	67	J						

* Нормировано к ZI³

N

<u>Таблица</u> 2

	· · ·	HI HI		
Ед[І], кэВ	5773	5842	5953	7074
Е _д [2], кэВ	5774,5	5847,4	5956,9	7079,3
І _д [І], % расп.	0,298	0,186	0,056	0,046
Ід [2], отн.ед.	I 44 0	1000	290	194

Значения энергии и интенсивности первичных 7-переходов 180 нт

в табл.2. Из неё определяем "цену" относительной интенсивности работы [2]:

$$\mathscr{L} = \frac{\sum I_{\gamma}[1]}{\sum I_{\gamma}[2]} = 2 \cdot 10^{-4} \, \%/\text{отн.ед.}$$

В нашем дифференциальном δ' -спектре, соответствующем переходу на состояние 308,6 кэВ, 4⁺ 180 Н f, имеется двухквантовый каскад δ' 6018,4- δ' 1061,1. Относительная интенсивность первичного перехода 6018,4 кэВ согласно [2] составляет 140 отн. ед. Соответственно абсолютная интенсивность этого перехода равна $I_{\delta'}(6018) = \alpha \cdot 140 =$ = 0,28% расп.

Интенсивность указанного каскада можно определить, зная характер распада промежуточного уровня $E_{\rm M}$ = I369,7I кэВ. В соответствии с работами [2,3,4] на долю ў-перехода I06I,I кэВ с этого уровня приходится 80%. Учитывая, что каскад ў 6018,4- ў 106I,I составляет по интенсивности 0,93(2I)% от суммарной интенсивности каскадных переходов на уровень 308,6 кэВ, получаем суммарную интенсивность в абсолютных единицах $\sum I_{33}$ (308,6 кэВ) = 2,3% расп.

Экспериментальные значения интенсивности каскадов переходов на другие уровни, включённые в табл. I, определены на основе этого значения и отношения площадей пиков в спектре сумм амплитуд (см. рис. I) с учётом изменения эффективности регистрации каскадов различных энергий.

Квантовые характеристики захватного состояния ¹⁸⁰ Нf для тепловых нейтронов могут быть $I^{\pi} = 5^+$ или 4⁺, поскольку для основного состояния ¹⁷⁹ Hf $I^{\pi} = \frac{9^+}{2}$.

Известно [5], что 18% сечения захвата тепловых нейтронов ядрами ¹⁷⁹ Н₁ определяется известным резонансом с $I^{77} = 5^+$, а 2% – с $I^{47} = 4^+$; остающиеся 80% - резонансом $E_n = -6$, I эВ, для которого I^{47} неизвестны.

Таким образом, в зависимости от ITh этого резонанса возможны два случая:

I. 80% захватов связано с $I^{\pi} = 4^+$ и 20% - с $I^{\pi} = 5^+$:

2. Практически IOO% захватов ведут к компаунд-состоянию с I $\pi = 5^+$ (2% - с I $\pi = 4^+$).

Нами проведён расчёт интенсивности заселения ряда возбуждённых состояний ¹⁸⁰Н_/ двухквантовыми каскадами в этих двух предположениях.

При расчёте учитывались все известные из опыта промежуточные состояния ¹⁸⁰ Н∫ ниже 1,83 МэВ. При определении значений радиационных ширин и зависимости их от энергии переходов принимались во внимание EI-, MI- и E2-переходы.

Сведения о квантовых характеристиках указанных в табл. I состояний, необходимых для расчёта, получены из данных по реакциям (n, J) на тепловых нейтронах [2], на нейтронах с энергией 0,3 кэВ [2], 2 кэВ [6], реакции (n, n') [7].

Для первых четырёх состояний табл. 1 значения I π определены однозначно.

Для остальных уровней единственных экспериментальных значений I $^{\pi\pi}$ нет.

