

A 281

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P6-88-756

1988

И.Адам,¹ С.К.Бацев², Я.Добеш¹, Ж.Т.Желев², Б.Крацик¹, П.Навратил¹, П.Тлусты¹, Ю.В.Юшкевич

СХЕМА РАСПАДА ¹⁴⁶ Eu И СТРУКТУРА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ¹⁴⁶Sm

 ¹ Институт ядерной физики ЧСАН, Ржеж
 ² Институт ядерных исследований и ядерной энергетики БАН, София На основе полученных экспериментальных данных об энергиях и интенсивностях гамма-лучей, ЭВК и интенсивностях дифференциально-интегральных совпадений^{/1/} построена схема распада ¹⁴⁸ Eu . Предлагаемая схема распада¹⁴⁶ Eu /см.табл.1/ содержит 68 возбужденных состояний, из них 22 введены впервые. В схеме распада размещено 237 у-переходов, из них 42 у-перехода имеют неоднозначное размещение. Суммарная интенсивность 56 неразмещенных у-переходов не превышает 1,1% интенсивности всех переходов.

Схема распада строилась постепенно. На первом этапе в схему распада было введено 40 возбужденных состояний, известных из измерений у-у совпадений (2-4/, между которыми размещено 63 самых интенсивных у-перехода. При этом мы не включили в схему переходы, для которых результаты измерения двойных дифференциально-интегральных совпадений (T_2)^{/1/} находятся в противоречии с данными по у-у совпадениям (2-4/.

На втором этапе использовался тот факт, что энергия 2-го возбужденного состояния равна 1380 кэВ, и так как энергия распада Q = 3877(8) кэВ/5′, то у-переходы с энергией больше 2500 кэВ могут заселять только 1-е возбужденное или основное состояние ¹⁴⁸ Sm. При этом в первом случае $T_2^{pacч.} = 82(3)$ %, а во втором $T_2^{pacч.} = 0$ %, когда данные переходы не соединены сверху с другими у-переходами. Аналогично, переходы с $E_{y} \ge 21750$ кэВ могут заселять лишь один из первых семи возбужденных состояний. При этом для 2-го, 3-го, 4-го, 5-го, 6-го и 7-го уровней $T_2^{pacч.}$ равно 97,2(8), 97,1(8), 92,6(9), 99,50(17), 99,53(16) и 99,56(10)% соответственно. Таким образом, было введено 24 возбужденных состояния, между которыми размещено 30 у-переходов. Двадцать из этих уровней введены впервые^{6/6/}, а остальные 4 уровня /3418,92, 3546,13, 3652,2 и 3058,0 кэВ/ были предложены в^{/2,7/} лишь на основе баланса энергий.

Схема, состоящая из 64 возбужденных состояний, была дополнена на основе исследования энергетического баланса 87 у-переходов. Сравнивая разности энергий уровней с разностью энергий неразмещенных У-переходов, на третьем этапе ввели два новых уровня 3530,5 и 3785,8 кэВ ^{/6/} и уровень 2879,1 кэВ ^{/7/}. В работе^{/7/} предложен уровень 2667,2 кэВ /наблюдающийся в (α , 4n) -реакции^{/8/} и разряжающийся одним переходом 583,76 кэ^р Состояние 2667,2 кэВ включено нами также в схему распада. 56, .3. 2245.

3

Таблица l

Во	озбужде	нные уровн	и ¹⁴⁶ S	m
E yp. (k3B)	1 <i>π</i>	(%)	lg ft	Разряжающие переходы Еу (кэВ)
I	2	3	4	5
747.154(23)	2+			747
1380,263(29)	3-	I6,0(I0)	8,0	633
1381,270(27)	4+	17,6(12)	8,0	634
1647,964(27)	2+	I,45(2I)	9,0	901, 1648
I8II,67(3)	6+	2,43(II)	8,7	430
2045,66(3)	4	5,12(21)	8,3	665
2083, 402 (28)	5	3,12(18)	8,5	272, 702, 703
2155,79(3)	2+	I,85(5)	8,7	776, 1409, 2156
2222, 42(4) 2225	6+	0,44I(2I)	9,2	4II, 84I
2269,85(3)	3+	2,0(3)	8,6	622, 888, 889, 1523
2280,852(29)	4+	6,09(22)	8,I	899, 1534
2400,90(5)	2+	0,283(IO)	9,3	I654, 240I
2439,04(3)	4+	6,4(6)	7,9	I59, 79I, I058, I059
2513,39(3)	3-	I,62(6)	8,5	468, 865, II32, II33,
				1766
2531,90(3)	3+	2,78(8)	8,3	II5I, I785
2544, 15(9)	(2^{+})	0,082(3)	9,8	1797, 2544
2649,60(II)	(2+)	0,038(2)	I0,0	1902, 2650
2667, 16(7)	4	0,II4(6)	9,5	584
2678,25(3) 26 36	4+	7,38(20)	7,7	3 97, IO30, I297, I93I
2684,71(5)	2,3,4	0,045(8)	9,9	1037, 1303, 1938
2788,20(4)	5	4,22(15)	7,9	705, 743, 1407
2799,74(8)	3+,4+	0,673(27)	8,7	754, 2053
2850,28(4) 2850	4+	0,461(14)	8,8	570, 767, 805, 1038,
	Not			1470, 2103
2879, 12(12)	2900	0,040(2)	9,8	1231, 2132
2898,29(4) 2932	+ 5+	I,24(3)	8,3	815, 1087, 1517,2160 6
2968,80(8)	2,3,4	0,116(7)	9,3	1588, 1589, 2222 29
2973,82(6) 2973	2,3,4	0,340(12)	8,8	1593, 2227
3014,59(4)	3+	0,853(26)	8,4	576, 734, 1633, 2267
3057,97(13) 3020	a	0,020(I)	9,9	2311
067,67(3)	3+	0,798(24)	8,3	I420, I686, 232I
90(4)	5*	0,797(23)	8,3	222, 850, 989, 1027,
				T692

