ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2756 2-75 Б.А.Аликов, М.Будзынски, Т.Бэдикэ, Я.Ваврыщук, В.Жук, Р.Ион-Михай, В.В.Кузнецов, Г.И.Лизурей, В.А.Морозов, Т.М.Муминов, М.И.Фоминых, И.Холбаев

КОРРЕЛЯЦИИ НАПРАВЛЕНИЙ ГАММА-ИЗЛУЧЕНИЯ В ¹⁵³Gd

A-50

4/m.75

- 8823

P6

P6 - 8823

Б.А.Аликов, М.Будзынски, Т.Бэдикэ, Я.Ваврыщук, В.Жук, Р.Ион-Михай, В.В.Кузнецов, Г.И.Лизурей, В.А.Морозов, Т.М.Муминов, М.И.Фоминых, И.Холбаев'

КОРРЕЛЯЦИИ НАПРАВЛЕНИЙ ГАММА-ИЗЛУЧЕНИЯ В ¹⁵³Gd

Направлено в Acta Physica Polonica

- ² Институт атомной физики, Бухарест, СРР.
- ³ Университет им. М.Кюри-Склодовской, Люблин, ПНР.

CASPHIX ACCARAOBNITE EKE ALUTE IA

Самаркандский госуниверситет им. А.Навои.

SUMMARY

At the decay 153 Tb \rightarrow 153 Gd there were studied the correlations of directions of γ -radiation for the cascades:82,9-87.6keV, 82,9-(19)-109.7 keV, 82.9-129.1 keV, 102.2-68.2 keV, 139.7-109.7 keV, 174.3-87.6 keV, 174.3-(19)-109.7 keV, 102.2-109.7 keV, 186.9-129.1 keV, 193.7-109.7 keV, 206.3-109.7 keV, 332.5-109.7 keV, 835.4-109.7 keV, 845.6-109.7 keV, and 991.7-109.7 keV.

The spin values are determined for the energy levels of 41.5(5/2), 109.7(5/2), 129.1(3/2), 211.9(3/2), 249.5(5/2), 303.5(5/2), 316.1(3/2), 442.2(5/2), 945.1(3/2), 955.3(5/2) and 1101.5(3/2) keV and the coefficients are given for δ_{γ} transition mixture 68.2,87,6 109,7 and 129.1 keV.

The spin values of other ¹⁵³Gd levels are discussed.

Исследования распада ¹⁵³ Tb → ¹⁵³ Gd, проведенные в работах ^{/1-4/}, не дают возможности однозначно установить значения спинов для большинства возбужденных состояний ¹⁵³ Gd.

Наличие интенсивных каскадов с E1 -переходами при распаде ¹⁵³ Tb создает благоприятные условия для определения спинов многих возбужденных состояний ¹⁵³ Gd методом угловых гамма-гамма корреляций.

В настоящей работе изучались корреляции направлений γ -излучений каскадов: 82,9-87,6 кэВ, 82,9-/19/-109,7 кэВ, 82,9-129,1 кэВ, 102,2-68,2 кэВ, 102,2-109,7 кэВ, 139,7-109,7 кэВ, 174,3-87,6 кэВ,174,3-/19/-109,7 кэВ, 186,9-129,1 кэВ, 193,7-109,7 кэВ, 206,3-109,7 кэВ, 332,5-109,7 кэВ, 835,4-109,7 кэВ, 845,6-109,7 кэВ и 991,7-109,7 кэВ.

Результаты измерений позволили однозначно приписать значения спинов уровням: 41,5 /5/2/ $\kappa_3 B$, 109,7 /5/2/ $\kappa_3 B$, 129,1 /3/2/ $\kappa_3 B$, 211,9 /3/2/ $\kappa_3 B$, 249,5 /5/2/ $\kappa_3 B$, 303,5 /5/2/ $\kappa_3 B$, 316,1 /3/2/ $\kappa_3 B$, 442,5 /5/2/ $\kappa_3 B$, 945,1 /3/2/ $\kappa_3 B$, 955,3 /5/2/ $\kappa_3 B$ и 1101,5 /3/2/ $\kappa_3 B$ и определить коэффициенты смеси для γ -переходов 68,2 $\kappa_3 B$, 87,6 $\kappa_3 B$, 109,7 $\kappa_3 B$ и 129,1 $\kappa_3 B$.

