

P6-88-926

Ч.Л.Катхат, Н.В.Самсоненко*

ТОКИ ВТОРОГО РОДА И МАССА ПОКОЯ МЮОННОГО НЕЙТРИНО В ПРОЦЕССАХ ЗАХВАТА МЮОНОВ ЯДРАМИ ⁶ Li И ³ He

Направлено в журнал "Nuclear Physics A"

Университет дружбы народов им.П.Лумумбы, Москва

1988

1. ВВЕДЕНИЕ

Наиболее общие выражения для векторной V_a и аксиальновекторной A_a компонент адронного слабого тока, допускаемые релятивистской инвариантностью теории, могут быть записаны в виде

$$V_{a} = \overline{u}(p_{f})[F_{1}\gamma_{a} + F_{2}\sigma_{a\beta}q_{\beta} + iF_{s}q_{a}]u(p_{i}),$$

$$A_{a} = \overline{u}(p_{f})[-F_{A}\gamma_{a} - F_{T}\sigma_{a\beta}q_{\beta} - iF_{P}q_{a}]\gamma_{5}u(p_{i}).$$
/1/

Шесть формфакторов, содержащих всю информацию о полулептонных процессах / β -распад, мюонный захват, процессы рассеяния нейтрино и т.д./ являются функциями квадрата переданного 4-импульса $q_a^2 = (p_1^a - p_1^a)^2$: $F_X = F_X(q_a^2)$, где X = = 1, 2, S, A, P, T /для дираковского, паулиевского, скалярного, аксиально-векторного, псевдоскалярного и тензорного формфакторов/. Вайнберг^{/1/} классифицировал слабые заряженные токи /1/ по их трансформационным свойствам относительно оператора G-четности. Токи первого рода /TПР/, доминирующие в слабом взаимодействии и являющиеся базисом стандартной модели, ведут себя при G-преобразовании следующим образом:

 $\mathrm{G} V_{\alpha}^{I} \, \mathrm{G}^{-1} = + \, V_{\alpha}^{I} \quad \bowtie \quad \mathrm{G} \mathrm{A}_{\alpha}^{I} \, \mathrm{G}^{-1} = - \, \mathrm{A}_{\alpha}^{I} \, .$

Токи второго рода /TBP/ ведут себя противоположным образом при G-преобразовании:

 $\mathbf{G} \mathbf{V}_{a}^{\mathrm{II}} \mathbf{G}^{-1} = -\mathbf{V}_{a}^{\mathrm{II}} \quad \bowtie \quad \mathbf{G} \mathbf{A}_{a}^{\mathrm{II}} \quad \mathbf{G}^{-1} = +\mathbf{A}_{a}^{\mathrm{II}}.$

В соответствии с этой классификацией формфакторы F_1, F_2, F_A, F_D относятся к TRP и формфакторы $F_S, F_T - \kappa$ TBP.

Недавнее наблюдение новых каналов распада τ -лептона $\tau \to \omega \pi \nu_{\tau}^{/2/}$ и $\tau \to \eta \pi \nu_{\tau}^{/3/}$ усилило внимание к проблеме ТВР. Теоретический анализ этих процессов был сделан в $^{/4/}$. До настоящего времени в основном исследовались эффекты, обусловленные формфактором F_{T} /см., например, $^{/5/}$ /, однако после появления первых указаний о прямом наблюдении η -мезонов, образующихся в процессе распада τ -лептона $^{/3}, 6/$, идущего

благодаря компоненте TBP в векторном токе, желательно изучить эффекты, индуцированные скалярным формфактором F_S . Следует подчеркнуть, что точное сохранение векторного тока в соответствии с гипотезой CBT приводит к равенству нулю скалярного формфактора TBP: $F_S \equiv 0$. Переданный импульс в процессе μ^- -захвата является большим по сравнению с переданным импульсом в процессе β -распада. По этой причине наблюдение эффектов TBP в реакции захвата мюонов представляется более предпочтительным $^{77,8/}$, хотя и в процессах β -распада ядер также можно наблюдать чистые эффекты $^{9,10/}$, обусловленные TBP.

Имеется еще одна важная проблема в физике слабых взаимодействий - масса покоя у нейтрино /антинейтрино/ различных типов /11/ . Для экспериментального определения массы покоя нейтрино /антинейтрино/ используются различные методы /см., например, /11-13/ /. Из них в последние годы наиболее активно используется метод, основанный на изучении верхней границы β-спектра трития с целью определения массы электронного антинейтрино / m_p \leq 29 эВ $^{/14/}$ /. Из калориметрических измерений баланса энергии в 163 Но /15/ установлен верхний предел на массу покоя электронного нейтрино $m_{
u_{A}}$ < 550 эВ. Верхний предел на массу мюонного нейтрино m $_{\nu_{\mu}}$ получен на основе анализа распада π -мезонов / m $_{\nu_{\mu}}$ < 500 кэВ/ $^{/16/}$. Верхний предел на массу покоя τ -нейтрино /m $_{\nu_{\tau}}$ < 84 МэВ/ установлен методом фитирования недостающих масс, уносимых нейтрино в трехлучевых распадах /-лептона /17/ . Серия работ /7,18-22/ посвящена поиску новых путей получения информации о массах электронных /18-20/ и мюонных /7,21,22/ нейтрино /антинейтрино/. Например, степень продольной поляризации электронов /позитронов/, образующихся в в-распаде ядер с учетом конечной массы антинейтрино /нейтрино/ имеет вид /18/ :

$$P_{e^{\mp}} = \mp 2\kappa\beta_{e} [C_{1}(1+\kappa^{2}) + C_{2}(1-\kappa^{2}) - \frac{m_{e}m_{\nu}}{E_{e}E_{\nu}}]^{-1},$$

Здесь C_i /i = 1, 2/ - функции, зависящие от ядерных формфакторов, импульсов электрона и антинейтрино и угла между ними; параметр κ - отношение аксиально-векторной и векторной амплитуд заряженного лептонного тока / κ = a_A/a_V /.