	,		Tat	блица 1 /продолжение/
I	2	3	4	5
093,08(3)	3+	I,0I3(27)	8,2	812, 823, 1047, 1445,
				1712, 2346
105,35(6) 3/23	2,3,4	0,157(14)	9,0	1724, 1725, 2358
136,42(4) 312	8 3	I,37(4)	8,0	1091, 1488, 1756, 2389
183,89(4)	> 3*	I,70(4)	7,9	914, 1803, 2437 506
199,99(3)	4	0,758(20)	8,2	687, 76I, 9I9, 930,
322	1			III7, I8I9
23I,60(II) ⁵² 2	5 4+	0,03I(2)	9,5	1009, 2484
238,62(4)	4+	0,521(20)	8,3	224, II55, I857, I858,
				2492
244,62(7)	2,3,4	0,173(6)	8,8	1597, 1863, 2497
259,90(3)	5	2,32(7)	7,6	472, 979, II77, I2I4,
	70			I448, I879, I880
329,87(8)	2,3,4	0, I04(4)	8,9	1682, 1949, 2583
338,23(6)	3+,4+	0, I74(5)	8,6	1068, 1957, 2591
36I,06(6)		0,145(7)	8,7	1981
368,71(15)	2,3,4	0,038(3)	9,2	1987, 1988, 2622
376,72(7)	4+	0,493(19)	8,I	I293, I330, <mark>I996</mark> , 2630
378,40(7)		0,278(15)	8,4	1333, 1998
391,64(4)	3-	0,329(29)	8,3	I744, 20IO, 20II, 2644
397,60(18)		0,030(2)	9,3	2017, 2650
418,92(8)	$(2^{+}), 3^{+}$	0, IIO(3)	8,7	2038, 2672
427,73(I2) 3	131	0,017(1)	9,5	2681
461,52(4)	5	3,0(4)	7,I	I378, I4I6, I650, 2080,
346	5			2081
471,86(10)	5625	0,030(I)	9,I	2725
488,46(II)	DIF	0,054(3)	8,8	184I, 274I
509,30(9) 37	77 4+	0,103(5)	8,5	441, 721, 1240, 2762
517,33(6)	3+	0,221(7)	8,I	1004, 1472, 1870, 2137,
				2770 .
530,52(9)	3,4	0,I5I(II)	8,3	1017, 1261, 1485, 2149
546, 13(7)	3+,4+	0,089(3)	8,4	2165, 2799
583,91(5)	(3,4,5)	0,297(8)	7,8	1500, 2204
591,68(II)	3,4	0,068(3)	8,4	1944, 2210, 2845
605,69(II)	3,4	0,II4(6)	8,I	II67, I336, 2225, 2858
626,00(3)	4+	I,I67(29)	7,0	5 <u>33</u> , 6II, 826, 94I,
2/11				1187, 1225, 1345, 1356,
	12-21			1543, 1580, 1978, 2245,
				2879

3

Таблица 1 /продолжение/

I	2	3	4	5	
3652, 18(10) 36	5y 4+	0,105(6)	8,0	1569, 2004, 2905	
3693, 38(14)	3,4	0,020(2)	8,5	II62, 2946	
3715,6(3)		0,003	9,2	2968	
3720,50(22)	3,4	0,032(8)	8,I	653, 2073, 2973	
3740,73(12)	3,4	0,060(3)	7,6	1209, 2360, 2994	
3749,37(18) 37	703,4	0,027(6)	7,9	1667, 2369, 3002	
3785,84(27)310	3,4	0,0I3(I)	7,8	2405, 3039	
v /					

68, 380% +26 =94

Используя результаты измерения $\gamma - \gamma$ совпадений $^{9/}$, на этом этапе разместили в схему распада следующие γ -переходы: 158,5, 742,65, 753,80, 766,84, 804,67 и 1500,44 кэВ.

Энергии уровней /см.табл.1/ вычислили методом наименьших квадратов, используя $E_{\gamma}(\Delta E_{\gamma})$ размещенных у-переходов. Получено значение $\chi^2_{\gamma poBH} = 2,2$. Сравнение относительных интенсивностей дифференциально-интегральных совпадений $T_2^{\mathfrak{skcn}}$ и $T_2^{\mathfrak{pacu}}$ дало $\chi^2_T = 4,1$. Построение схемы распада проводилось с помощью программ, описанных в работе $^{/10/}$, которые включают и проверку законов сохранения момента количества движения и четности на каждом этапе построения схемы распада.

В схему возбужденных состояний ¹⁴⁶ Sm не включены уровни 2103,4, 2498,6, 2992,1 кэВ, введенные в работах $^{/2-4/}$, так как значение $T_2^{\mathfrak{sKcn}}$, для у-переходов 2103,16, 2497,46 и 2244,71 кэВ, которые их разряжают, противоречит этому размещению. Исключены также введенные в работе $^{/9/}$ уровни 2166,7, 2343,4 и 2751,2 кэВ на основе значения $T_2^{\mathfrak{skcn}}$, для у-переходов с энергией 1419,70, 1596,66 и 2004,25 кэВ /см.табл.1 $^{/1/}$ / и уровни 3092,3, 3106,3 и 3237 кэВ из-за нарушения энергетического баланса для У-переходов, которые в этой работе разряжают данные состояния и энергия которых нами определена существенно точнее.