1. Получение радиоактивных источников ¹⁵³ Tb

Радиоактивный изотоп 153 Tb / T_{1/2} = 2,3 дня/ образовывался в реакции глубокого расщепления ядер тантала протонами с энергией 660 МэВ на внутреннем пучке синхроциклотрона ЛЯП ОИЯИ. Из облученной мишени хроматографическим методом выделялся элемент тербия, который затем разделялся по массам на электромагнитном масс-сепараторе отдела ЯС и РХ ЛЯП ОИЯИ. Алюминиевая фольга с внедренными ионами 153 Tb растворялась в HCl, а затем добавлялась дистиллированная вода. Радиоактивный раствор помещался в полиэтиленовую ампулу размерами ϕ 3х10 мм.

2. Annapamypa

Измерения проводились на двух независимых автоматизированных корреляционных установках.

Первая установка была собрана на базе спектрометра γ - γ -совпадений, сопряженного с ЭВМ Минск-2, работающего в двухмерном режиме с использованием цифровых окон/^{5/}. Для регистрации γ -квантов применялись два Ge(Li) -детектора с чувствительными объемами 40 и 35 см³ с энергетическими разрешениями 3 и 2,5 кэВ /на $E_{\gamma} = 1173 \ \kappa эB$, ⁶⁰ Со /, соответственно. Управление корреляционного стола, на котором устанавливались ампула с радиоактивным источником и оба детектора, осуществлялось автоматически. Совпадения регистрировались циклическим образом при углах 90°, 135° и 180° с десятиминутными экспозициями. Источник находился на расстоянии 10 см от обоих детекторов.

Система цифровых окон при разбиении памяти ЭВМ на четыре части позволяла одновременно регистрировать шесть спектров совпадений /по 1024 канала/ γ -лучей с γ -лучами, отобранными шестью энергетическими окнами в канале подвижного детектора. Временное разрешение быстрого тракта было $2\tau \approx 60$ нсек.

В обоих энергетических трактах применялась стабилизация положения пика.

Вторая установка применялась нами только для изучения углового распределения высокоэнергетических каскадов. Регистрация у -излучения производилась Ge(Li) детектором с чувствительным объемом 45 см³ и с энергетическим разрешением 3,5 кэВ на Е_V = 1173 кэВ и двумя сцинтилляционными детекторами с кристаллами NaI(TI) размерами ϕ 40х40 мм, закрепленными на подвижной платформе корреляционного стола /угол между осями сцинтилляционных детекторов 90°/. Энергетические окна выбирались с помощью дифференциальных дискриминаторов вканалах сцинтилляционных детекторов. Спектры совпадений для каждого окна, определенного детектора и соответствующего угла регистрировались в отдельном участке автоматически разделяемой памяти 1024-канального анализатора. Временное разрешение быстрых трактов составляло 27 ~ 50 нсек. Источник

устанавливался на расстоянии 6 см от Ge(Li) - детектора и 8 см от сцинтилляционных детекторов.

В обоих установках центровка источника была не хуже 1%.

3. Результаты измерений

Результаты исследований распада¹⁵³ Tb → ¹⁵³Gd^{/2-4/} обращают внимание на большую плотность возбужденных состояний ¹⁵³Gd и очень сложный спектр *γ*-излучения ¹⁵³Tb. Количественные расчеты на основе спектров *γ*-*γ*совпадений в ряде случаев сильно затруднены, даже при использовании в измерениях полупроводниковых детекторов. Поэтому нами измерялись угловые распределения только четко выделяемых каскадов, содержащих переходы: 87,6; 109,7 и 129,1 *кэВ*.

Для первых двенадцати каскадов, перечисленных в *табл.* 1, измерения проводились на установке с Ge(Li)детекторами. Одновременно регистрировались спектры совпадений /в диапазоне энергий 20[÷]630 кэВ/ с у -лучами /82,9+87,6/; 102,2; 109,7 и 129,1 кэВ и с комптоновским распределением за пиками полного поглощения у -лучей 109,7 и 129,1 кэВ. Участки этих спектров для угла $\Theta = 135^{\circ}$ представлены на *рис.* 1.