Коэффициент электрон-антинейтринной корреляции $A_{e\nu}$ определяется формулой $^{/18/}$:

$$\mathbf{A}_{\mathbf{e}\nu} = \beta_{\mathbf{e}}\beta_{\nu}\mathbf{D}\left[1 - \mathbf{C}\frac{1-\kappa^2}{1+\kappa^2} \frac{\mathbf{m}_{\mathbf{e}}\mathbf{m}_{\nu}}{\mathbf{E}_{\mathbf{e}}\mathbf{E}_{\nu}}\right]^{-1}$$

Хорошо известно, что при равенстве нулю массы антинейтрино /нейтрино/ в случае чистых гамов-теллеровских переходов коэффициент корреляции $A_{e\nu}$ в конце спектра стремится к "-1/3", а в случае чистых фермиевских переходов - к "+1". В случае отличия от нуля массы антинейтрино /нейтрино/ в обоих случаях коэффициент корреляции $A_{e\nu}$ стремится к нулю ^{/18/} в верхней граничной точке β -спектра и сама граница смещается влево /в сторону меньших энергий/ на величину массы покоя антинейтрино. Эти результаты не зависят от параметра к и от структуры ядер, так как вблизи верхней границы β -спектра основную роль играет множитель $\beta_{\nu} = \{1 - [m_{\nu}/(E_{max} - E_{a} + m_{\nu})]^2\}^{\frac{1}{2}}$.

В случае испускания тяжелых нейтрино в процессе β -распада их масса также может быть определена с помощью измерения коэффициента корреляции $A_{e\nu}$ и параметра зарядовой асимметрии В ^{/19/}. Например, по известному значению энергии электронов E_{e}^{\prime} , при которой коэффициент $A_{e\nu}$ принимает экстремальное значение /минимум - в случае гамов-теллеровских переходов, максимум - в случае фермиевских переходов ^{/19/} и минимум - для смешанных переходов ^{/20/}/, можно определить массу покоя нейтрино по следующей формуле ^{/19, 20/}:

$$m_{\nu_{e}} = m_{e} \left(\frac{\Delta E - E_{e}'}{E_{e}'} \right)^{3/2} \left[1 + \left(\frac{m_{e}}{E_{e}'} \right)^{2} \left(\frac{\Delta E - E_{e}'}{E_{e}'} \right) \right]^{1/2},$$

где <u>ЛЕ</u> - энергия перехода.

В случае β -распада поляризованных ядер /а также и поляризованного свободного нейтрона $^{/20/}$ / измерение асимметрии испускания нейтрино относительно ориентации спина ядра дает возможность получить информацию о значении массы покоя нейтрино. Например, при β -распаде свободного нейтрона мы имеем $^{/20/}$

$$m_{\overline{\nu}_{e}} = (\Delta E - E_{e}) \left[1 - A_{n\nu}^{2} \left(\frac{1+3\lambda^{2}}{2\lambda(1+\lambda)}\right)^{2}\right]^{\frac{1}{2}}, \quad \lambda = |g_{A}/g_{V}|.$$

Масса покоя мюонного нейтрино также может быть оценена с помощью измерения коэффициента $a_{\mu\nu}$ испускания нейтрино относительно ориентации спина мюона в процессе захвата мюонов ядром 12 С по формуле $^{/21/}$:

$$m_{\nu_{\mu}} = (m_{\mu} - \epsilon_{B} - \Delta E) (1 - 9a_{\mu\nu}^{2})^{\frac{1}{2}}$$
.

Эффекты TBP в мюонном захвате свободными протонами изучались ранее в $^{/23/}$. Возникает вопрос об одновременном учете эффектов, обусловленных ТВР /формфакторами F_s и F_m / и массой покоя мюонного нейтрино, в коэффициенте угловой асимметрии процесса захвата мюонов легкими ядрами. В настоящей ра $a_{\mu\nu}$ боте мы проводим теоретический анализ захвата мюонов ядрами ⁶Li и⁸Не.

В следующем разделе приведены детали вычисления матричных элементов и используемые способы параметризации формфакторов. В 3 и 4 разделах вычисляется дифференциальная вероятность захвата мюонов легкими ядрами и коэффициент угловой асимметрии испускания нейтрино относительно спина мюона. В 5 разделе рассмотрены конкретные ядра ⁶Li и ³He. Основные результаты суммированы в разделе 6.

2. МАТРИЧНЫЙ ЭЛЕМЕНТ И ПАРАМЕТРИЗАЦИЯ ФОРМФАКТОРОВ

При малых значениях переданного 4-импульса пропагатор Wбозона может быть аппроксимирован константой $1/{
m M}_w^2$ /где M $_w$ масса калибровочного W-бозона/ и все вычисления можно провести в рамках ток-токовой теории слабых взаимодействий. В этом случае матричный элемент процесса захвата поляризованных мюонов ядром /А, Z/

$$\mu^{-} + (A, Z) \rightarrow (A, Z-1) + \nu_{\mu} \qquad (2)$$

может быть записан в виде

$$\langle \mathbf{f}; \vec{\mathbf{p}}_{\nu}, \mathbf{s}_{\nu} | \hat{\mathbf{H}}_{\mathbf{W}} | \vec{\mathbf{p}}_{\mu}, \vec{\mathbf{s}}_{\mu}; \mathbf{i} \rangle = -\frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}} \ell_{\alpha} \int d\vec{\mathbf{r}} e^{-\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} \langle \mathbf{f} | \phi_{1S}(\vec{\mathbf{r}}) \hat{\mathbf{J}}_{\alpha}(\vec{\mathbf{r}}) | \mathbf{i} \rangle, \qquad /3/$$

где $\phi_{1S}(\vec{r})$ – волновая функция мюона боровской 1S -орбиты мезоатома; $G_F = 1,023 \cdot 10^{-5} m_p^{-2}$ – фермиевская константа слабого взаимодействия /m_p – масса протона/; $q_a = (p_\mu - p_\nu)_a =$ = (\vec{q}, iE_0) – переданный 4-импульс; p_μ^a и p_ν^a – 4-импульсы мюона и мюонного нейтрино ($ab = a_a b_a = \vec{a} \vec{b} + a_4 b_4 = \vec{a} \vec{b} - a_0 b_0$).

Заряженный мюонный ток дается формулой

$$\ell_{a} = i \overline{u}_{\nu_{\mu}} \gamma_{a} (a_{V} + a_{A} \gamma_{5}) u_{\mu}. \qquad (4)$$

Здесь a_v и a_a - константы, характеризующие интенсивность векторной и аксиально-векторной частей тока ℓ_a /погрешности в имеющихся на сегодняшний день экспериментальных данных, однако, допускают значительное отличие /24/ от чистой (V - A)формы лептонного тока/; $u_i / i = \nu_\mu$, $\mu / - дираковские спино$ pы.