Для предложенной схемы распада ¹⁴⁸ Еш вычислены интенсивности бета-переходов, заселяющих уровни ¹⁴⁶ Sm, и соответствующие значения lgft, которые приведены в табл.1. Данные получены в результате изучения баланса интенсивностей переходов в предположении, что интенсивностью бета-перехода, идущего на основное состояние ¹⁴⁸ Sm, можно пренебречь /переход типа 4- \rightarrow 0+/. При вычислении lgft использовались значения Q = =3877(8) кэВ^{/5/} и T_{1/2} = 4,59(3) дня ^{/7/}.

Спины и четности 25 возбужденных состояний ¹⁴⁶Sm установлены по измерению анизотропии углового распределения У-квантов ориентированных ядер /11/ . Следует отметить, что квантовые характеристики уровней 3136,42 и 3461,52 кэВ определены в /11/ неправильно, так как размещение у-переходов, разряжающих данные уровни /см.табл.2/, ошибочно. Мультипольности переходов /см.табл.2/1/ /, связанных с остальными 23 уровнями, подтверждают значения I^π, полученные в работе /11/ . Эти данные принимались в качестве исходных для установления І⁷ других уровней на основе значения мультипольностей У-переходов, которые их разряжают, при этом была использована программа SPIN /10/ и правила ограничения спина и четности в зависимости от значения lgft /7/-. Таким образом, квантовые характеристики определены для 9 состояний, для остальных 24 состояний спин и четность однозначно определить не удалось. Впервые определены спин и четность для 8 состояний: 2532 (3+), 2850 (4+), 3200 (4-), 3231 (4+), 3462 (5-), 3509 (4+), 3626 (4+) и 3652 (4⁺) кэВ, и подтверждены значения I^{π} = 3⁺ для уровня 3183.89 кэВ /7/ .

Ввиду существенного различия схем распада, предлагаемой нами и использованной в работе^{/11/}, были рассмотрены заново выводы о значениях I[#], полученные в этой работе. Результаты анализа представлены в табл.2. Она содержит данные о 20 Упереходах, которые ранее были размещены между другими уровнями или не были включены в схему распада. Таблица 2 является дополнением и уточнением таблицы 4 из работы^{/11/}. Данные, представленные в таблице 2, позволили однозначно определить спин и четность для уровней 2400 (2⁺), 3072 (5⁺), 3136 (3⁻) и 3517 кэВ (3⁺), для состояния 3418,92 кэВ I[#] однозначно установить не удалось. Коэффициенты смеси мультипольностей 15 переходов /см. табл.2/ определены впервые.

Обсудим более подробно те состояния, которые введены впервые, а также те, квантовые характеристики которых определены впервые или уточнены.

Уровень 2400,90 кэВ был введен в работе^{/4/} из-за отсутствия у-у совпадений между переходами 2400,94 и 747,159 кэВ. Значение $T_2^{9\kappa cn}$ для этого перехода подтверждает этот факт. С этого уровня направлен новый у-переход 1653,72 кэВ на первое возбужденное состояние. По мультипольности переходов можно предположить для спина и четности $I^{\pi} = 1^+$ или 2⁺. Второе значение предпочтительнее, так как lgft = 9,3. Более того, значение $I^{\pi} = 1^+$ можно исключить, так как коэффициент анизотропии у-перехода 2400,94 кэВ - $A_2^{9\kappa cn} = -0,69(5)$ противоречит теоретическому значению $A_2(I \to 0) = 0,707$ и, наоборот, согласуется с $A_9(2 \to 0) = -0,598$.

Таблица 2 /продолжение/

I	2	3	4	5	6	7	
		2080,0	4+	-0,085(20)	٥)	EI	
		208I,I	3			E2	
3517,3	3+	2I37,I	3	-0,46(19)	-0,18≤5≤2,0	M2/EI	
3583,9	3	2203,7	3	-0,40(IO)	I,4+0,4 _0,3	E2/MI	
					-0,04+0,11 -0,10		
	4	2203,7	3	-0,42(IO)	$4,6^{+I},9$	E2/MI	
					0,43+0,08		
	5	2203,7	3	-0,38(9)	-0,01	E2	
3626,0	4+	I345,2	4+	-0,45(I3)	-0,I6≤S≤I,30	E2/MI	
		I356,I	3*	0,23(15)	0,05+0,07	E2/MI	
					-6,9+2,4		
		2244,7	4+	0,35(6)	-28 ≤ 8 ≤ -I,I	E2/MI	

а) См. текст.

5) $A_{2}^{\text{pacyer}} = -0,20(8).$

Спин и четность уровня 2531,90 кэВ установлены в работе^{/4/} как $I^{\pi} = 4^+$ благодаря наличию у-перехода 721,24 кэВ, разряжающего данный уровень на состояние 1811 кэВ с $I^{\pi} = 6^+$. Угловая анизотропия у-перехода 1150,63 кэВ противоречит значению $I^{\pi} = 4^+$ и указывает на $I^{\pi} = 3^+$. Поэтому авторы работы^{/11/} допускали обе возможности для спина. Однако уточненная энергия у-перехода 721,24 кэВ показала, что по энергетическому балансу его надо разместить в другом месте схемы распада /см. табл.1^{/1/} / и в этом случае можно однозначно определить $I^{\pi} = 3^+$ уровня 2531,90 кэВ.