В случае высокоэнергетических каскадов 835,4 -109,7; 845,6-109,7 и 991,7-109,7 кэВ измерялась только анизотропия при углах $\Theta = 90^{\circ}$ и 180° /с помощью установки с NaI(Tl) и Ge(Li) -детекторами/. Этого достаточно, так как переходы 835,4; 845,6 и 991,7 кэВ типа E1^{/3,4/} и функция угловой корреляции этих каскадов содержит только два члена: $\Psi(\Theta) = 1 + A_2 P_2 (\cos \Theta)$. В этих измерениях энергетические окна были установлены на $E_{\gamma} = 109,7$ кэВ, а спектры совпадений регистрировались в диапазоне энергий 800 ÷1050 кэВ.

При определении значений коэффициентов функции угловой корреляции, изучаемых нами каскадов, учитывались вклады совпадений от "чужих" каскадов, случайные совпадения, поправки на центровку источника и на эффективность регистрации и телесные углы детекторов.

Рис. 1. Спектры совпадений гамма-лучей в ¹⁵³ денные в одной из серий для угла Θ = 135° между осями детекторов.

2

Таблица 1 Значения коэффициентов А₂и А₄ функции угловых гаммагамма корреляций в ядре ¹⁵³ Gd.

Каскад (кэВ)	Наст. работа		Польок и др. [9]	
	A2	A4	A2	
82,9-87,6 82,9-I9-I09,7 82,9-I29,I I02,2-68,2 I02,2-I09,7 I39,7-I09,7 I74,3-87,6	-0,028±0,009 +0,037±0,006 +0,158±0,029 -0,208±0,080 +0,177±0,010 -0,162±0,073 +0,023±0,031	-0,006±0,017 +0,007±0,016 -0,024±0,045 +0,040±0,125 +0,066±0,054	+0,064 <u>+</u> 0,040 +0,073 <u>+</u> 0,071 +0,290 <u>+</u> 0,065 +0,I60 <u>+</u> 0,021 +0,I94 <u>+</u> 0,085	
174,3-19-109,7 186,9-129,1 193,7-109,7 206,3-109,7	-0,043 ±0,040 +0,170±0,095 -0,192±0,037 +0,163±0,059	-0,008 <u>+</u> 0,065 -0,009 <u>+</u> 0,150 +0,003 <u>+</u> 0,069 +0,067 <u>+</u> 0,103	+0,I40 <u>+</u> 0,I60 -0,I89 <u>+</u> 0,I40	
835,4-109,7 845,6-109,7 991,7-109,7	<pre><0 +0,167±0,028 -0,172±0,041 +0,150±0,022</pre>		+0,090 <u>+</u> 0,050 +0,205 <u>+</u> 0,056	

7

Для каскадов, содержащих промежуточный уровень 129,1 кэВ с временем жизни $T_{1/2} = 2,63\pm0,13$ нс $^{/6,7/}$, вводилась дополнительная поправка $G_2 = 0,932\pm0,020$, учитывающая ослабление угловой корреляции. Значение этой поправки было оценено по релаксационному параметру $\lambda = /1,88\pm0,53/.10^7 \, ce\kappa^{-1}$ ядер 155 Gd в водном растворе GdCl $_{2}^{/8/}$.

На угловое распределение γ -излучений каскадов 102,2-109,7 и 102,2-68,2 кэВ, измеряемым в диапазоне углов 90°- 180°, даже с применением конусообразных коллиматоров, явно влияло обратное рассеяние от интенсивных γ -квантов 212 кэВ / Е $_{\gamma c}$ /180°/ \simeq 98 кэВ/ и 170 кэВ /Е $_{\gamma c}$ /180°/ \simeq 68 кэВ/. Поэтому для этих каскадов коэффициенты A_2 определялись на основе значения их асимметрии. Это не меняет результаты, а только увеличивает их ошибку, так как переход 102,2 кэВ типа $E1^{/1-4/}$.

