ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ АУБНА

5-734

Д.Д.Богданов, И.Воборжил, А.В.Демьянов, В.А.Карнаухов, О.К.Нефедьев, Л.А.Петров

3541 2-25

ИССЛЕДОВАНИЕ РАСПАДА ИЗЛУЧАТЕЛЕЙ ЗАПАЗДЫВАЮЩИХ ПРОТОНОВ <sup>121</sup> Ва, <sup>119</sup> Ва, <sup>116</sup> Св



22/1×-25

P6 - 8962

P6 - 8962

Д.Д.Богданов, И.Воборжил, А.В.Демьянов, В.А.Карнаухов, О.К.Нефедьев, Л.А.Петров

# ИССЛЕДОВАНИЕ РАСПАДА ИЗЛУЧАТЕЛЕЙ ЗАПАЗДЫВАЮЩИХ ПРОТОНОВ <sup>121</sup> Ва, <sup>119</sup> Ва, <sup>116</sup> Св

Направлено в ЯФ



### 1. Введение

Эмиссия запаздывающих протонов является весьма распространенным процессом для изотопов со значительным нейтронным дефицитом. Исследование этого процесса с успехом используется для извлечения информации о свойствах ядер, удаленных от линии бета-стабильности /см., например, обзоры/1,2/ /. Измерение позитронпротонных совпадений позволяет определить энергию  $\beta^+$ -р-распада  $Q_0 - B_p$ , где  $Q_0$ - энергия электронного захвата материнского изотопа,  $B_p$  - энергия связи протона в дочернем ядре<sup>/3,4/</sup>. Эта величина прямо связана с разностью масс начального и конечного изотопов и поэтому может быть использована для проверки существующих теорий атомных масс. Анализ сглаженной формы спектров протонов дает сведения о силовой функции бета-распада /5,6/. Из рассмотрения флюктуаций интенсивности в протонных спектрах могут быть получены сведения о плотности состояний в диапазоне энергий возбуждения 3 - 9 M3B.

В настоящей работе приведены результаты измерений позитрон-протонных совпадений для  $^{116}$  Cs ,  $^{119}$  Ba ,  $^{121}$  Ba. Первые данные об изотопе  $^{116}$  Cs получены  $B^{/7/}$ . Изотопы бария впервые наблюдались в работах  $^{/8,9/}$ . Из измерений позитрон-протонных совпадений определены значения  $Q_0 - B_p$  для этих протонных изучателей. Полученные величины затем использовались при анализе сглаженной формы протонных спектров с помощью статистической модели процесса.

### 2. Экспериментальная методика

Эксперименты проводились на выведенном пучке циклотрона тяжелых ноңов У-ЗОО Лаборатории ядерных реакций ОИЯИ. Ионами  ${}^{32}$  S + 5 / E<sub>max</sub> = 190 М  $_{3B}$  облучалась металлическая мишень из обогащенного /90%/ 92 Mo толшиной ~ 2 *мг/см<sup>2</sup>*. Исследуемые изотопы получались в результате следующих реакций :  ${}^{92}$  Mo( ${}^{82}$  S, 3p5n)  ${}^{116}$  Cs ;  ${}^{92}$  Mo( ${}^{32}$  S, 2p3n)  ${}^{119}$  Ba ,  ${}^{92}$  Mo( ${}^{32}$  S, 2pn)  ${}^{121}$  Ba . Мишень располагалась в непосредственной близости от нонного источника масс-сепаратора БЭМС-2, с помошью которого непрерывно осуществлялось разделение изотопов. Использовался высокотемпературный источник с поверхностной ионизацией. Во виутреннюю полость источника изотопы попадали через тонкую танталовую фольгу за счет импульса. переданного бомбардирующей частицей. Детально масс-сепаратор БЭМС-2 описан в работе/10/. В фокальной плоскости сепаратора располагалось приемное устройство с детекторами. Активность, принадлежащая изобару с выбранным значением массового числа, собиралась на диске-коллекторе /5 мкм, Al / и периодически помещалась между Si(Au) - детектором протонов и сцинтилляционным бета-счетчиком /пластик толшиной 1 мм/. Малая толщина сцинтиллятора обеспечивала низкую чувствительность счетчика к у -фону и стандартизацию импульсов по амплитуде вследствие слабой зависимости удельных энергопотерь электронов от энергин. Эффективность Втракта, измеренная с помощью источника ThC', составляла 42+2%. Сигналы с бета- и протонного детекторов после усиления поступали на дифференциальные дискриминаторы с временной отметкой появления импульса. Для отбора истинных и случайных совпадений использовалась комбинация время-амплитудного конвертора и двух обычных дифференциальных дискриминаторов. Полное разрешающее время в экспериментах составляло 0,3 мкс. что обеспечивало 100%-ную регистрацию истинных совпадений. Для снижения фона электронная аппаратура блокировалась на время прохождения пучка. Спектрометрический сигнал с протонного тракта поступал на 10разрядный амплитудный кодировщик, код с которого, дополненный двухразрядным кодом признака события, являлся адресом для записи "+1" в памяти анализатора АИ-4096. Код признака события вырабатывался на специальном электронном устройстве, на входы которого поступали импульсы с дискриминаторов истинных и случайных совпадений, а также логический импульс из протонного тракта. Таким образом, в эксперименте велась одновременная запись трех протонных спектров: без совпадений, в истинных и случайных совпадениях с позитронами.