Уровень 2649,60 кэВ введен по значению $T_2^{\text{эксп}} = 91,4(28)\%$ для у-перехода 1902,45 кэВ, которое позволяет направить его либо на уровень 747,16 кэВ, либо на уровень 1647,96 кэВ. Первый вариант более вероятен, так как в этом случае уровень 2649,60 кэВ подтверждается еще одним переходом - 2650,35 кэВ. Значение $T_2^{\text{эксп}} = 52(8)\%$ для этого перехода указывает на его дублетную структуру, и тем самым одна из его компонент, возможно, является прямым переходом на основное состояние.

Таблица 2 Коэффициенты смеси мультипольностей для переходов 146 Sm

Е _і (кэВ)	I i	^Е у (кэВ)	I f	A ₂	δ	XL
I	2	3	4	5	6	7
2269,9	3+	888,5 889,4	4+ 3-	-0,34(5)	-0,36+0,II	E2/MI EI
2400,9	2+	2400,9	0+	-0,69(5)		E2
2439,0	4+	1057,6	4+	0,310(26)	≼-0,88 ≽II	E2/MI
		I058,7	3		0.00	EI
2513,4	37	865,4	2+	0,53(37)	$-0, 10^{+0, 20}_{-0, 26}$	M2/EI
		II32,I	4*	-0,44(4)	0,00	EI
		II33,I	3		0,07-0,09	E2/MI
					I,I4 ^{+0,I8} -0,I8	
2799,7	3+	2052,7	2*	-0,508(29)	$4,4^{+0,5}_{-0.3}$	E2/MI
					0,501+0,025	2
	4+	2052,7	2*	-0,54(3)	-0,020	E2
2850,3	4+	2103,2	2+	-0,37(23)	0.05	E2
3072,9	5*	1691,6	4+	0,60(8)	$-0, 17^{+0}, 05$	E2/MI
					-3,0 <u>+</u> 0,5	
3I36,4	3	1756,I	3-	-0,34(4)	-0,10 <u>+</u> 0,04 I,62+0,15 I,62-0.14	E2/MI
		2389,I	2+	0,45(9)	-0,05+0.04	M2/EI
3200,0	4	III6,6	5	-0,25(II)	-0,30 ^{+0,09}	E2/MI
					-2.5+0,6	
3418.9	(2^{+})	2671.7	2+	0.85(15)	~,~_0,9 a)	E2/MI
	3*	2671.7	2+	0.70(12)	-0,21+0,08	E2/MI
					2 +0.4	
346T T	5	T378 T	5	-0 37(6)	-2, -0, 5	FO AT
0.101,1	0	10/0,1	5	-0,07(0)	0 97±0 T5	LING/ MLL
		I4I5, 9	4-	-0,46(7)	0,45+0,07	E2/MI
					3,6+0,8	

6

7

С нового уровня 2684,71 кэВ направлено три У-перехода /на него идет У-переход сверху/. Значение $T_2^{экоп_*} = 90,1(16)$ % для У-перехода 1937 кэВ подтверждает существование данного уровня.

Уровень 2850,28 кэВ установлен по у-у совпадениям переходов 2103,16 кэВ и 747,16 кэВ $^{/4/}$. Значение $T_2^{эксп.} = 82,6(10)\%$ для перехода 2103,16 кэВ подтверждает справедливость введения данного уровня. Согласно мультипольностям переходов спин его – 4+. Это подкрепляется и близким значением A_2 (эксп.) с

4^т. Это подкрепляется и озлочи слава 2103,16 кэВ /см.табл.2/. Новый уровень 3072,90 кэВ введен на основе значения T₂^{эксп.} = = 96(4)% для γ-перехода 1691,64 кэВ. Кроме того, на основе энергетического баланса с этого уровня направлено еще 4 γ-перехода /см.табл.1/. Переход 1691,64 кэВ в работе^{/2/} заселяет первый возбужденный уровень, что противоречит нашим данным и результатам γ-γ совпадений ^{4/}. По мультипольностям переходов, связанных с уровнем 3072,90 кэВ, возможными значениями для спина и четности являются I^π = 4⁺ или 5⁺. Первое значение можно не рассматривать, потому что данные по анизотропии углового распределения для у-перехода 1691,64 кэВ /мультипольность M1 + E2/ исключают значение 4⁺, так как в этом случае нет решения для параметра смешивания δ при А^{эксп.} = 0,66(9). На основе этого принимаем I^π = 5⁺.

Уровень 3136,42 кэВ установлен по у-у совпадениям^{/2/} переходов 1756,08 и 2389,13 кэВ. Результаты дифференциально-интегральных совпадений /см. табл.1 ^{/17} / подтверждают его существование. Более точное значение энергии перехода 1756,08(3) кэВ позволяет направить его на 2-е возбужденное состояние 1380 кэВ, 3⁻, в то время как в работах ^{/2,8,11/} он разряжался на уровень 1381 кэВ, 4⁺. Мультипольности переходов, связанных с данным уровнем, допускают для спина и четности значения I^π = 2⁻, 3⁻, что отличается от вывода, сделанного в ^{/11/}, где I^π = 3⁺. Переход 2389,13 кэВ мультипольности Е1 имеет при I^π = 2⁻ коэффициент анизотропии $A_2^{\operatorname{эксп-}} = 0,54(10)$, в то время как $A_2(2 \rightarrow 2) =$ = -0,42. Отсюда следует, что для данного уровня более вероятно I^π = 3⁻.

Новый уровень 3199,99 кэВ введен на основе значений $T_2^{\ \, \text{эксп.}}$ для у-переходов 1116,57 и 1818,78 кэВ /см.табл.^{/1/} /. Энергетический баланс позволяет направить с этого уровня еще 3 у-перехода. Спин и четность уровня определяются однозначно – $I^{\pi} = 4^{-}$.