Оператор плотности адронного тока $\widetilde{J}_a(\vec{r})$ можно разложить на неприводимые тензоры в изотопическом пространстве сильновзаимодействующих частиц /нуклонов/. В нашем случае отличный от нуля вклад дадут $^{/25/}$ только тензоры $(J_a(\vec{r}))_{TM_m}$ с Τ= О, $M_{T} = 0$ /изоскалятор/, T = 1, $M_{T} = 0$ /изовектор, нейтральная компонента тока/ и T = 1, $M_{T} = \pm 1$ /изовектор, заряженные компоненты тока/. Каждый из этих тензорных операторов содержит векторную и аксиально-векторную часть, т.е. полное разложение оператора тока $\hat{J}_{a}(\vec{r})$ имеет вид $^{/25,\,26/}$:

$$\hat{J}_{a}(\vec{r}) = \{ \beta_{V}^{(T)} \hat{I}_{a}(\vec{r}) + \beta_{A}^{(T)} \hat{I}_{a}^{5}(\vec{r}) \}_{TM_{T}},$$
(5/

где $\beta_{\rm V}^{({\rm T})}$ и $\beta_{\rm A}^{({\rm T})}$ - константы, характеризующие интенсивность векторной $\hat{\rm I}_a(\vec{r})$ и аксиально-векторной $\hat{\rm I}_a^5(\vec{r})$ частей тока $\hat{J}_{\sigma}(\vec{r})$ ·

В рассматриваемом здесь процессе /2/ слабый адронный ток является изовекторным /т.е. T = 1/ и заряженным / $M_T = -1/$.

Для вычисления ядерных матричных элементов в разд. 5 мы используем следующую параметризацию однонуклонных формфакторов. Для формфакторов токов первого рода принимаем /25,26/:

$$\begin{split} & F_{1,2,A}^{(1)}(q_{a}^{2}) = F_{1,2,A}^{(1)}(0) f_{SN}(q_{a}^{2}), \\ & F_{1}^{(1)}(q_{a}^{2}) + 2M_{N}F_{2}^{(1)}(q_{a}^{2}) = \mu^{(1)}(q_{a}^{2}) = \mu^{(1)}(0) f_{SN}(q_{a}^{2}). \end{split}$$

Здесь $F_{1}^{(1)}(0) = F_{A}^{(1)}(0) = 1;$ $\mu^{(1)}(0) = \mu^{V} = 4,706$ - изо-векторная часть магнитного момента /в единицах ядерного магнетона/, $M_N = 1/2 (m_n + m_p)$ - масса нуклона. Однонуклонный формфактор $f_{SN}(q_a^2)$ дается формулой /25/:

$$f_{SN}(q_a^2) = [1 + q_a^2 / (855 \text{ M} \Rightarrow \text{B})^2]^{-2}.$$

В соответствии с гипотезой о частичном сохранении аксиально-векторного тока /ЧСАТ/ /см., например, /25/ / мы принимаем

$$F_{P}^{(1)}(q_{\alpha}^{2}) = 2M_{N}F_{A}^{(1)}(q_{\alpha}^{2})/(q_{\alpha}^{2} + m_{\pi}^{2}).$$

Аналогичную параметризацию будем использовать также для формфакторов токов второго рода:

$$F_{S,T}^{(1)}(q_{\alpha}^{2}) = F_{S,T}^{(1)}(0) f_{SN}(q_{\alpha}^{2}),$$

где $F_{S}^{(1)}(0)$ и $F_{T}^{(1)}(0)$ – значение формфакторов при нулевом значении переданного 4-импульса $q_{a}^{2} = 0$.

Верхний индекс "1" у формфакторов указывает на то, что речь идет об изовекторных формфакторах. Этот индекс опущен для простоты в уравнении /1/ и мы его также будем опускать в последующих формулах. Мы также далее используем для формфакторов при нулевом значении переданного 4-импульса $F_{\rm S}^{(1)}\left(0\right)$ и $F_{\rm T}^{(1)}\left(0\right)$ сокращенные обозначения $F_{\rm s}$ и $F_{\rm T}$.

3. ДИФФЕРЕНЦИАЛЬНАЯ ВЕРОЯТНОСТЬ ЗАХВАТА

Поскольку $\phi_{1S}(\vec{r})$, является медленно меняющейся функцией в пределах объема ядра, то в качестве хорошего приближения ее можно извлечь из-под знака интеграла в матричном элементе и использовать ее среднее значение /25,26/

$$|\phi_{1S}|_{av}^{2} = R |\phi_{1S}(0)|^{2} = (R/\pi) [Zam_{\mu}M_{A}/(m_{\mu}+M_{A})]^{3}.$$
 (6/

Здесь R — множитель, учитывающий конечность пространственного распределения ядерной плотности, M_A и Z - масса и заряд ядра, α - постоянная тонкой структуры.

Дифференциальная вероятность процесса /1//т.е. перехода $J_i^{\pi_i}$; $T_i M_{T_i} \rightarrow J_f^{\pi_i}$; $T_f M_{T_f}$, в котором начальное /конечное/ состояние ядра полностью определяется значениями углового момента $J_i(J_f)$, четности $\pi_i(\pi_f)$, изоспина $T_i(T_f)$ и его проекции $M_{T_i}(M_{T_f})$, с учетом произвольной поляризации мюнов и продольной поляризации нейтрино /масса покоя которого предполагается отличной от нуля/, вычисленная на основе матричного элемента /3/ в низшем порядке теории возмущений в системе покоя начального ядра дается формулой

$$dW = \frac{G_{F}^{2}}{(4\pi)^{2}} d\Omega_{\nu} E_{\nu} p_{\nu} a_{V}^{2} \frac{|\phi_{1S}|_{av}^{2}}{2J_{i} + 1} \left(\frac{T_{f}}{-M_{T_{f}}} - \frac{1}{M_{T_{i}}} \right)^{2} F(f_{i}), \qquad (77)$$

где '

$$F(f_{1}) = f_{1}\phi_{1} + f_{2}\phi_{2} + f_{3}\phi_{3} + f_{4}\phi_{4} + f_{5}\phi_{5}.$$
 (7a)