В табл. I приведены как значения I $^{\pi}$ из обзора [3], так и значения I $^{\pi}$ расч., принятые нами для расчёта в соответствии с книгой [4]. Такой выбор обусловлен однозначностью значений I $^{\pi}$ в [4].

Мы не анализируем причины наблюдаемых разногласий между схемами работ [3] и [4], поскольку без дополнительных экспериментов возможности однозначного экспериментального определения I^П этих уровней нет.

Результаты расчёта приведены в табл. I в % числа распадов компаунд-состояния. В последних трёх столбцах даны расчётные результаты, нормированные к экспериментальным по сумме значений интенсивности каскадов переходов на все указанные уровни. С ними мы и сравниваем экспериментальные данные.

Если не учитывать каскады переходов на первый возбуждённый уровень 93,32 кэВ, 2⁺, то результаты сравнения свидетельствуют, что квантовыми характеристиками компаунд-состояния, возбуждаемого при захвате тепловых нейтронов, являются $I_{-}^{\pi} = 5^+$.

При этом предположении отклонения расчётных данных от экспериментальных характеризуются значением $\boldsymbol{X}^2 = 0.8$.

В случае же "смещанного спина" $I_c^{\mathfrak{N}} = 80\% 4^+ + 20\% 5^+ \chi^2 = 3,3.$ Соответственно, нужно принять для резонанса $E_n = -6, I_{3B}$ значения $I^T = 5^+$.

Однако из сопоставления данных табл.2 создаётся впечатление, что каскады переходов на уровень 93,3 кэВ, 2⁺ ставят под сомнение такую идентификацию. Разумеется, этот резонанс может быть дублетом, в котором заметным компонентом был бы резонанс I^{π} = 4⁺. Исключить такую возможность из рассмотрения нельзя.

Тем не менее, можно качественно показать, что имеющиеся данные по экспериментальному выходу каскадов на уровень 93,3 кэВ, 2⁺ $\sum I_{\gamma\gamma}^3 = 0,6^{\pm}0,1$ не противоречат малому значению $I_{\gamma\gamma}^T$ для компаунд--состояния $I_{\gamma\gamma}^T = 5^+$.

Для этого можно сопоставить между собой интенсивности каскадов, которые связаны с разностью спинов начального и конечного

уровней на 3 единицы для других изученных нами ядер. Это сделано в табл.3. В ней перечислены все наблюдаемые нами каскады отмеченного типа. Почти во всех случаях (также и в случае ¹⁶⁵Ду, где тип переходов в каскаде аналогичен случаю ¹⁸⁰ Hf) наблюдается значимое превышение экспериментальной интенсивности над расчётной.

Поэтому данные табл.З свидетельствуют о том, что помимо возможной примеси состояния с $I^{\pi} = 4^+$ в сечение захвата от резонансов с отрицательной энергией, можно ожидать, что превышение $\sum I_{JJ}^3$ над $\sum I_{JJ}^{\pi}$ обусловлено наличием вторичных E2-переходов, интенсивность которых заметно выше ожидаемой при простой экстраполяции отношений $\Gamma(EI):\Gamma(MI):\Gamma(E2)$, наблюдаемых для жёстких первичных переходов, на область малых возбуждений ядра I^{EO} Hf.

Ядро	$I_{c}^{\widehat{n}}$	I∱	Мультип. переходов	ΣΙ ³ % расп.	∑І _{йд} , % расп.
144 Na	37	0+	EI + E2	3,7 ± 1,1	3,3
146 Na	3-	0+	EI + E2	3,9 ± 0,2	0,5
163 Dy	I/2 +	7/2-	EI + E2	0,8 ± 0,2	0,02
165 dy	I/2+	7/2+	MI + E2	(1,5)	0,03
175 YD	I/2+	7/2-	EI + E2	I,7 ± 0,4	0,08
178 _{Hf}	60% 3-+40% 4-	0+	EI + E2	0,5 ± 0,2	0,4
179 Hf	I/2 ⁺	7/2-	EI + E2	2,1 ± 0,9	9 0,03
180 _{H1}	(5+)	2+	MI + E2	0,6 ± 0,1	I 0,3
1					