Спин и четность уровней 3376,72 и 3391,64 кэВ определены в работе ^{/11/} как I^{π} = 4⁺ и I^{π} = 3⁻ соответственно на основе измеренной анизотропии углового распределения переходов 1332,74 и 1345,18 кэВ. Полученные нами значения энергий данных переходов и сведения о $T_2^{\mathfrak{skCn}}$ для них свидетельствуют об их размещении в другом месте схемы распада. Однако значения I^{π} для рассматриваемых уровней не меняются, поскольку в первом случае $I^{\pi} = 4^+$ следует из мультипольностей переходов, которые связаны с уровнем 3376,72 кзВ, а во втором случае $I^{\pi} = 3^-$ уровня 3391,64 кзВ однозначно определяется из анизотропии перехода 2644,43 кзВ мультипольности Е1. Для I = 2 теоретическое значение $A_2(2 \rightarrow 2) = -0,42$ и измеренное $A_2^{\text{эксп}} = 0,42(12)$, что приводит к выбору второй возможности – $I^{\pi} = 3^-$ для данного уровня.

Уровень 3418,92 кэВ вводился в работах $^{/2}$, $^{3/}$ лишь на основе выполнения энергетического баланса. Измерения дифференциально-интегральных совпадений /см.табл.1 $^{/1/}$ / однозначно подтверждают существование данного уровня. Мультипольности переходов, связанных с уровнем 3418,92 кэВ, ограничивают возможные значения I^{π} = 2⁺, 3[±], 4⁺. Анизотропия перехода 2671,65 кэВ в случае I = 4 равна $A_2^{\text{эксп}} = 0,75(13)$, а ее теоретическое значение $A_2(4 \rightarrow 2) = -0,45$, что исключает спин 4⁺. Спин 3⁻ менее вероятен, поскольку из анизотропии углового распределения получается слишком большая примесь мультипольности M2 к E1 -

(4, 2 + 4, 1)% для данного перехода. При I^{π} = 2+ A^{экоп.} =

= 0,85(15), однако решение для параметра смешивания $\delta(E2/M1)$ существует только для $A_2(2 \rightarrow 2) < 0,54$. Отсюда следует, что и спин 2⁺ является маловероятным и для рассматриваемого уровня самым вероятным остается $I^{\pi} = 3^+$.

Уровню 3461,52 кэВ приписано в работе $^{/11/}$ значение $I^{\pi} = 4^-$, вытекающее из анализа анизотропии углового распределения перехода 2080,7 кэВ, идущего на состояние 1380,25 кэВ. Наши измерения показали, что переход 2080,7 кэВ является дублетным и его компоненты заселяют уровни с энергией 1380,25 и 1381,26 кэВ. Спин уровня 3461,52 кэВ равен 5⁻, что следует из мультипольностей переходов, которые его разряжают. Анизотропия дублетного перехода 2080 + 2081 кэВ не противоречит данному выводу /см.табл.2/.

Уровень 3488,46 кэВ вводится из анализа результатов $T_2^{9\kappa cn}$. для перехода 1840,52 кэВ и из разрядки его переходом 2740,8 кэВ.

Уровень 3517,33 кэВ установлен на основе $\gamma-\gamma$ совпадений ⁴⁴, в работе ¹¹¹ определены возможные значения I^{*π*} = 3⁺, 4⁺ в предположении, что переход E2 2137,08 кэВ заселяет уровень 1381 кэВ, I^{*π*} = 4⁺. Результаты наших измерений приводят к тому, что переход 2137,08 кэВ связан с уровнем 1380 кэВ, I^{*π*} = 3⁻. Если уровень 3517,33 кэВ имеет I^{*π*} = 4⁺, тогда примесь M2-перехода 2137,08 кэВ больше 10% /что следует из анизотропии данного перехода/ и ввиду этого спин 4⁺ является маловероятным. Уровень 3546,13 кэВ введен по значению $T_2^{\mathfrak{sken}} = 85(3)\%$ для перехода 2798,97 кэВ. Ранее в работах ^{/2,7/} переход 2798,97 кэВ был связан с основным состоянием ¹⁴⁶ Sm . Возможные значения для спина и четности уровня 3546,13 кэВ I[#] = 3⁺, 4⁺.

Уровень 3583,91 кэВ установлен по результатам y-y совпадений^{/4/}. Полученные нами результаты подтверждают существование данного уровня, а мультипольности переходов, связанных с этим уровнем, приводят к заключению, что $I^{\pi} = 3^-$, 4⁻, 5⁻. Анизотропия углового распределения для перехода с энергией 2203,73 кэВ не позволяет исключить ни одно из вышеуказанных значений для I^{π} /см.табл.2/.

Новые уровни с энергией 3231,6, 3244,62, 3329,87, 3368,7, 3397,6, 3427,7, 3471,86, 3509,30, 3591,68, 3605,7, 3693,4, 3715,56, 3720,5, 3740,7 и 3749,4 кэВ введены на основе измерений интенсивностей дифференциально-интегральных совпадений переходов, которые связывают эти уровни с первым возбужденным состоянием /см.табл.1 в^{/1} /. Из способа разрядки и из значений lgft /табл.1/ для уровней с энергией 3591,68, 3605,7, 3693,4, 3720,5, 3740,7 и 3749,4 кэВ следует значение $I^{\pi} = 3^{\pm}, 4^{\pm}$.