Здесь p_{μ} , $E_{\mu} = m_{\mu} - \epsilon_B$, m_{μ} и ϵ_B - импульс, энергия, масса покоя и энергия связи мюна на боровской 1S-орбите мезоатома; $p_{\nu} = (E_{\nu} - m_{\nu})^{1/2}$, $E_{\nu} = E_{\mu} - \Delta E / \Delta E = E_{f} - E_{i} = E_{\mu} - E_{\nu}$ энергия, переданная ядру/, m_{ν} - импульс, энергия и масса покоя нейтрино; $E_{i}(E_{f})$ - энергия начального /конечного/ ядра. Функции ϕ_{i} /i = 1, 2, ..., 5/, описывающие структуру ядер, даются формулами:

$$\begin{split} \phi_{1} &= \sum_{J \ge 0} |\beta_{V}^{(1)} < \hat{M}_{J;1} > + |\beta_{A}^{(1)} < \hat{M}_{J;1} > |^{2}; \\ \phi_{2} &= \sum_{J \ge 0} |\beta_{V}^{(1)} < \hat{L}_{J;1} > + |\beta_{A}^{(1)} < \hat{L}_{J;1}^{5} > |^{2}; \\ \phi_{3} &= \sum_{J \ge 0} (\beta_{V}^{(1)} < \hat{L}_{J;1} > + |\beta_{A}^{(1)} < \hat{L}_{J;1}^{5} > |^{2} + |\beta_{V}^{(1)} < \hat{M}_{J;1} > + |\beta_{A}^{(1)} < \hat{M}_{J;1}^{5} > |^{2}; \\ \phi_{4} &= \sum_{J \ge 1} (|\beta_{V}^{(1)} < \hat{T}_{J;1}^{el} > + |\beta_{A}^{(1)} < \hat{T}_{J;1}^{el} > |^{2} + |\beta_{V}^{(1)} < \hat{T}_{J;1}^{mag} > + |\beta_{A}^{(1)} < \hat{T}_{J;1}^{mag5} |^{2}; \\ \phi_{5} &= \sum_{J \ge 1} (\beta_{V}^{(1)} < \hat{T}_{J;1}^{el} > + |\beta_{A}^{(1)} < \hat{T}_{J;1}^{el5} > |^{2} + |\beta_{V}^{(1)} < \hat{T}_{J;1}^{mag} > + |\beta_{A}^{(1)} < \hat{T}_{J;1}^{mag5} |^{2}); \\ \end{split}$$

Здесь использовано следующее обозначение:

$$\langle \hat{Q}_{\mathbf{J};1} \rangle \equiv \langle \mathbf{J}_{\mathbf{f}} ; \mathbf{T}_{\mathbf{f}} : \hat{\mathbf{Q}}_{\mathbf{J};1} : \mathbf{J}_{\mathbf{i}} ; \mathbf{T}_{\mathbf{i}} \rangle,$$

где $\hat{Q}_{j;1}$ - один из 8 /4 векторных и 4 аксиально-векторных/ мультиполей ядра $^{/18,25,26/}$: кулоновский ($\hat{M}_{j;1}$ и $\hat{M}_{j;1}^{5}$), продольный ($\hat{L}_{j;1}$ и $\hat{L}_{j;1}^{5}$), поперечный электрический ($\hat{T}_{j;1}^{el}$ и $\hat{T}_{j;1}^{el5}$) и поперечный магнитный ($\hat{T}_{j;1}^{mag}$ и $\hat{T}_{j;1}^{mag5}$). Символ :: обозначает матричный элемент, дважды приведенный в пространствах спина и изоспина.

С учетом произвольной поляризации мюонов и продольной поляризации мюонных нейтрино дифференциальная вероятность захвата мюона /2/ определяется формулами /6/-/8/, в которых функции f, (i = 1, 2, ..., 5) имеют простой вид:

$$\begin{aligned} f_{1} &= \eta_{1} [1 + s_{\nu} (\vec{p}_{\nu}^{\circ} \vec{s}_{\mu})]; \quad \eta_{1} = \delta_{g}_{1}^{2} + \delta_{g}_{2}^{2} + \eta_{4}; \\ f_{2} &= \eta_{2} [1 + s_{\nu} (\vec{p}_{\nu}^{\circ} \vec{s}_{\mu})]; \quad \eta_{2} = \delta_{g}_{1}^{2} + \delta_{g}_{2}^{2} - \eta_{4}; \\ f_{3} &= 2\eta_{3} [s_{\nu} + (\vec{p}_{\nu}^{\circ} \vec{s}_{\mu})]; \quad \eta_{3} = \delta_{g}_{1}^{2} - \delta_{g}_{2}^{2}; \qquad /9/\\ f_{4} &= \eta_{2} [1 - s_{\nu} (\vec{p}_{\nu}^{\circ} \vec{s}_{\mu})]; \quad \eta_{4} = 2g_{1}g_{2} \frac{m_{\mu}m_{\nu}}{E_{\mu}E_{\nu}}; \\ f_{5} &= -2\eta_{2} [s_{\nu} - (\vec{p}_{\nu}^{\circ} \vec{s}_{\mu})]; \quad \delta_{\pm} = 1^{\pm} s_{\nu} \beta_{\nu}. \end{aligned}$$

Здесь \vec{s}_{μ} - единичный вектор поляризации мюона; $s_{\nu} = \pm 1, \beta_{\nu} = p_{\nu}/E_{\nu}$ - спиральность и скорость /в единицах скорости све-

та/мюонного нейтрино; $\beta_{\nu} = |\vec{\beta}_{\nu}|$; $\vec{p}_{\nu}^{\circ} = \vec{p}_{\nu}/p_{\nu}$ - единичный вектор в направлении импульса нейтрино. Константы g_1 и g_2 связаны с параметром $\kappa = a_A/a_V$ лептонного тока /4/ соотно-шениями

$$g_1 = \frac{1}{2}(1 + \kappa); \quad g_2 = \frac{1}{2}(1 - \kappa).$$

É,E,

Если не интересоваться поляризацией ν_{μ} в /7/, то следует просуммировать по спиновым состояниям нейтрино. Тогда мы получим следующие выражения для функции f_i :

$$f_{1} = 1 + \kappa^{2} + C - 2\kappa(\vec{\beta}_{\nu}\vec{s}_{\mu});$$

$$f_{2} = 1 + \kappa^{2} - C - 2\kappa(\vec{\beta}_{\nu}\vec{s}_{\mu});$$

$$f_{3} = 2[2\kappa(\vec{p}_{\nu}^{\circ}\vec{s}_{\mu}) - \beta_{\nu}(1 + \kappa^{2})];$$

