ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

4/111-75

A-211

P6 - 8781

2755/2-75

С.Р.Аврамов, Н.А.Бонч-Осмоловская, Ц.Вылов, К.Я.Громов, А.Ш.Хамидов

ИССЛЕДОВАНИЕ РАСПАДА 172 Lu

1975

С.Р.Аврамов, Н.А.Бонч-Осмоловская, Ц.Вылов, К.Я.Громов, А.Ш.Хамидов*

исследование распада 172 Lu

Направлено в Известия АН СССР

^{*} ИЯФ АН Уэб.ССР, Ташкент.

К настоящему времени накоплен обширлый экспериментальный материал о возбужденных состояниях 172 Yb из ядерных реакций (d,p), (d, t), (d, d'), (3 He, a)/1,2/, (p, t)/3/, (n, y)/4/, распада 172 Tm(I $^\pi$ = 2 $^-$)/5/. Однако из распада 172 Lu (спин I $^\pi$ = 4 $^-$ и разность масс $^-$ 2,5 MэВ) следует много дополнительных сведений о состояниях с высокими спинами и большими энергиями, о поэбуждении ротационных полос вплоть до уровней со спинами 5 $^+$, 6 $^+$. Исследованию распада 172 Lu также посвящено много работ/6-10/. однако в наиболее полной из них/10/не было, например, сходимости в энергетическом балансе при построении схемы распада. Целью нашей работы явилось тшательное исследование спектров гаммалучей, возникающих при распаде 172 Lu , уточнение и дополнение схемы уровней 172 Си , уточнение и дополнение схемы уровней 172 ур

Условия опыте

Фракция лютеция выделялась хроматографическим методом из продуктов облучения тантала протонами с E_p = 660 МэВ и затем разделялась по изотопам на масс-сепараторе. В источниках ¹⁷² Lu примесь ¹⁷¹ Lu не превышала 0,1%. Спектры гамма-лучей изучались на спектрометрах с Ge(Li) -детекторами объемом 0,5; 1 и 37 см 3 с разрешающей способностью: 1,0 кэВ $(0,5 \text{ см}^3)$ и 1,5 кэВ (1 см^3) при E_p = 100 кэВ; 1,5-2,0 кэВ (1 см^3) и 3,0 кэВ (37 см^3) при E_p = 660 кэВ. Обработка экспериментальных данных проводилась на ЭВМ "Минск-2" и "СПС - 1604А". Для определения энергий

гамма-переходов проводились опыты с суммарным источником ¹⁷² Lu, ^{56,57,60} Co, ¹¹³ Sn, ¹³⁷ Cs, ⁸⁸ Y. Определенные из них энергии сильных линий ¹⁷² Lu служили далее реперами для определения энергии более слабых переходов. Обработка спектров по энергиям гамма-переходов осуществлялась на ЭВМ "БЭСМ-6" по программе Аврамова ^{/11}. Исследование слабого позитронного излучения ¹⁷² Lu проводилось на бета-спектрометре с Si(Li) -детектором, помещенном в однородное магнитное поле. Спектры электронов внутренней конверсии для оценок интенсивностей новых переходов измерялись на бета-спектрографах с разрешающей способностью 0,03-0,05%.

Результаты измерений

В табл. 1 приведены определенные нами энергии и интенсивности гамма-лучей, возникающих при распаде 172 Lu . Более чистые и сильные источники, улучшенные у -спектрометры, по сравнению c^{-10} , поэволили значительно уточнить интенсивности и энергии многих известных у -переходов, обнаружить 19 новых переходов и 22 перехода, наблюдавшихся ранее только в спектрах конверсии 6,9 . Гамма-линии 383, 953, 963, 970, 979, 1152 кэВ, обнаруженные в $^{-10}$, мы не наблюдали. По нашим оценкам интенсивность их меньше $^{0,1-0,2}$ единиц табл. 1. Поскольку опи не наблюдались и в слектрах конверсии $^{-9,12}$, в табл. 1 они не включены.

В колонке 1 погрешности в E_y соответствуют средне-квадратичным ошибкам по результатам нескольких опытов. Для расчетов a_k известных линий мы использовали средние значения I_k из работ $^{(6-8)}$ в области мягких энергий, а в област. жестких энергий I_k — из работ $^{(9)}$. При расчетах a_k прдполагалось, что a_k (1093) = $=2.62.10^{-3}$ (среднее значение по ряду работ, см. $^{(8)}$). На бета-спектр метре мы наблюдали слабое позитронное излучение 172 Lu ($\leq 0.04\%$ на раслад). Оценки граничной энергии дали значение 1350 ± 250 кэВ. При предположении, что β^+ -распад идет на уровень 4,0 $_g$, получаем разность масс 2650 кэВ, что согласуется с систематикой $^{(13)}$.