Структура низколежащих состояний ядра ¹⁴⁶ Sm была вычислена в рамках модели взаимодействующих бозонов, в которой различаются протонные (π) и нейтронные (ν) бозонные степени свободы /MBБ-2/^{12/}. В области изотопов самария проводился ряд расчетов по MBБ, так, например, ¹⁴⁶ Sm был проанализирован в работах ^{/11}, ¹³, ^{14/}. Ядро ¹⁴⁶ Sm имеет лишь одну пару нейтронов сверх заполненной оболочки с N = 82, поэтому роль коллективных квадрупольных возбуждений невелика и можно ожидать значительного влияния неколлективных примесей на структуру состояний, которые невозможно описать в рамках MBБ.

Нами была предпринята попытка вычислить структуру ¹⁴⁶ Sm с минимальным числом свободных параметров с использованием для некоторых из них микроскопических оценок. Гамильтониан MBБ-2 имеет вид

$$\begin{split} \mathbf{H} &= \epsilon_{d} \left(\mathbf{n}_{d_{\pi}} + \mathbf{n}_{d_{\nu}} \right) + \kappa_{\pi\nu} Q_{\pi}^{(2)} \quad Q_{\nu}^{(2)} + \kappa_{\pi\pi} Q_{\pi}^{(2)} \quad Q_{\pi}^{(2)} + \\ &+ \kappa_{\nu\nu} Q_{\nu}^{(2)} \quad Q_{\nu}^{(2)} + \lambda \, \mathbf{M}_{\pi\nu} \,, \end{split}$$

где $\epsilon_{\rm d}$ - энергия возбуждения d-бозонов по сравнению с энергией s-бозонов. Она была взята одинаковой для $\pi-$ и $\nu-$ бозонов. Квадрупольный оператор ${\rm Q}^{(2)}_o$ запишем в виде

$$Q_{\rho}^{(2)} = (d_{\rho}^{+} s_{\rho} + s_{\rho}^{+} \tilde{d}_{\rho})^{(2)} + \chi_{\rho} (d_{\rho}^{+} \tilde{d}_{\rho})^{(2)}, \ \rho = \pi, \ \nu.$$
 /2/

Сила Майорана М_{пν} повышает энергию состояний с несимметричными протонными и нейтронными компонентами. М_{пν} записывается в самом простом виде:

$$M_{\pi\nu} = \frac{1}{4}N(N+2) - \hat{F}^2, \qquad /3/$$

где N – суммарное число бозонов и $\hat{\mathbf{F}}$ – оператор F-спина

Принятые микроскопические оценки параметров квадрупольных операторов Q $\binom{(2)}{\rho}^{/15/}$ уменьшают число свободных параметров. Обозначим Q $\binom{(2)}{\rho_{,\,603.}}$ как бозонное отображение фермионного квадрупольного оператора Q $^{(2)}_{\rho,\,\, ферм.}$, тогда

$$Q_{\rho, \ 603}^{(2)} = a_{\rho} \{ (s_{\rho}^{+} \vec{d}_{\rho} + d_{\rho}^{+} \vec{s}_{\rho})^{(2)} + \chi_{\rho} (d_{\rho}^{+} \vec{d}_{\rho})^{(2)} \}, \qquad /4/$$

и на основе микроскопической модели получим значения $\chi_{\pi} = -0,84$ и $\chi_{\nu} = 0,23$, которые используем в наших расчетах. При феноменологическом анализе^{/14/} получены близкие значения $\chi_{\pi} = -1,3$ и $\chi_{\nu} = 0,36$. Аналогичная оценка для абсолютного значения взаимодействия к /см./1// ненадежна из-за значительного влияния ренормализации от степеней свободы, не включенных в MB5. Несмотря на это используем микроскопические значения констант пропорциональности α_{ρ} /см./4// для вычисления относительных значений к из следующих выражений:

$$\kappa_{\pi\nu} : \kappa_{\pi\pi} : \kappa_{\nu\nu} = \kappa_{\pi\nu}^{\mathrm{F}} a_{\pi} a_{\nu} : \kappa_{\pi\pi}^{\mathrm{F}} a_{\pi}^{2} : \kappa_{\nu\nu}^{\mathrm{F}} a_{\nu}^{2}.$$
 (5)

Для фермионной силы к^F в квадруполь-квадрупольных фермионных взаимодействиях использовались микроскопические оценки и результаты реалистических расчетов, проведенных по методу Хартри - Фока ^{/16/}. Тогда принимаем, что

$$\kappa_{\pi\pi}^{\rm F} = \kappa_{\nu\nu}^{\rm F} = \frac{1}{6} \kappa_{\pi\nu}^{\rm F} . \qquad (6)$$

Отношение $a_{\pi}/a_{\nu} = 0,68$ получено на основе микроскопических вычислений/15/ и хорошо согласуется с аналогичными расчетами^{17/}. Вышеуказанные отношения и значения параметров позволяют найти силы $\kappa_{\pi\pi}$, $\kappa_{\nu\nu}$ и $\kappa_{\pi\nu}$, используя один свободный параметр, значение которого определено из сравнения экспериментальных и вычисленных энергий уровней. Таким образом, получено значение $\kappa_{\pi\nu} = -0,15$ МэВ, которое находится в согласии с данными работы^{14/}. Отсюда следует, что $\kappa_{\pi\pi} = -0,017$ МэВ и $\kappa_{\nu\nu} = -0,036$ МэВ. Квадрупольные силы между одинаковыми нуклонами оказываются намного меньше, чем протон-нейтронное квадруполь-квадрупольное взаимодействие, хотя их учет положительно влияет на вычисленный спектр энергии уровней. Согласно

Таблица З

данным работы /14/ мы выбрали значение $\epsilon_{\rm d}=1$ МэВ. Сила взаимодействия Майорана (λ) влияет на положение самого низкого коллективного состояния 1⁺ /в ¹⁴⁶ Sm оно неизвестно/ и на энергию изовекторного состояния 2⁺. Предполагаем, что это состояние в ¹⁴⁶ Sm тождественно уровню 2⁺ с энергией 2,156 МэВ, тогда $\lambda=0,1$ МэВ. Проведена идентификация изовекторного состояния 2⁺ согласно аргументам, использованным для соседних изотопов Sm $^{/18'}$, хотя достоверность экспериментальных данных о состоянии 2⁺ в ¹⁴⁶Sm невелика. Сравнение экспериментальных и вычисленных энергий уровней проведено на рисунке.