$$f_{4} = 1 + \kappa^{2} - C + 2\kappa(\vec{\beta}_{\nu}\vec{s}_{\mu}); \cdot (10/16);$$

$$f_{5} = 2[(1 + \kappa^{2} - C))(\vec{p}_{\nu}^{\circ}\vec{s}_{\mu}) - 2\kappa\beta_{\nu}];$$

$$C = (1 - \kappa^{2})^{m\mu}m\nu; \quad \kappa = -\frac{a}{4}$$

Дальнейшее усреднение выражений /10/ по спиновым состояниям мюона приводит к простым функциям f_i , справедливым в случае неполяризованных мюонов и нейтрино:

$$f_{1} = 1 + \kappa^{2} + C; \quad f_{2} = f_{4} = 1 + \kappa^{2} - C;$$

$$f_{3} = -2\beta_{\nu}(1 + \kappa^{2}); \quad f_{5} = 4\kappa\beta_{\nu}. \qquad (11/$$

В случае неполяризованных мюонов и при образовании продольно-поляризованных нейтрино функции f_i выражаются формулами:

$$f_{1} = \eta_{1}; \quad f_{2} = f_{4} = \eta_{2};$$

$$f_{3} = 2s_{\nu}\eta_{3}; \quad f_{5} = -2s_{\nu}\eta_{2}.$$
 /12/

4. КОЭФФИЦИЕНТ АСИММЕТРИИ

Угловое распределение нейтрино относительно ориентации спина мюона имеет вид dW ~ 1 + $\alpha_{\mu\nu}\cos(\theta)$, $\cos(\theta) = (\vec{p}_{\nu}^{\circ}\vec{s}_{\mu})$, где коэффициент асимметрии $\alpha_{\mu\nu}$ определяется формулой:

$$a_{\mu\nu} = \frac{\mathrm{dW}(\vec{p}_{\nu}^{\circ} \uparrow \uparrow \vec{s}_{\mu}) - \mathrm{dW}(\vec{p}_{\nu}^{\circ} \uparrow \downarrow \vec{s}_{\mu})}{\mathrm{dW}(\vec{p}_{\nu}^{\circ} \uparrow \uparrow \vec{s}_{\mu}) + \mathrm{dW}(\vec{p}_{\nu}^{\circ} \uparrow \downarrow \vec{s}_{\mu})}$$
 (13/

В случае испускания продольно-поляризованных нейтрино. он равен:

$$a_{\mu\nu} = \frac{s_{\nu}\eta_{1}\phi_{1} + 2\eta_{3}\phi_{3} + \eta_{2}(s_{\nu}\phi_{2} - s_{\nu}\phi_{4} + 2\phi_{5})}{\eta_{1}\phi_{1} + 2s_{\nu}\eta_{3}\phi_{3} + \eta_{2}(\phi_{2} + \phi_{4} - 2s_{\nu}\phi_{5})} \cdot (14/2)$$

Выражение для коэффициента $a_{\mu\nu}$ в случае чистой (V-A)структуры тока /4/ /т.е. $\kappa = a_A/a_V = 1$ / может быть получено из /14/ заменой $\eta_1, \eta_2, \eta_3 \rightarrow 1$. Выражение для $a_{\mu\nu}$ в рамках стандартной модели мы получим, фиксируя спиральность нейтрино / $s_{\nu} = -1$ /. В результате имеем

$$a_{\mu\nu} = -\frac{\phi_1 + \phi_2 - 2\phi_3 - \phi_4 - 2\phi_5}{\phi_1 + \phi_2 - 2\phi_3 + \phi_4 + 2\phi_5} \cdot (15/2)$$

Из этой формулы следует, что в случае взаимодействия левых токов с левополяризованными массивными нейтрино /в рамках обобщенной модели Вайнберга - Салама с $m_{\nu} \neq 0$ / их масса покоя не оказывает никакого влияния на коэффициент $a_{\mu\nu}$.

В случае неполяризованных нейтрино мы получаем из /5/ и /10/ следующую формулу для а _{щи}:

$$a_{\mu\nu} = \frac{-2\kappa\beta_{\nu}(\phi_1 + \phi_2 - \phi_4) + 4\kappa\phi_3 + 2(1 + \kappa^2 - C)\phi_5}{(1 + \kappa^2 + C)\phi_1 + (1 + \kappa^2 - C)(\phi_2 + \phi_4) - 2\beta_{\nu}[(1 + \kappa^2)\phi_3 - 2\kappa\phi_5]} . /16,$$

В предельном случае $\kappa = a_A / a_V = 1$ мы получаем

$$\alpha_{\mu\nu} = - \frac{\beta_{\nu}(\phi_1 + \phi_2 - \phi_4) - 2(\phi_3 + \phi_5)}{\phi_1 + \phi_2 + \phi_4 - 2\beta_{\nu}(\phi_3 - \phi_5)} \cdot (17/$$

В этой формуле зависимость от \mathbf{m}_{ν} является квадратичной через скорость нейтрино $\boldsymbol{\beta}_{\nu}$ = {1 - [$\mathbf{m}_{\nu}/(\mathbf{E}_{\mu} - \Delta \mathbf{E})$]²}^{1/2}.

Если константы a_V и a_A , характеризующие интенсивность векторной и аксиально-векторной частей лептонного тока, различны $(a_A \neq a_V)$, то коэффициент $a_{\mu\nu}$ зависит от m_{ν} как квадратично, так и линейно, т.е. в выражении для $a_{\mu\nu}$ имеются члены, пропорциональные $C = (1 - \kappa^2)$.

Здесь в процессе μ^{-} -захвата легкими ядрами в общем случае не рассматривались эффекты токов второго рода, "спрятанные" в ядерные функции ϕ_i / i = 1, 2, ..., 5/. Они вычислены в следующем разделе для процесса захвата поляризованного мюона ядрами ^вLi и ³ Не.