Полученные значения коэффициентов A_{2} и A_{4} изучаемых каскадов приведены в *табл.* 1. Там же, для сравнения, приведены результаты измерений угловых корреляций в ¹⁵³ Gd Польока и др.^{/9/}. Как видно из этой таблицы, наши измерения выполнены существенно точнее и включают большее число каскадов. В случае каскадов 82,9-87,6; 82,9-129,1 и 174,3-87,6 *кэВ* результаты обеих работ явно различаются. По-видимому, это является следствием неточного учета в работе^{/9/} вклада от конкурирующих каскадов и от обратного рассеяния. Более конкретно указать причину этого расхождения трудно, так как в работе^{/9/} нет сведений о технике измерений.

4. Анализ результатов измерений

А. <u>Спины и четности возбужденных состояний</u>¹⁵³ Gd При распаде основного состояния ¹⁵³ Tb с $1^{\pi} = 5/2^{+/10/}$ можно ожидать заселения в ядре ¹⁵³ Gd состояний со спинами от 1/2 до 9/2. Результаты работ ^{/2,3/}, в которых подробно исследовался распад ¹⁵³ Tb · ¹⁵³ Gd, указывают, что для большинства наблюдаемых уровней ¹⁵³ Gd ожидаются значения спинов 3/2 или 5/2 и лишь для нескольких уровней допускаются значения 1/2 и 7/2. Учитывая принадлежность уровней 41,5 и 93,3 кэВ вращательной полосе основного состояния $3/2^{-1}$ [521]. Туурнала и др.³, на основе измеренных коэффициентов внутренней конверсии у -переходов и значений log ft в ¹⁵³Gd, предлагают определенные значения спинов для уровней: 183,4 /5/2⁺/, 211,9 /3/2⁺/, 3O3,5 /5/2⁺/, 442,2 /5/2⁺/, 548,8 /5/2⁻/, 783,O /5/2⁺/ и 945,1 /3/2⁺/ кэВ. Однако, если учесть более подробные данные об электронах внутренней конверсии Александрова и др. ^{/4/}, то для уровней 442,2; 548,8; 783,О и 945,1 кэВ допускаются также другие значения спина, а уровню 442,5 кэВ можно даже приписать противоположную четность.

В работе Польока и др/9/ по измерениям угловых гамма-гамма корреляций определены значения спинов уровней: 129,1 /3/2/, 212 /3/2/, 3O3,5 /5/2/, 945,1/3/2/ и 11O1,5 /3/2/ κ эB.

При анализе результатов наших измерений принимались:

- схема возбужденных уровней 153 Gd, предложенная Туурнала и др. $^{/3/}$, /фрагмент этой схемы, на которой указаны только γ -переходы изученных нами каскадов, приведен на *рис. 2*/;

- мультипольности переходов 82,9; 102,2; 186,9; 193,7; 206,3; 835,4; 845,6 и 991,7 кэВ как типа Е1, переходов 87,6; 109,7; 129,1 и 139,7 кэВ - типа М1+ \leq 1% Е2, а перехода 68,2 кэВ - М1+ ~5% Е2 в соответствии с данными по изучению спектров электронов конверсии в 153 Gd^{/1-4/};

в Gd
значение спина I^π = 3/2⁻основного состояния Gd^{/11/} Следует подчеркнуть, что при анализе результатов для каждого уровня допускались значения спинов от 1/2 до 7/2, поскольку переходы рассматриваемых каскадов явно не ограничивали этого набора. Такой анализ возможен, так как все γ -каскады, для которых измерялись угловые корреляции, типа I_i (DD)I (DQ) 3/2 и все содержат промежуточный уровень 129,1 кэВили 109,7 кэВ.

Если рассматривать только переходы, связывающие уровни 129,1 и 109,7 кэВ с основным состоянием ¹⁵³Gd, то для этих уровней возможны значения спинов 5/2⁻, 3/2⁻ и 1/2⁻. Анизотропное угловое распределение боль-

9

Рис. 2. Фрагмент схемы распада¹⁵³ Tb – ¹⁵³Gd. Кружочками обозначены уровни, значения спинов которых установлены из измерений гамма-гамма угловых корреляций. шинства измеренных нами каскадов полностью исключает спин 1/2.