## 3. Результаты и их обсуждение

На рис. 1 и 2 представлены протонные спектры в совпадении с позитронами N<sub>B</sub>+<sub>p</sub>(E<sub>p</sub>) и без совпадений для



дении с позитронами и без совпадений.



совпадении с позитронами и без совпадений.

изотопов<sup>116</sup> Св и <sup>119</sup>Ва. Хорошо видно, что включение совпадений приводит к смягчению спектра. Это вызвано тем, что увеличению энергии запаздывающих протонов соответствует уменьшение парциальной энергии  $\beta^+$ -перехода. При этом возрастает относительная вероятность электронного захвата, не дающего вклада в спектр совпадений. Отношение интегральных интенсивностей в спектрах протонов, измеренных в совпадениях с позитронами и без совпадений, после учета эффективности В - тракта равно величине R, равной относительной вероятности эмиссии позитрона перед испусканием запаздывающего протона. Для <sup>116</sup>Cs, <sup>119</sup>Ва и <sup>121</sup>Ва величины R составляют соответственно /35,O±2,7/%, /29,O±1,7/% и /4,O+O,8/%.

Отношение интенсивности запаздывающих протонов, испускаемых после позитронного распада, к полной интенсивности протонов с энергией Е<sub>р</sub> может быть представлено в виде

$$R(E_{\dot{p}}) = \sum_{f} a_{f}(E_{p}) [1 + \Psi_{\epsilon}(Q) / \Psi_{\beta^{+}}(Q)], \qquad /1/$$

где  $a_f(E_p)$  - доля протонов с энергией  $E_p$ , соответ-ствующая распаду в конечное состояние внучатого ядра с энергней возбуждения  $E_f$ ;  $W_e/W_{B^+}$  - отношение вероятностей электронного захвата и позитронного распада. Известно, что для разрешенных переходов W<sub>6</sub> / W<sub>6+</sub> не завнсит от ядерных матричных элементов и при дайном Z определяется только энергней перехода -  $Q = Q_0 - B_p - E_f - E_p \frac{A}{A-1}$ . Для определения  $Q_0 - B_p$  экспериментальное значение R сравнивалось с расчетным, которое получалось усреднением R(E<sub>n</sub>) по протонному спектру. При отсутствии распадов на возбужденные состояния внучатого ядра величина R является только функцией Q<sub>0</sub> - B<sub>p</sub>, н значение последней может быть найдено с точностью ие хуже ±100 кэВ<sup>3</sup>. В случаях, когда распадом на возбужденные состояния нельзя пренебречь, точность определения ( $Q_0 - B_n$ ) из  $\beta^+ - p$  - совпадений несколько снижается из-за необходимости использования теоретических значений коэффициентов a<sub>f</sub> . Расчеты a<sub>f</sub>(E<sub>p</sub>) проводились на основе статистической модели испускания запаздывающих протонов /1,2,5,6/, значения энергий и спинов конечных состояний брались из работ /11, 12/\*, величины  $\mathbb{W}_{\epsilon}/\mathbb{W}_{\beta^+}$  - из работы /13/. На *рис.* 3,4 приве-дены зависимости R от ( $\mathbb{Q}_0 - \mathbb{B}_p$ ) для <sup>119, 121</sup> Ва, рас-считанные для наиболее вероятных значений спина начального ядра. Из рисунка следует, что неопределенность, связанная со спином, приводит к дополнительной неоднозначности в величине Q<sub>0</sub>-B<sub>n</sub>, получаемой из сравнения с экспериментом. Однако эта неоднозначность