Для дифференциальной вероятности захвата поляризованных мюонов неполяризованными ядрами ⁶Li в рамках оболочечной модели ядра с гармоническим осциллятором получаем формулу:

$$dW = \frac{G_F^2}{216 \pi^2} d\Omega_{\nu} E_{\nu} p_{\nu} a_V^2 |\phi_{1S}|^2_{av} e^{-2y} f_{SN}^2 (q_a^2) f_{u,M}^2 (q) F(f_1).$$
 (18/

Здесь $d\Omega_{\nu} = \sin(\theta) d\theta d\phi$ – телесный угол испускания нейтрино; $y = (1/2 b q)^2$, где $b /= 2,03 \phi m^{/24/}$ / – осцилляторный параметр; $f_{q_{eMe}}(q)$ – формфактор центра масс; функции $f_i / i = 1, 2, ..., 5/$ даются формулой /7/, а адронные функции $\phi_i / i = 1, 2, ..., 5/$ равны:

$$\phi_{1} = \frac{\lambda^{2} q^{2}}{M_{N}^{2}} \left[k_{1} F_{A} + k_{2} (q_{0} F_{P} + 2M_{N} F_{T}) \right]^{2};$$

$$\phi_{2} = 4\lambda^{2} \left[k_{2} \left(F_{A} - \frac{q^{2}}{2M_{N}} F_{P} \right) \right]^{2};$$

$$\phi_{3} = -2\lambda^{2} \frac{|q|}{M_{N}} k_{2} \left(F_{A} - \frac{q^{2}}{2M_{N}} F_{P} \right) \left[k_{1}F_{A} + k_{2} \left(q_{0}F_{P} + 2M_{N}F_{T} \right) \right]^{2};$$

$$\phi_{4} = 2 \left[4\lambda^{2} k_{3}^{2} F_{A}^{2} + \frac{\lambda^{2}q^{2}}{M_{N}^{2}} \left(k_{4}F_{1} - k_{3}\mu^{V} \right)^{2} \right];$$

$$\phi_{5} = -4 \frac{\lambda |\vec{q}|}{M_{N}} k_{3} F_{A} (k_{4} F_{1} - k_{3} \mu^{V}), \qquad (19)$$

где $\lambda = |\beta_A^{(1)} / \beta_V^{(1)}|.$

1,

;

Используя численные значения однонуклонных матричных элементов из^{24/} можно получить следующие значения коэффициентов k_i /i = 1, 2, 3, 4/:

$$k_1 = 0,021$$
; $k_2 = -0.973 + 0.718y$;
 $k_3 = -0.972 + 0.613y$; $k_4 = 0.308$.

Поскольку переход ⁶Li(g.s.) \rightarrow ⁶He(g.s.) является чистым гамов-теллеровским, то в формулу /19/ не входит формфактор F_S и эффекты ТВР могут быть обусловлены только формфактором F_{π} .

Выражение для коэффициента $a_{\mu\nu}$ /формула /13// при захвате поляризованных мюонов ядром ⁶Li можно получить из общих формул /14/-/17/, подставляя в них выражения /19/ для ядерных функций ϕ_i /i = 1, 2, ..., 5/.

В предельном случае нулевого переданного импульса /пренебрегая членами, пропорциональными q_{o}/M_{N} и q^{2}/M_{N}^{2} / получаем простое выражение для коэффициента $\alpha_{\mu\nu}$ с учетом формфактора F_{T} :

$$a_{\mu\nu} = \frac{1}{3} \beta_{\nu} \frac{2\kappa}{1+\kappa^2} \left\{ 1 + \left(\frac{1-\kappa^2}{1+\kappa^2}\right) \left(\frac{m_{\mu}m_{\nu}}{E_{\mu}E_{\nu}}\right) - \frac{8}{3} E_{\nu} \frac{F_{T}}{F_{A}} \right\}.$$
 /20/

Эта формула может быть использована для определения значения массы покоя нейтрино \mathfrak{m}_{ν} , параметра κ и формфактора F_{π} .

Здесь необходимо проанализировать влияние m_{ν} /как с $\kappa = 1$, так и с $\kappa \neq 1$ / и ТВР. Для этого рассмотрим отличие $a_{\mu\nu}$ от предсказаний (V-A)-формы мюнного тока без ТВР и с $m_{\nu} = 0$.

$$\Delta_{GT} = \frac{a_{\mu\nu}^{V-A} - a_{\mu\nu}}{a_{\mu\nu}^{V-A}} = \frac{m_{\nu}^2}{2E_{\nu}^2} - \frac{m_{\nu}m_{\mu}}{E_{\nu}E_{\mu}}(1-\kappa) + \frac{1}{2}(1-\kappa)^2 - \frac{8}{3}E_{\nu}\frac{F_{T}}{F_{\nu}}.$$
(21)

При $F_T = 0$ вклад массы покоя в $a_{\mu\nu}$ при $m_{\nu} = 500$ кэВ составляет ≈ 10⁻³ %. В случае $F_T \neq 0$ основной вклад дает ТВР и при $F_T = 1,4\cdot 10^{-8}$ МэВ⁻¹ составляет $\approx 40\%$ независимо от массы нейтрино.

5.2. Захват мюона ядром ³Не

В этом случае переданная энергия много меньше переданного импульса (q₀ << $\mid \vec{q} \mid$), таким образом, можно пренебречь членом ~ q₀. Для дифференциальной вероятности захвата поляризованных мюонов ядром ³Не получаем следующее выражение с учетом вклада, определяемого ТВР /формфакторами $F_{\rm S}$ и $F_{\rm T}/$:

$$dW = \frac{G_F^2}{16 \pi^2} d\Omega_{\nu} E_{\nu} p_{\nu} a_V^2 |\phi_{1S}|_{av}^2 e^{-2y} f_{SN}^2 (q_a^2) f_{u,M}^2 (q) F(f_1), \qquad /22/$$

где использованы те же обозначения, что и в /18/; ядерные функции в этом случае равны:

$$\begin{split} \phi_{1} &= \left[F_{1} \left(1 + \frac{|\vec{q}|}{2M_{N}} \right) + m_{\mu} F_{S} \right]^{2} + \frac{\lambda^{2} q^{2}}{2M_{N}^{2}} \left(F_{A} + 2M_{N} F_{T} - m_{\mu} F_{P} \right)^{2}; \\ \phi_{2} &= \lambda^{2} \left(F_{A} - \frac{q^{2}}{2M_{N}} F_{P} \right)^{2}; \\ \phi_{3} &= -\lambda \left(F_{A} - \frac{q^{2}}{2M_{N}} F_{P} \right) \left[F_{1} \left(1 + \frac{|\vec{q}|}{2M_{N}} \right) + m_{\mu} F_{S} \right] + \\ &+ \frac{\lambda |\vec{q}|}{2M_{N}} \left(F_{A} + 2M_{N} F_{T} - m_{\mu} F_{P} \right) \right]; \\ \phi_{4} &= 2 \left(\lambda^{2} F_{A}^{2} + \frac{q^{2}}{4M_{N}^{2}} \mu^{V2} \right); \\ \phi_{5} &= - \frac{\lambda |\vec{q}|}{M_{N}} F_{A} \mu^{V}. \end{split}$$