В табл. 2 приведены теоретические значения коэффициентов A₂ каскадов I_i (DD)I (D + \leq 0,9% Q)3/2 для спинов промежуточного уровня 3/2 и 5/2 в зависимости от значений спинов начальных состояний. Из этой таблицы видно, что положительные значения коэффициентов A₂

	Табл	ица II		
Теоретические	значение	коэффициентов Аз	для	гамма-
каска,	цов I _i (DD))I $(D + \le 0.9\% Q)3/2$		

	I/2	3/2	5/2	7/2
3/2	-(0,106÷0,275)	0,085 ÷ 0,220	-(0,021 : 0,055)	· · · · · · · · · · · · · · · · · · ·
5 /2		0 , 208 + 0,068	-(0,238 : 0,078)	0,075 +0 ,024

каскадов 82,9-129,1; 102,2-109,7; 186,9-129,1; 206,3-109,7; 835,4-109,7; 991,7-109,7 кэВ /см. табл. 1/ дают возможность приписать начальным уровням этих каскадов: 211,9; 316,1; 945,1 и 1101,5 кэВ однозначно значение $l^{\pi} = 3/2^+$. Отрицательные значения коэффициентов А₂ каскадов 139,7-109,7; 193,7-109,7; 332,5-109,7 н 845,6-109,7 кэВ указывают на одинаковую последовательность спинов уровней, связанных этими каскадами, а именно: 5/2-5/2-3/2 или 1/2-3/2-3/2. Вторая возможность исключается, если учесть присутствие интенсивного El -перехода 262.1 кэВ между уровнями 303.5 и 41.5 кэВ /спин последнего 5/2 как будет показано ниже/. Следовательно, уровням 3О3,5; 442,2 и 955,3 кэВ следует приписать значения $I^{\pi} = 5/2^+$, а уровням 1О9,7 и 249.5 $\kappa_{2}B - 1^{\pi} = 5/2^{-}$. Анализ значения коэффициента А₂ каскада 82,9-87,6 кэВ, при известном уже значении спина уровня 211,9 /3/2⁺/ кэВ, и в предположении, что переход 87,6 кэВ типа M1 + <1% Е2, позволяет приписать значения спинов 3/2⁻и 5/2⁻ уровням 129,1 и 41,5 кэВ, соответственно.

Используя установленные значения спинов обсуждавшихся выше уровней и данные о мультипольностях переходов ^{2-4/} можно ограничить выбор возможных значений спинов для других уровней - **табл.** 3.

> Таблица 3 Спины и четности уровней ¹⁵³Gd

Е _{ур} (кэв)	Наст.работа	Туурнала и др[3]	Расоты (12-157
0	3/2- 8)	3/2 ^{- a)}	3/2
4I.5	5/2	5/2 ^{- a)}	5/2
93.3	7/2 ⁻ a)	7/2-8)	7/2
109.7	5/2	3/2, 5/2	5/2
129.1	3/2	3/2, 5/2	3/2
183.4	5/2 +	5/2*	5/2+
195,I		(I/2)	
211,9	3/2*	3/2+	3/2+
249,5	5/2	3/2, 5/2	5/2
303,5	5/2+	5/2 †	(5/2)*
315,3	I/2 ⁻ , 3/2 ⁻	(3/2)	
316,3	3/2+	3/2+, 5/2+	
361,7	3/2, 5/2	(3/2)	3/2
368,7	5/2 (7/2)	(5/2, 7/2)	
436,7		1/2, 3/2	
442,2	5/2 †	5/2 †	(5/2)*
448,6	5/2	5/27,7/27	
483,5	3/2+, 5/2+	+	I/2*
509 ,I	3/2, 5/2	(-)	3/2
530,4	3/2-, 5/2-	-	3/2
548,8	5/2	5/2	
709 ,I	3/2*, 5/2*	(+)	
783,0		5/2*	
857,5		-	I/2 ⁻
865,2	3/2*, 5/2*		
937,3	(3/2, 5/2)	+	
945,I	3/2*	3/2*	
955,3	5/2 *	+	
1035,0	(3/2, 5/2)	+	
1101,5	3/2+	3/2*, 5/2*	

в) Принятые значения спинов

В табл. З приводятся также значения спинов и четностей уровней ¹⁵³ Gd, предложенные Туурнала и др. $^{/3/}$ и авторами работ $^{/12-15/}$ при исследовании (d,p), (d,t), (He³,a) и (a,xn) - реакций.