\* Первые возбужденные состояния Хе:2+/О,33 МэВ/, 4<sup>+</sup>/0,82 *МэВ*/, 6<sup>+</sup>/1,48 *МэВ*/; первые возбужденные со-стояння<sup>120</sup>  $\chi_e$ : 2<sup>+</sup>/0,32 *МэВ*/, 4<sup>+</sup>/0,79 *МэВ*/, 6<sup>+</sup>/1,40 *МэВ*/. Для <sup>115</sup> 1 так же, как и в /<sup>12</sup>/ предполагается сущест-вование следующих состояний, заселяемых при испускании протона: 5/2<sup>+</sup>/0,0 *МэВ*/, 1/2<sup>+</sup>/0,12 *МэВ*/, 7/2<sup>+</sup> /0,16 M3B/, 3/2+/0,22 M3B/, 3/2+/0,31 M3B/.

7

не слишком велика /150 кэВ/. В пабл. 1 приводятся результирующие данные по величинам  $Q_0 - B_p$  для изотопов <sup>121</sup> Ва, <sup>119</sup> Ва, <sup>116</sup> Сs, полученные из сравнения экспериментального R с расчетом. При оценке ошнбок полагалось, что возможные значения спина для<sup>119,121</sup> Ва составляют  $3/2^{\pm}$ ,  $5/2^{\pm}$ , а для <sup>116</sup> Сs - от  $O^{\pm}$ до  $3^{\pm}$ .

|                                                                                  |                                                                                | Таблица                   |                          |                           |                           |                             |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|--------------------------|---------------------------|---------------------------|-----------------------------|
| Изотоп                                                                           | /МэВ/<br>эксп.                                                                 | 15                        | 16                       | 17                        | 18                        | 19                          |
| <sup>116</sup> Cs<br><sup>118</sup> Cs<br><sup>119</sup> Ba<br><sup>121</sup> Ba | 6,4 <u>+</u> 0,3<br>4,7 <u>+</u> 0,3<br>6,35 <u>+</u> 0,20<br>4,7 <u>+</u> 0,2 | 6,6<br>4,7<br>06,1<br>4,2 | 6,8<br>4,8<br>6,5<br>4,4 | 7,6<br>5,4<br>6,9<br>4,75 | 7,5<br>4,96<br>6,8<br>4,6 | 7,8<br>5,78<br>7,18<br>5,35 |



Рис. 3. Относительная вероятность эмиссии позитрона на один акт испускания запаздывающего протона в функции  $Q_0 - B_p$  для<sup>119</sup> Ва. Показаны расчетные кривые для значений спина <sup>119</sup> Ва, равных  $3/2^+$ ,  $5/2^-$ ,  $5/2^+$ .



Рис. 4. Относительная вероятность эмиссии позитрона на один акт испускания запаздывающего протона в функции  $Q_0 - B_p$  для <sup>121</sup>Ва. Показаны расчетные кривые для значений спина<sup>121</sup> Ва, равных  $3/2^+$ и  $5/2^+$ .

Все эти изотопы относятся к новой области деформированных ядер с 50 < Z, N < 82. Указанные возможные значения спинов следуют из схемы уровней с учетом неопределенности в параметрах расчета /см., например, <sup>/14, 18/</sup>. Ошибка в значении  $Q_0 - B_p$  для <sup>CS</sup> увеличена дополнительно на 150 кэВ в связи с неопределенностью в схеме уровией конечного ядра. Для полноты в таблице приведена величина  $Q_0 - B_p$  для <sup>118</sup>Cs, взятая из работы <sup>/12/</sup>.

Сравнение результатов с предсказаниями различных массовых формул /15-19/ показывает, что так же, как и в районе Те, более реалистичными оказываются массовые формулы Гарви-Кельсона и Зельдеса /15,16/.