Е у кэВ Настоящая ј	I _r ⊝aoota	I _{r /IO}	/ de.I0	إلى الأرادية. - Hootl Hootl	F I,	$1^{\frac{n}{2}} \cdot 1^{\frac{n}{2}}$
I	2	3	4	5	6	
75,743(8) ⁸	54,6(27)	54,8(22)		2	78 = 0	2 = (*
90,634(15) ^a	24,7(12)	25,5(13)	I600±I00	12+ II	1263 - 1172	4' '
112,752(23) ^a	6,94(26)	7,35(49)	940±150	(2) II	I375 = 12 %	5* - 1*
118,99(4)	0,22(3)	0*10(3)			2192 - 20%	t' = 1'
134,29(5)	(0,50(3))	0.17(2)	550±140	ini	15 1 0 = 1575	1 1
I(8,0(6)	0.10(3)	0,18(4)			C = H = 2000	. '
142,36(23)	0.11(3)	0,48(2)				
145,6%(2)	$C_{\bullet}(x'(\cdot))$	0.00(10)	020 <u>±</u> 1 (
I(4,49(5)	0,22(3)	0,22(8)			1700-194.4	21 - 21
155 , 95(5)	1.10(2)		IIA0±40.			
1 3,13(3)	0.32(.3)	C, H(15)	3607310	:I	It 39 = IV"	1
174,04(2)	(,58(4)	0,60(5)			3175 - 3	3' - 3'
181 110(D)	I	100	2ICE	32	260 - 79	$A^{t} = \mathcal{V}^{t}$
196,36(2)	0,53(4)	C.47(4)	< 200	EI . E2	1703 - 1510	5" - 3"
20°,28(2I) ⁰	(,23(4)		1 40±4 0	المنا	18 52 - 1662	5**
205,424(IE) ^a	24,38(75)	24,24(90)	100 ± 10	**	I375 - I172	5 [†] ¹
21.,28(4)	0,49(5)	0 , 30(3)	320+30	11	2075 - 1832	4' - '
229,63(1)	I.84(3)	1,58(13)	235 <u>+</u> 55	II	I869 - I646	4" - 5"
234,47(3)	0,32(1)	1,65(45)				
241,0(6)	0.12(3)	0,32(5)				
247,I1(2)	2,91(9)	2,25(51)	21 <u>±</u> 63	12	ISIC - 12%	G* - i*
25 1,2 6(6) ¹	(,23(1)				2000 - I749	U⁴ - 4⁴
254,11(6)	o , 2J(5)	0,38(6)			I803 - I549	$4^{\dagger} = 5^{\dagger}$
264,77(1)	3,72(11)	3,21(43)	42+20	$\mathbb{E}\mathbf{I}$	1340 - 1575	5" - 5"
270,00(5)	9 , 82(30)	9,14(59)	170±20	:VI	2073 - 1803	$4^{+} - 4^{+}$
279,67(2)	5,82(I8)	5,53(4 9)	84+20	다임	549 - 270	$6^4 - 4^4$
UI9,08(4)	0.65(t.)	0,76(8)	I85 <u>+</u> 60	ЛI		
323,89(7)	7,14(22)	6,97(26)	140-26	ЫI	2073 - 1749	4+ - 4+
329,29(6) ⁶	0,64(7)				2192 - 1862	5' - 5 ⁺
330,61(5)	2,91(11)	2,96(34)	< 54	EI E2	1706 - 1375	5" - 5*
537,69(26)	0,34(6)	0,30(4)	6 2±1 9	1:24 JI	2000 - 1662	3 ⁺ - 3 ⁺