Б. <u>Коэффициенты смеси δ_{γ} переходов, разряжающих</u> уровни 109,7 и 129,1 *кэВ*

Авторы работ^{/1,4/} по результатам измерений интенсивностей электронов внутренней конверсии на L подоболочках интерпретируют переходы 109,7 и 129,1 кэВ как переходы типа M1. Однако, если учесть экспериментальные погрешности в соотношениях L₁::L₂::L₃, то для обоих переходов допускаются небольшие / \leq 0,1%/ примеси компоненты E2.Переход 87,6 кэВ в работах^{/1-3/} классифицируется как чистый M1, в работе ^{/4/} - как M1 +0,1% E2. Исследования ЭВК не решают однозначно проблему мультипольности перехода 174,4 кэВ.

Дополнительную информацию о мультипольностях этих и других переходов можно получить из результатов наших корреляционных измерений. Для этого, принимая установленные нами значения спинов и чисто дипольный (E1)характер переходов 82,9; 102,2; 186,8; 193,7; 206,3; 835,4; 845,6 и 991,7 кэВ были определены коэффициенты $A_{2 \ 3KCII}^{(2)}$ для переходов 68,2; 87,6; 109,7 и 129,1 кэВ, а затем значения их параметров смеси δ_{γ} . Средневзвешенные значения коэффициентов $A_{2 \ 3KCII}^{(2)}$ для этих .переходов получены при учете всех каскадов типа $\gamma_1(E1)$ - $\rightarrow \gamma_2(M1+E2)$ и соответствующие им значения параметров смеси δ_{γ} приведены в *табл.* 4.

Рис. 3, на котором показана зависимость $A_2^{(2)}$ от параметра смеси δ_{γ} /в пределах -0,01
< $\delta_{\gamma} \leq$ 0,05/ для переходов 5/2 (γ_2) 3/2 и 3/2 (γ_2) 5/2, иллюстрирует точность определения δ_{γ} для переходов 87,6 и 109,7 кэВ.

Значение коэффициента A₂ тройного каскада 82,9-/19/-109,7 кэВ указывает на чистый квадрупольный характер перехода 19 кэВ.

Установленные значения спинов и четностей 5/2⁺ и 3/2⁻ уровней 3О3,5 и 129,1 кэВ, соответственно, делают

Рис. 3. Определение коэффициентов смеси δ_{γ} - переходов 87,6 и 109,7 кэВ.

предпочтительным E1 - мультипольность для перехода 174,3 кэВ. Такому выводу не противоречат экспериментально определенные коэффициенты угловых корреляций каскадов 174,3-/19/-109,7 и 174,3-87,6 кэВ.

В заключение авторы выражают благодарность К.Я.Громову за постоянную поддержку в работе, И.И.Громовой и Н.А.Лебедеву за изготовление источников.

Таблица 4	. Значения	коэффициентов	А <mark>(2)</mark> н пара	аметров
	смесн б.	_v - переходов,	разряжающих	уровни
	109,7 и	129,1 кэВ		

Переход	А (2) 2 Экс п	δ ^{a)} γ
3/2(129,1)3/2	-0,402 <u>+</u> 0,065	+0,012 <u>+</u> 0,036
5/2(109,7)3/2	+0,453 <u>+</u> 0,021	-0,043 <u>+</u> 0,012
3/2(87,6)5/2	+0,070 <u>+0</u> ,22	-0,026 <u>+</u> 0,018
5/2(68,2)5/2	-0,556 <u>+</u> 0,214	+0,234 ⁶⁾

а/ δ_{γ} определено как $\frac{\langle \mathbf{I} \mathbf{f} | \mathbf{L} + \mathbf{I} | \mathbf{I}_{\mathbf{i}} \rangle}{\langle \mathbf{I}_{\mathbf{f}} | \mathbf{L} | \mathbf{I}_{\mathbf{i}} \rangle}$ б/ значение определено по данным работы ^{/4/}.