# б/ Анализ формы протонных спектров

Полученные значения  $Q_0 - B_p$  были использованы при анализе формы протонных спектров по статистической модели испускания запаздывающих протонов  $^{/5,6/}$ . Эта модель оперирует с усредненными вероятностями как для  $\beta^+$ -перехода в протонно-нестабильные состояния, так и для распада этих состояний. В рамках этой модели спектр запаздывающих протонов записывается следующим образом:

$$\frac{\Delta N(E_p)}{\Delta E_p} \sim \sum_{i,f} g(I,I_i) f(Z,Q_0 - E) S_{\beta} \frac{\Gamma_p^{if}}{\Gamma^{i}}, \qquad /2/$$

где g(l,l<sub>i</sub>) - статистический весовой фактор для  $\beta^+$ -перехода ядра со спином l в состояние со спином l<sub>i</sub>; f(Z,Q<sub>0</sub>-E) - интегральная функция Ферми, учитывающая как позитронный распад, так и электронный захват/13/; S<sub>β</sub> - силовая функция  $\beta^+$ -перехода, равная полной приведенной вероятности перехода в единичный интервал энергии возбуждения дочернего ядра;  $\Gamma_p^{if}$  - средняя протонная ширина для распада из состояния со спином l<sub>i</sub> в конечное состояние со спином l<sub>f</sub>;  $\Gamma^{i} = \Gamma_{\gamma}^{i} + \Sigma \Gamma_{f}^{if}$  - полная ширина, определяемая радиационной и суммарной протонной ширинами. Предполагается, что интервал усреднения  $\Delta E_p$  существенно больше, чем среднее расстояние между уровнями.

Для g(l,l<sub>i</sub>) использовалось выражение g=(2l<sub>i</sub>+1)/3(2l+1). Для энергии возбуждения E справедливо соотношение E = B<sub>p</sub>+E<sub>f</sub> +E<sub>p</sub>  $\frac{A}{A-1}$  / A - массовое число исходного ядра/. Протонные ширины рассчитывались по известной формуле оптической модели с использованием коэффициентов трансмиссии из работы<sup>/20/</sup> и плотности уровней из работы<sup>/21/</sup>. Радиационные ширины находились по полуэмпирической формуле из<sup>/22/</sup>.

В качестве первого приближения использовалось предположение о постоянстве силовой функции  $\beta^+$ -перехода в пределах энергий возбуждения, приходящихся на протонный спектр. Это соответствует современным теоретическим представлениям /см., например,  $^{/23/}$  /, согласно которым для разрешенного  $\beta^+$  -распада ядер с N> Z на область реальных переходов приходится "хвост" гигантского гамов-теллеровского резонанса, где силовая функция слабо меняется. Однако на этот плавный ход могут накладываться локальные резонансы, связанные с простыми конфигурациями, хорошо заселяемыми в  $\beta^+$  пере-



Рис. 5. Сравнение спектра запаздывающих протонов  $^{118}$  Ва с расчетом по статистической модели в предположении:  $I=3/2^+$ ,  $5/2^+$ и  $5/2^-$ . В нижней части рисунка показано отношение экспериментального спектра к расчетному для спина  $5/2^+$ . Энергия связи протона в дочернем ядре взята равной 1,63 МэВ/16/.

ходе. Анализ, который дается в этом разделе, был предпринят для того, чтобы получить информацию о  $\beta$ -силовой функции для <sup>121</sup>Ва, <sup>119</sup>Ва', <sup>116</sup>Сs.Эти изотопы испытывают разрешенный гамов-теллеровский  $\beta^+$ -переход. Такое заключение следует из оценок средиих значеиий силовой функции  $\bar{S}_{\beta}=(\bar{ft})^{-1}$ , сделанных в предположении постоянства  $S_{\beta}$  при энергиях возбуждения, превышающих отсечку, связанную со спариванием <sup>/23/</sup>. Величины  $\bar{S}_{\beta}$  для <sup>121</sup>Ва, <sup>119</sup>Ва, <sup>116</sup>Сs соответственно равны 2.10<sup>-5</sup>; 4.10<sup>-5</sup> и 2.10<sup>-5</sup> МэВ<sup>-1</sup>с<sup>-1</sup>В этих оценках использовались экспериментальные периоды полураспада и расчетные значения  $Q_0$ 