Приведенные вероятности E2-переходов рассчитывались с помощью оператора

 $T(E2) = q_{\pi}Q_{\pi}^{(2)} + q_{\nu}Q_{\nu}^{(2)},$ /7/

где значения параметров χ_{ρ} /см. /2// такие же, как в гамильтониане /1/. Абсолютные значения B(E2) измерены с большой ошибкой /см.табл.3/, что затрудняет определение значений зарядов q_{ρ} . Анализируя свойства 147 Sm /19/, принимаем, что $q_{\pi} = q_{\nu} = 0,161$ е б. Приведенные вероятности B(M1) вычисляем, используя оператор

T(M1) =

$$=\sqrt{\frac{3}{4\pi}}(g_{\pi}\hat{L}_{\pi}+g_{\nu}\hat{L}_{\nu}),$$
 /8/

где $\hat{L}_{\pi}(\hat{L}_{\nu})$ - операторы углового момента протонов /нейтронов/. Значения гиромагнитных факторов выбраны стандартным образом, то есть $g_{\pi} =$ $I\mu_{o}$ и $g_{\nu} = 0\mu_{o}$. Сравнение экспериментальных и

Абсолютные	зна	чения	приведе	HHPIX	вероятно-
с	тей	Е2-пе	реходов	146 Sm	

тт	$B(E2, I_i \rightarrow I)$	$f) [e^2b^2]$
$1_i \longrightarrow 1_f$	эксп.[7]	выч.
$S_{I}^{+} \rightarrow O_{I}^{+}$	> 0,033	0,27
$4^+_{\mathrm{I}} \longrightarrow 2^+_{\mathrm{I}}$	>0,06	0,43
$S_{I}^{\dagger} \longrightarrow 4_{I}^{\dagger}$	0,043 +0,054 -0,023	

Таблица 4

Отношение приведенных вероятностей E2-переходов ¹⁴⁶ Sm

$I_i \rightarrow I_i$	$\frac{B(E2, I_i)}{B(E2, I_i)}$	$I_{f})$
$I_i \rightarrow I_f$	эксп.	выч.
$\frac{2_2^+ \longrightarrow 2_1^+}{2_2^+ \longrightarrow 0_1^+}$	74 <u>+</u> 30	222
$\frac{2_3^+ \longrightarrow 2_1^+}{2_3^+ \longrightarrow 0_1^+}$	9 ÷ I8	9,3
$\frac{4_2^+ \longrightarrow 2_2^+}{4_2^+ \longrightarrow 4_1^+}$	>58; <i45< th=""><th>I,36</th></i45<>	I,36
$\frac{2_4^+ \longrightarrow 2_I^+}{2_4^+ \longrightarrow 0_I^+}$	<i,5< th=""><th>0,375</th></i,5<>	0,375
$\frac{3_{\mathrm{I}}^{+} \longrightarrow 4_{\mathrm{I}}^{+}}{3_{\mathrm{I}}^{+} \longrightarrow 2_{\mathrm{I}}^{+}}$	2,6 +3,0 -I,4	35,8
$\frac{3_{\mathrm{I}}^{+} \longrightarrow 2_{\mathrm{2}}^{+}}{3_{\mathrm{I}}^{+} \longrightarrow 4_{\mathrm{I}}^{+}}$	2,5 +2,5 -I,2	2,5

Таблица 5

Коэффициенты	смешивания мультипольности переходов ¹⁴⁶ Sm	δ(E2/M1) -
$I_i \rightarrow I_f$	δ(E2/M1)	
	эксп.	теор.
$2^+_2 \rightarrow 2^+_1$	$ \delta = \left(1, 5 + \infty, -0, 7\right)^{a}$	- 5,93
$2^+_3 \rightarrow 2^+_1$	$(-3, 2 \le \delta \le -0, 9)^{(5)}$	- 0,074
$4^+_2 \rightarrow 4^+_1$	$\begin{cases} \leq -0,88 \\ \geq 11 \end{cases}$	- 3,08
$3_1^+ \rightarrow 2_2^+$	$ \left\{\begin{array}{c} 0,33 \pm 0,05 \\ 13 + 20 \\ -5 \end{array}\right. $	- 4,03
$3^+_1 \rightarrow 4^+_1$	$\left(-0,36+0,11\\-0,18\right)^{a}$	- 4,07
$3^+_1 \rightarrow 2^+_1$	$\int 0,73 + 0,24 = 0,14$	- 6,94
	2,45 + 0,85 - 0,74	

а) Наши результаты /см.табл.2 и табл.2 в^{/1/} /.

б) Данные из /11/ .

вычисленных отношений B(E2) и параметров смешивания $\delta(E2/M1)$ дано в табл.4 и 5.