14

Литература

- 1. B.Harmatz, T.H.Handley, J.W.Mihelich. Phys. Rev., 128, 1186 (1962).
- 2. H.L.Nielson, K.Wilsky. Nucl.Phys., A115, 377 (1968).
- 3. T. Tuurnala, A.Siivola, P.Jartti, T.Liljavirta. Z.Physik, 266, 103 (1974).
- В.С.Александров, Ц.Вылов, И.И.Громова, К.Я.Громов, Г.Исхаков, В.В.Кузнецов, Н.А.Лебедев, М.Потемпа, М.И.Фоминых, А.Ш.Хамидов, И.Холбаев. Препринт ОИЯИ, Рб-8316, Дубна, 1974; Изв. АН СССР, сер. физ., 39, 506 /1975/.
- В.С.Александров, Ф.Дуда, О.И.Елизаров, Г.А.Жуков, Г.И.Забиякин, З.Зайдлер, И.Звольски, Е.Т.Кондрат, З.В.Лысенко, В.И.Приходько, В.Г.Тишин, М.И.Фоминых, В.И.Фоминых, В.М.Цупко-Ситников. Изв. АН СССР, сер. физ., 34, 69 /1970/.
- 6. Я.Ваврыщук, А.Ф.Новгородов, В.А.Морозов, Т.М.Муминов, В.И.Разов, Я.Сажински. Препринт ОИЯИ, Р6-5526, Дубна, 1970.
- 7. W.Andrejtcheff, W.Meiling, F.Stary. Nucl. Phys., A137, 474 (1969).
- 8. E.Bozek, A.Z.Hrynkiewicz, S.Ogaza, T.Styczen. Phys.Lett., 11, 63 (1964).
- 9. G. Polok, M.Rybicka, Z.Stachura, J.Styczen. INP Progress Report, 1, 116, Cracow, 1972.
- 10. K.E.Adelrøth, H.Nyqvist, A.Rosen.Phys.Scr., 2, 96 (1970).
- 11. D.Ali. Nucl. Phys., 71, 441 (1965).
- 12. P.O. Tjøm, B. Elbek. Mat. Fys. Medd. Dan. Vid. Selsk., 36, 8 (1967).
- 13. G.Løvhøiden, D.G.Burke, J.C. Waddington. Can. J. Phys., 51, 1369 (1973).
- 14. G.Løvhøiden, D.G.Burke. Can.J.Phys., 51, 2354 (1973).
- 15. G.Løvhøiden, S.A.Hjørh, H.Ryde, L.Harms-Ringdahl. Nucl.Phys., A181, 589 (1972).

Рукопись поступила в издательский отдел 23 апреля 1975 года.

Аликов Б.А., Будзынски М., Бэдике Т., Ваврищук Я., Жук В., Ион-Михай Р., Кузнецов В.В., Лизурей Г.И., Морозов В.А., Муминов Т.М., Фоминых М.И., Холбаев И.

Корреляции направлений гамма-излучения в ¹⁵³Gd

Изучались корреляции направлений гамма-излучений при распаде ¹⁵³ Tb → ¹⁵³ Gd для каскадов: 82,9-87,6 кэВ, 82,9-(19)-109,7 кэВ, 82,9--129,1 кэВ, 102,2-68,2 кэВ, 139,7-109,7 кэВ, 174,3-87,6 кэВ, 174,3-(19)-109,7 кэВ, 102,2-109,7 кэВ, 186,9-129,1 кэВ, 193,7-109,7 кэВ, 206,3-109,7 кэВ, 332,5-109,7 кэВ, 835,4-109,7 кэВ, 845,6-109,7 кэВ и 991,7-109,7 кэВ,

Установлены значения спинов уровней с энергиями: 41,5 (5/2), 109,7 (5/2), 129,1 (3/2), 211,9 (3/2), 249,5 (5/2), 303,5 (5/2), 316,1 (3/2), 442,2 (5/2), 945,1 (3/2), 955,3 (5/2) и 1101,5 (3/2) кэВ и определены коэффициенты смеси δ_{γ} переходов: 68,2; 87,6; 109,7 и 129,1 кэВ. Обсуждается значения спинов других уровней ¹⁵³ Gd.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

Alikov B.A., Budzynsky M., Badike T., P6 - 8823 Vavrishchuk Ya., Zhuk V., Ion-Mihai R., Kuznetsov V.V., Lizurey G.I., Morosov V.A., Muminov T.M., Fominykh M.I., Kholbajev I.

Correlations of Directions of y-Radiation in ¹⁵³Gd See the Summary on the reverse side of the title-page.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research Dubna 1975