На рис. 5 проведено сравнение спектра протонов для  $^{119}$ Ва с рассчитанным по статистической модели в предположении постоянства S<sub>β</sub> для следующих значений спинов:  $3/2^+$ ,  $5/2^+$ ,  $5/2^-$ . Энергия связи протона в  $^{119}$ Сs взята равной 1,63  $M \ni B^{/16'}$ . Отметим, что расчет качественно воспроизводит гросс-структуру протонного спектра, однако количественное согласие отсутствует. Для энергий E<sub>p</sub><3,0  $M \ni B$  интенсивность в протонном спектре превышает расчетную при всех возможных значениях спина  $^{119}$  Ba. В нижней части рис. 5 приведено отношение интенсивностей экспериментального и расчетного /для спина  $5/2^+$ / спектров. Однако расхождение расчета и эксперимента практически ликвидируется, если предположить, что энергия связи протона в  $^{119}$ Cs на /O,5 - O,7/  $M \ni B$  меньше, чем дается в/16/.

На рис. б представлено сравнение экспериментального протонного спектра для<sup>121</sup> Ва с расчетным в предположении, что спин ядра равен  $3/2^+$ , а  $S_{\beta}$ =const.Величина В р для <sup>121</sup> Сs взята равной 2,3 *МэВ*/16/В нижней частн рнсунка дано отношение интенсивностей этих двух спектров. Так же, как и в предыдущем случае, экспериментальный спектр сдвинут в область более низких энергий по сравнению с теоретическим. Разногласне эксперимента и расчета более драматическое, чем в случае <sup>119</sup> Ва. Оно практически не меняется при варьировании спина исходного ядра, его нельзя устраннть уменьшением в разумных пределах величины В.

В случае <sup>116</sup>Cs степень разногласия расчета, в предположении S<sub>R</sub>=const, с экспериментом примерно такая



Рис. 6. Сравнение спектра запаздывающих протонов для  $^{121}$  Ва с расчетом в предположении:  $I = 3/2^+ u$  энергия связи протона в  $^{121}$  Сs равна 2,3 МэВ/ $^{16}/$ В нижней части рисунка показано отношение экспериментального и расчетного спектров.

же, как и для <sup>119</sup>Ва. На *рис.* 7 дано сравнение экспериментального и расчетного спектров <sup>116</sup>Cs в предположении, что спин равен  $3^+$ , а энергия связи протона в дочернем ядре - 3,93 *МэВ* / <sup>16</sup>/.

Для объяснения противоречия между расчетом и экспериментом представляется разумным допустить, что предположение о постоянстве силовой функции  $\beta$ -перехода является некорректным. Разногласие между расчетом и экспериментом /особенно значительное для  $12^{1}$  Ba /



Рис. 7. Сравнение спектра запаздывающих протонов для <sup>116</sup>Cs с расчетом в предположении: I = 3<sup>+</sup>и энергия связи протона в <sup>116</sup>Хе равна 3,93 МэВ/<sup>16</sup>/В нижней части рисунка дано отношение экспериментального и расчетного спектров.

может быть связано с тем, что силовая функция бетараспада имеет локальный резонанс при энергии возбуждения около 5,0 *МэВ*. Причем форма и положение резонаиса примерио отвечают кривым, приведенным в нижней части *рис.* 5-7. Аналогичный вывод делался и ранее из анализа спектров запаздывающих протонов <sup>109</sup> Te<sup>/24</sup>/, <sup>115</sup>Xe, <sup>117</sup>Xe<sup>/6/</sup>. В случае <sup>109</sup> Te локальный резонанс в  $\beta$ -силовой функции проявлялся особенно четко. Для этих ядер резонансы связывались с переходом протона из замкнутой оболочки  $g_{9/2}$  в нейтрон в состоянии  $g_{7/2}$ , в результате чего образовывалось трехквазичастичное состояние, "размытое" за счет остаточного взаимодействия по реальным состояниям ядра.

Бета-распад<sup>119</sup> Ва и <sup>121</sup>Ва рассчитывался в работе<sup>/26/</sup> в микроскопической модели с учетом деформации, спаривания и сил типа Гамова-Теллера. Рассмотрено большое число переходов в остове, в результате которых возникают коллективизированные трехквазичастичные состояная. Особо выделяются два состояния с энергией в районе 5.0 МэВ, главные компоненты которых связаны с переходами между состояниями, имеющими одинаковые асимптотические квантовые числа: (p)9/2<sup>+</sup>[404]  $\rightarrow$  (n) 7/2<sup>+</sup>[404] и (p) 7/2<sup>+</sup>[413] → (n)5/2<sup>+</sup>[413] Переходы в эти состояния имеют lgft, близкие к 4,0. Именно эти переходы приводят к появлению резонансов в силовой функции бета-распада. Такая интерпретация представляется наиболее вероятной, хотя нельзя исключить, что отклонение спектра, рассчитанного по статистической модели, от экспериментального может быть связано с аномалией в приведенной протонной ширине, поскольку это отклонение наблюдается в области, где  $\Gamma_{\rm p} < \Gamma_{\rm v}$ .