Поскольку переход 3 На(g.s.) $\rightarrow {}^{3}$ Н(g.s.) является смешанным переходом, то в формулу /23/ входят все шесть формфакторов. Таким образом, в процессе захвата поляризованных мюонов ядром 3 Не можно изучить эффекты ТВР, обусловленные обоими формфакторами ${\bf F}_{\rm S}$ и ${\bf F}_{\rm T}.$ При соответствующих значениях параметра κ = $a_{\rm A}/a_{\rm V}$ выражение для коэффициента асимметрии $a_{\mu\nu}$ получается из /13/ с учетом формул /14/-/17/ и ядерных функций /23/.

При пренебрежении вкладом магнитного и псевдоскалярного формфакторов мы получаем для коэффициента асимметрии $a_{\mu\nu}$ следующее простое выражение:

$$a_{\mu\nu} = -\beta_{\nu} \frac{2\kappa}{1+\kappa^2} \frac{\eta_1}{\eta_2} \{1 + \frac{1}{\eta_2} [-C(1-3\lambda^2) + \frac{8\lambda^2}{\eta_1} (\lambda^2 E_{\nu} \frac{F_T}{F_A} + m_{\mu} \frac{F_S}{F_A})]\},$$
(24)

где $\eta_1 = 1 - \lambda^2$; $\eta_2 = 1 + 3\lambda^2$.

В предельном случае чистой (V-A)-структуры лептонного тока и при равенстве нулю массы покоя нейтрино из /24/ следует

$$a_{\mu\nu} = -\frac{\eta_1}{\eta_2} \{1 + \frac{8\lambda^2}{\eta_1\eta_2} [\lambda^2 E_{\nu} \frac{F_T}{F_A} + m_{\mu} \frac{F_S}{F_A}]\}.$$
 (25/

Формула /25/ может быть использована для оценки формфакторов $F_{\rm S}$ и $F_{\rm T}$. Заметим, что они коррелированы и поэтому не могут быть оценены одновременно. Выход из этой ситуации может быть в использовании значения формфактора $F_{\rm T}$, полученного при изучении коэффициента $a_{\mu\nu}$ в гамов-теллеровских переходах, для нахождения значения формфактора $F_{\rm S}$ по формуле /25/.

Анализ формулы /24/ проведем с помощью величины

$$\Delta = \frac{a_{\mu\nu}^{\nabla - A} - a_{\mu\nu}}{a_{\mu\nu}^{\nabla - A}} = \frac{m_{\nu}^{2}}{2E_{\nu}^{2}} + \frac{m_{\nu} m_{\mu}}{E_{\nu} E_{\mu}} (1 - \kappa) \frac{1 - \lambda^{2}}{1 + 3\lambda^{2}} + \frac{1}{2} (1 - \kappa)^{2} - \frac{8\lambda^{2}}{\eta_{1}\eta_{2}} [\lambda^{2} E_{\nu} \frac{F_{T}}{F_{A}} + m_{\mu} \frac{F_{S}}{F_{A}}].$$
(26)

При отсутствии ТВР / $F_T = 0$, $F_S = 0$ / вклад массы нейтрино в коэффициент $a_{\mu\nu}$ при $m_{\nu} = 500$ кэВ и $\kappa = 1$ составляет $\approx 1,2\cdot10^{-3}$ % и растет с увеличением отличия κ от 1. Вклад ТВР в коэффициент $a_{\mu\nu}$ при значениях формфакторов $F_T = 1,4\cdot$ $\cdot 10^{-3}$ MэB⁻¹, $F_S = 1,0\cdot10^{-3}$ MэB⁻¹ составляет примерно 60% независимо от наличия или отсутствия массы покоя у мюонного нейтрино.

6. выводы

Основные результаты работы можно резюмировать в следующих трех частных случаях:

1. Масса покоя нейтрино отлична от нуля, но ТВР отсутствуют / $F_S = F_T = 0$ /. В случае чистой (V-A) -структуры мюонного тока / $\kappa = a_A/a_V = 1$ / при фиксированной спиральности нейтрино / как и в обобщенной модели. Вайнберга - Салама, только с левыми массивными нейтрино/ вероятность мюонного захвата dW зависит квадратично от массы покоя мюонного нейтрино $m_{\nu_{\mu}}$, тогда как коэффициент асимметрии $a_{\mu\nu}$ вылета нейтрино относительно спина мюона вовсе не зависит от $m_{\nu_{\mu}}$. При суммировании по спиновым состояниям нейтрино вероятность dW и коэффициент $a_{\mu\nu}$ являются квадратичными функциями от $m_{\nu_{\mu}}$. Для μ^- -захвата ядрами ⁶Li и ³Не вклад $m_{\nu_{\mu}}$ в $a_{\mu\nu}$ составляет $\approx 10^{-3}$ %.

Если константы a_V и a_A , характеризующие интенсивности векторной и аксиально-векторной частей лептонного тока, не равны $(a_V \neq a_A)$, то зависимости вероятности dW и коэффициента $a_{\mu\nu}$ от $m_{\nu\mu}$ могут быть как квадратными, так и линейными. Вклад $m_{\nu\mu}$ при $\kappa = 1$ в коэффициент $a_{\mu\nu}$ составляет 1,2·10⁻³ % в случае ⁶Li и 1,0·10⁻³ % в случае ³He.