Таблица З

Сравнение экспериментальных и расчётных значений $\sum I_{\gamma \delta'}$ для переходов $I_{c} \rightarrow I_{f} = I_{c} \stackrel{t}{=} 3$

Рис.2. Зависимость суммы интенсивностей двухквантовых каскадов переходов ¹⁷⁸ Н f на 8 конечных состояний от энергии первичного перехода. Гистограмма – эксперимент; Кружки – расчёт. Заштрихована та часть интенсивности каскадов, которая связана с известными вторичными переходами мультипольности Е2.

Необходимо отметить, что такие интенсивные Е2-переходы играют заметную роль в двухквантовых каскадах в ближайшем к ^{I80} Hf чётно--чётном ядре ^{I78} Hf. На рис.2 представлены суммы интенсивностей всех разрешённых в эксперименте двухквантовых каскадов на все 8 конечных уровней ядра ^{I78} Hf, изученных в эксперименте в зависимости от энергии первичного перехода [8]. На экспериментальной гистограмме заштрихована доля интенсивности тех каскадов, которые связаны со вторичными переходами мультипольности Е2. Она превышает 2% распадов при сумме наблюдаемой в эксперименте интенсивности $\Sigma I_{dd}^{2} = I7, 4^{\pm}0, 9$ % распадов. Темными кружками приведены результаты расчёта.

При указанной идентификации спина компаунд-состояния требует также объяснения наличие прямого Г-перехода с компаунд--состояния ¹⁸⁰ Hf, возбуждаемого при захвате тепловых нейтронов,

на уровень I429,9 коВ, спин и чётность которого - 3, установлены однозначно [2].

Если исходить из аппроксимированного по большому набору данных значения $\Gamma(EI)$ /D = $8 \cdot 10^{-14} E_{f}^{5} A^{2,1}$ [9], то для первичного перехода E_{f} = 5957 кэВ < $\Gamma(EI)$ > = 2,8 · 10⁻⁴ эВ.

Используя значение $\Gamma_{a} = 66 \text{ м. эВ}$ и абсолютную интенсивность этого перехода в тепловой точке 0,056% распадов, получаем для ширины перехода значение 0,38.10⁻⁴ эВ. Это в 6,7 раз выше среднего значения $< \Gamma(\text{EI}) >$, если положить, что в тепловой точке резонасы с $I^{\pi} = 4^+$ определяют только 2% захватов. Вероятность такого случайного отклонения для распределения Портера-Томаса равна I%.

Авторы выражают благодарность Е.П.Григорьеву за интерес, проявленный к работе, и полезные дискуссии.

Литература

- I. Nuclear Data Tables. 1971. V.26. P.511.
- 2. Bushnell D.L. et al. Phys. Rev. C. 1974. V.10. P.2483.
- 3. Nuclear Data Sheets. 1987. V.52. Nº.1.
- Беленький В.М., Григорьев Е.П. Структура чётных ядер.
 М. Энергоатомиздат. 1987.
- 5. Mughabghab S.F. Neutron Cross Sections.
 - V.1. Part B. Academic Press. N.Y. 1984.
- Мурзин А.В., Либман В.А., Кононенко И.В. Прогр. и тез.
 XXXIУ Совещ. по ядерной спектроскопии и структуре атомного ядра.
 М. Наука. 1984. С.144.
- Григорьев Е.П., Бондаренко В.А.
 Изв. АН СССР. Сер. физ. 1963. Т.47. С.2261.
- Вогдзель А.А., Бонева С.Т., Васильева Э.В. и др. Изв. АН СССР. Сер. физ. 1988. Т.51. С.1882.
- Kopecky J. In: Neutron-Capture Gamma-Ray Spectroscopy and Related Topics 1981, Institute of Physics. Bristol and London. 1982. P.423.

Рукопись поступила в издательский отдел 12 февраля 1990 года.