Авторы благодарны Г.Н.Флерову за поддержку работы. Авторы признательны также В.Г.Субботину и Л.П.Челнокову за помощь в обеспечении электроникой, А.Кулиеву и Д.Саламову за обсуждения, группе эксплуатации циклотрона за обеспечение облучений.

#### Литература

- 1. В.А.Карнаухов. ЭЧАЯ, 4, вып. 4, 1018 /1973/.
- 2. J.Hardy. In "Nuclear Spectroscopy..." ed. by J.Cerny, Academic Press, New York, 1974.
- 3. И.Бачо, Д.Д.Богданов, Ш.Дароци, В.А.Карнаухов, Л.А.Петров. ЯФ, 7, 1153 / 1968/.
- 4. P.Hornshoj, K.Wilsky, P.G.Hansen, B.Jonson, O.B.Nielsen. Nucl. Phys., A187, 599 (1972).
- 5. В.А.Карнаухов. ЯФ, 10, 450/1969/.

- 6. P.Hornshøj, K.Wilsky, P.G.Hansen, B.Jonson, O.B.Nielsen. Nucl.Phys., A187, 609 (1972).
- 7. H.Ravn, S.Sundele, L.Westgaard. Phys.Lett., 39B, 337 (1972).
- 8. Д.Д.Богданов, В.А.Карнаухов, Л.А.Петров. ЯФ, 19, 940/1974/.
- 9. Д.Д.Богданов, А.В.Демьянов, В.А.Карнаухов, Л.А.Петров. ЯФ, 21, 233 /1975/. 10. V.A.Karnaukhov, D.D.Bogdanov, A.V.Demyanov,
- 10. V.A.Karnaukhov, D.D.Bogdanov, A.V.Demyanov, G.I.Koval, L.A.Petrov. Nucl.Instr.&Meth., 120,69(1974).
- 11. Г.Ф.Бринкман, Л.Мюнхов. ЭЧАЯ, **м**. 3, вып. 2, 366 /1972/.
- 12. B.Jonson. Ph. Thesis. Chalmers Univ. of Technology, Goteborg, Sweden, 1973.
- 13. Б.С.Джелепов, Л.Н.Зырянова, Ю.П.Суслов. Бетапроцессы. "Наука", Ленинград, 1972.
- 14. D.A.Arseniev, A.Sobiczewski, V.G.Soloviev. Nucl. Phys., A126, 15 (1969).
- 15. N. Želdes et al. Fys. Skr. Vid. Selsk., 3, no. 5 (1967).
- 16. G.I. Garvey et al. Rev. Mod. Phys., 41, no. 4, 11, 1 (1969).
- 17. W.Myers, W.J.Swiatecki. UCRL-11980 (1965).
- 18. P.Seeger. CERN Report 70-30, p. 217 (1970).
- 19. J. Truran, A.G. W. Cameron, E. Hilf. CERN, 70-30, vol. 1, 275 (1970).
- 20. G.S.Mani, M.A. Melkanoff, J.Iori. Report CEA 2379 (1963).
- 21. A.Gilbert, A.G.W.Cameron. Canad.J.Phys., 43, 1446 (1965).
- 22. A.Stolovy, J.A.Harvey. Phys. Rev., 108, 353 (1957).
- 23. P.G.Hansen. Advances in Nucl. Phys., 7, 159 (1973).
- 24. Д.Д.Богданов, В.А.Карнаухов. Л.А.Петров. ЯФ, 18, 3 /1973/.
- 25. В.Г.Соловьев. Теория сложных ядер. Наука, М., 1972.
- 26. С.П.Иванова, А.А.Кулиев, Д.И.Саламов. Препринт ОИЯИ, Р4-5889, Дубна, 1971.

Рукопись поступила в издательский отдел 10 июня 1975 года.