Таким образом, массу мюонного нейтрино в этом случае можно оценить из прецизионных измерений параметра асимметрии $a_{\mu\nu}$. 2. Учитываются только ТВР /m $_{\nu_{\mu}}$ = 0/. Формфакторы токов

второго рода / F_S и F_T / можно определить, изучая захват поляризованного мюона. Коэффициент $a_{\mu\nu}$ дает информацию о значении F_T /в случае чистых гамов-теллеровских переходов, например, захват поляризованного мюона ядром $^{6}{\rm Li}$ / и F_S /в переходах смешанных типов /. Изучая коэффициент $a_{\mu\nu}$ в переходах смешанного типа /например, μ -захват ядром $^{3}{\rm He}$ /, можно получить оценку на формфакторы F_S и F_T . Вклад ТВР в коэффициент $a_{\mu\nu}$ в случае $^{6}{\rm Li}$ при F_T = 1,4·10⁻³ MэB⁻¹ составляет \approx 40%, а в случае $^{3}{\rm He}$ при F_T = 1,4·10⁻³ MэB⁻¹ и F_S = 1,0·10⁻³ MэB⁻¹ – примерно 60%.

3. Учитываются одновременно ТВР и масса нейтрино. В этом случае ситуация оказывается сложной. Но так как вклад массы $m_{\nu_{\mu}}$ в коэффициент $a_{\mu\nu}$ мал, то им можно пренебречь. И тог-да выводы, сделанные в пункте 2, применимы для случая захвата мюонов ядрами $^{6}{\rm Li}$ и $^{3}{\rm He}$. Массу покоя мюонного нейтрино следует искать через коэффициент асимметрии $a_{\mu\nu}$ для чистых фермиевских переходов, как было указано в /7/ .

ЛИТЕРАТУРА

,

- 1. Weinberg S. Phys. Rev., 1958, v.112, p.1375.
- 2. Albrecht W. et al. Phys.Lett., 1987, v.159B, p.266.
- 3. Derrick M. et al. Phys.Lett., 1987, v.185B, p.223.
- 4. Лобов Г.А. Препринт ИТЭФ-65, 1987.
- 5. Morita M. Hyperf.Interact., 1985, v.21, p.143.
- 6. Derrick M. Preprint ANL-HEP-CP-87-42, 1987.
- 7. Kathat C.L. Preprint JINR, E6-88-121, Dubna, 1988; Катхат Ч.Л. - Изв. АН СССР, Сер.физ., 1989, т.53, с.103.
- 8. Балашов В.В., Коренман Г.Я., Эрамжян Р.А. Поглощение мезонов атомными ядрами. М: Атомиздат, 1978.
- 9. Самсоненко Н.В., Самгин А.Л., Катхат Ч.Л. ЯФ, 1988, №2, т.47, с.348.
- Samsonenko N.V., Kathat C.L., Samgin A.L. Nucl.Phys., 1988, v.A490.
- Proc.Intern. Symposium on Nuclear Beta Decay and Neutrino, Osaka, June 1986. /Eds. Kotani T., Ejiri H., Takasugi E. Singapore: World Scientific, 1986.
- 12. Вылов Ц. Препринт ОИЯИ, Р6-83-517, 1983.
- 13. Вылов Ц., Громов К.Я., Покровский В.Н. Препринт ОИЯИ, P6-86-136, 1986.
- 14. Kawakami H. et al. J.Phys.Soc. Japan, 1988, v.57, p.2873.
- 15. Yasumi S. In: Proc.Intern. Symposium on Nuclear Beta Decay and Neutrino, Osaka, June 1986. /Eds. Kotani T., Ejiri H., Takasugi E. Singapore: World Scientific, 1986, p.377.
- 16. Anderhub H.B. et al. Phys.Lett., 1982, v.B114, p.76.
- 17. Abachi S. et al. Phys.Rev.Lett., 1986, v.56, p.1039.
- Керимов Б.К., Самсоненко Н.В., Катхат Ч.Л., Эльгавхари А.И. - Изв. АН СССР, Сер. физ., 1986, т.50, с.185.
- 19. Керимов Б.К., Самсоненко Н.В., Катхат Ч.Л., Эльгавхари А.И. – Изв. АН СССР, Сер.физ., 1987, т.51, с.994.
- 20. Керимов Б.К., Самсоненко Н.В., Катхат Ч.Л. Изв. АН СССР, Сер.физ., 1988, т.52, №5, с.892.
- 21. Брилев Е.В., Катхат Ч.Л. Изв. АН СССР, Сер.физ., 1988, т.52, с.7.
- 22. Катхат Ч.Л. Изв. АН КазССР, Сер.физ.-мат., 1986, №4, с.54.
- 23. Samsonenko N., Cumar Y., Suvorov M. Ann.Inst. Henri Poincare, 1982, v.36, N3, p.239.
- 24. Fetcher W. In: Proc.Intern. Symposium on Nuclear Beta Decay and Neutrino, Osaka, June 1986. /Eds. Kotani T., Ejiri H., Takasugi E. Singapore: World Scientific, 1986, p.410.

- 25. Donnelly T.W., Peccie R.D. Phys. Reports, 1979, v.50, p.1.
- 26. Walecka J.D. In: Muon Physics, v.2. /Eds. Hughes V.W., Wu C.S. New York: Acad.Press, 1975, p.113.

Рукопись поступила в издательский отдел 29 декабря 1988 года. Катхат Ч.Л., Самсоненко Н.В. P6-88-926 Токи второго рода и масса покоя мюонного нейтрино в процессах захвата мюонов ядрами ⁶Li и ³He

Исследуется влияние токов второго рода (ТВР) и массы покоя мюонного нейтрино ($m_{\nu_{\mu}}$) на дифференциальную вероятность процесса захвата мюонов ядрами ⁶Li и ³He и на коэффициент угловой асимметрии ($a_{\mu\nu}$) вылета нейтрино относительно спина мюона. Показано, что экспериментальное изучение коэффициента $a_{\mu\nu}$ может явиться эффективным средством для определения массы $m_{\nu_{\mu}}$ и формфакторов TBP -F_T (в случае ядер ⁶Li, а также ³He) и F_S (в случае ядра ³He).

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод авторов

Kathat C.L., Samsonenko N.V. P6-88-926 Second Class Currents and the Muon Neutrino Rest Mass in the Muon Capture by ⁶Li and ³He

The influence of second class currents (SCC) and that of the muon neutrino rest mass $(m_{\nu_{\mu}})$ on the differential muon capture rate by the ⁶Li and ³He, and on the angular asymmetry coefficient $(a_{\mu\nu})$ of the neutrino emission direction with respect to the muon spin orientation, is investigated. It is shown that the experimental study of $a_{\mu\nu}$ may give an efficient estimation for $m_{\nu_{\mu}}$ and for SCC form factors F_{T} (in the case of ⁶Li and ³He) and F_{r} (in the case of ³He).

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988