Предполагаем, что состояние 6_1^+ (1,812 МэВ) имеет неколлективный характер потому, что расчеты в рамках МВБ дают $E(6_1^+) \ge 3E(2_1^+)$. Коллективное состояние 6^+ могло бы соответствовать экспериментальному уровню с $E(6_2^+) = 2,222$ МэВ. В работе $^{/11/}$, используя МВБ-1 с шестью свободными параметрами, достигли согласия между рассчитанной энергией 6^+ -состояния и экспериментальным значением $E(6_1^+)$, хотя при этом были выбраны очень необычные значения параметров. Результаты вычислений, полученные нами, с небольшим числом свободных параметров, значения кото-

рых находятся в согласии с микроскопическими оценками и со значениями соответствующих параметров в соседних ядрах, не объясняют экспериментально полученное низкое значение $E(6\frac{1}{1})$. Относительно низкое значение $B(E2, 6\frac{1}{1} \rightarrow 4\frac{1}{1})$, установленное экспериментально, подтверждает предположение о неколлективном характере состояния $6\frac{1}{1}$. Неколлективные примеси будут, вероятно, значительные и в волновой функции состояния $4\frac{1}{1}$ ввиду экспериментально установленного неравенства $E(4\frac{1}{1}) < 2E(2\frac{1}{1})$.

В области энергий уровней выше 2 МэВ наблюдается ряд состояний с $I^{\pi} = 2^+$, которые нельзя отнести к вычисленным нами состояниям. Предполагаем, что большинство из них имеет в значительной степени неколлективный характер. Уровень с энергией $E(2^+_3) = 2,156$ МэВ мы предположительно отождествили с изовекторным состоянием, вычисленным в рамках МВБ-2. Относительные интенсивности E2-переходов, разряжающих уровень 2,156 МэВ, не противоречат вышесделанному выводу. Состояние 4^+_2 , вычисленное нами, не должно разряжаться на уровень 2^+_1 . Этому условию удовлетворяет уровень $I^{\pi} = 4^+$, E = 2,349 МэВ. С другой стороны, относительно интенсивные E2-переходы связывают соседние уровни 4^+ /2,283 МэВ/ и 4^+ /2,678 МэВ/ с первым возбужденным состоянием 2^+_1 .

В заключение мы приходим к выводу, что в структуре низколежащих уровней ¹⁴⁸ Sm важную роль играют неколлективные состояния, описание которых невозможно в рамках МВБ.

ЛИТЕРАТУРА

- 1. Адам И. и др. Препринт ОИЯИ Р6-88-755, Дубна, 1988.
- 2. Адам И. и др. Болг.физ.ж., 1976, 3, с.144.
- 3. Paperiello C.J. et al. Nucl. Phys., 1968, A121, p.191.
- 4. Singh B., Johns M.W. Can.J.Phys., 1975, 53, p.391.
- 5. Wapstra A.H., Audi G. Nucl. Phys., 1985, A432, p.1.
- Адам И. и др. Тезисы докладов XXXVIII Совещания по ядерной спектроскопии и структуре атомного ядра, Баку. Л.: Наука, 1988, с.97,99.
- 7. Peker L.K. Nucl.Data Sheets, 1984, 41, p.195.
- Kung C.H., Brown B.D., Khoo T.L. Phys.Rev., 1978, C18, p.2127.
- 9. Salewski H., Schmidt-Ott W.D. Z.Phys., 1988, A329, p.169.
- 10. Адам И. и др. Сообщение ОИЯИ Р6-86-394, Дубна, 1986.
- Kracikova T.I. et al. J.Phys.G., Nucl.Phys., 1984, 10, p.571.
- Arima A. et al. Phys.Lett., 1977, B66, p.205;
 Otsuka T. et al. Phys.Lett., 1978, B76, p.139.

- Scholten O., Iachello F., Arima A. Ann. Phys., 1978, 115, p.325.
- 14. Scholten O. PhD thesis, University, Groningen, 1980.
- 15. Navratil P., Dobes J. To be published.
- 16. Dobaczewski J. et al. Phys.Rev.Lett., 1988, 60, p.2254.
- 17. Pittel S., Duval P.D., Barnett B.R. Ann. Phys., 1982, 144, p.168.
- 18. Otsuka T., Ginocchio J. Phys.Rev.Lett., 1985, 54, p.777.
- 19. Адам И. и др. Препринт ОИЯИ Р6-88-562, Дубна, 1988.

Рукопись поступила в издательский отдел 17 октября 1988 года. Адам И. и др. Схема распада ¹⁴⁶Ец и структура возбужденных состояний ¹⁴⁶ Sm P6-88-756

На основе данных о дифференциально-интегральных совпадениях построена схема распада ¹⁴⁶ Eu → ¹⁴⁶ Sm, состоящая из 68 уровней. 22 уровня нами введены впервые. Определены спины, четности и lg ft для возбужденных уровней ¹⁴⁶Sm. В рамках модели взаимодействующих бозонов, в которой различаются протонные и нейтронные бозоны, вычислены энергии и квантовые характеристики возбужденных уровней ¹⁴⁶Sm и приведенные вероятности Е2-, М1-переходов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

Adam I. et al. 146 Eu Decay Scheme and Structure of ¹⁴⁶ Sm Excited States P6-88-756

On the basis of data on differential-integral coincidences the 146 Eu \rightarrow 146 Sm decay scheme is constructed. It consists of 68 levels, 22 of them have been introduced for the first time. Spins, parities and lgft for excited levels of 146 Sm are determined. Within the model of interacting bosons in which proton and neutron bosons are distinguished, energies and quantum characteristics of excited levels of 146 Sm and reduced probabilities of E2-, M1-transitions are calculated.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1988