I	2	3	4	5	_ ც	7
548,04(6)P	0,21(7)	0,13(5)			I465 ~ III7	2+ - 2+
ან 2,3 ა(∀)	0,00(2)	1,11(35)	50±20	E2+II		
ან8 , 56(5)	0,55(5)	0 _• 55(3)	9I <u>+</u> 25	II.	I476 ~ III7	2 ⁺ - 2 ⁺
					2285 ~ I 926	4+ - 5+
566 ₄ 66(2)	1,44(7)	1,54(19)	-	1	2073 - I706	4+ - 5
372,51(4)	12,75(38)	1.,85(84)	-	.iI	3073 - 1700	4+ - 3+
0.77,55(4)	15,::3(48)	I5,88(48)	15±5	$z_{\mathbf{I}}$	1340 - 1233	5 - 4
.89,35(11)E	0,54(5)					
399,72(3)	2,64(10)	2,54(15)	_		1562 - 1263	3+ - 4+
110,31(3)	2.32(26)	9,75(54)		.iI	2075 ~ 1362	4 ⁺ ~ 3 ⁺
4I5,52(Ib)	0,56(8)	0,38(6)	97 <u>±</u> 66	II	1926 - 1510	5 ⁺ ~ 6 ⁺
422,62(4)	0,75(3)	0,82(11)			2285 - 18 62	4+ - 5+
427,17(6)	(, 5J(6)	C,79(10)	_)INI3 - IS86	4+ - 4+
4ಎ೭,ಬೆ(4)	7,84(24)	7,70(47)	_	LI	2073 ~ 1640	4 - 5
457,6I(c)	1,13(8)	(10)ك1, آ	_	Il	1700 ~ 1263	ა ⁺ - 4 ⁺
443,30(4)	(_• 75(9)	0,73(11)	€ 32	EI-AI	1703 ~ 1263	5 - 4
480,58(15) ²	0.63(14)		ქეე <u>+</u> I6	IJΙ	2340 ~ I8 62	4 - 5
182,24(4)	ವಿ,ರಂ(12)	3,48(24)	40 <u>∓</u> 3	.JI	.2285 - I8 03	$4^{+} - 4^{+}$
463 ,11(2)	ა, I5(I3)	ა ₁ 57(<i>5</i> 3)	3 8±ა	MI	J749 ~ I263	4+ - 4+
490,41(4)	9,01(28)	9 , 69(54)	39±5	IL.	1562 - 1172	3 ⁺ - 3 ⁺
512,60(5)	0 , 89(9)	0,75(12)	41 <u>+</u> 11	ыII	$22I_0 \sim 1700$	3 ⁺ - 3 ⁺
ಾನ3, ೨५(ಕ)	$I_{\bullet}I_{\circ}(11)$	1,16(22)	I?±5	E2	2073 - 1549	4 - 4
528 , 23(5)	19,48(59)	I9 _● 56(57)	35 ± 4	. 11	I700 ~ 1172	3 ⁺ - 3 ⁺
504,4J(20) ⁵	0.38(11/		24 <u>+</u> 11	12.MI	2192 - 1657	5" - 4 ⁺
ದಿನಕ್ಕೇಡ(ಡಿ)	3,15(12)	3,43(19)	5 2± 5	MI	2285 ~ 1749	4 ⁺ 4 ⁺
540,I5(5)	6,92(21)	.,52(44)	29 <u>+</u> 5	11	I803 ~ I263	4+ - 4+
551, 15(4)	1,02(11)	2,10(12)	$9,7\pm3,2$	12	1926 - I3 75	5 ⁺ - 5 ⁺
ნინ , 2(ნ) ი	0,50(15)		ბ,8 <u>+</u> 4,I	E2,E1		
62,05(7)	೧, ೮೪(३)	0,57(13)	≼ ે,5	1.1		
:36,00 (I 7)	0,39(7)	0,83(44)	I6 <u>+</u> 6	E2+(II)	2175 ~ 1608	3* = 2*
5173 ,85(5)	I,56(8)	1,75(16)	27 <u>±</u> 5	II	I749 - I172	4" - U"
34,5 I(4)	1,71(10)	1,81(23)	28 <u>+</u> 4	. tI	2285 ~ I700	4+ - 3+
594,4I(3)	2,11(14)	2,89(34)	2 4+4	MI.	2343 ~ 1749	4+ - 4+
ກວະ , ອຊ(ປອ) ຕ	0,53(II)		13 <u>+</u> 7	E2	I7I3 ~ III7	4+ - 2+
599 , 85(8) ⁰ _	1,31(13)		6,8 <u>+</u> 2,8	E2	I862 - I263	5 ⁺ - 4 ⁺
604,53(29) ¹⁵	0,57(15)				2213 ~ 1608	$3^{+} - 2^{+}$
307,CE(5)	2,59(14)	3,25(25)	8,5 <u>+</u> I,7	.32	2073 ~ 1465	4+ - 2+

ļ

I	2	3	4	5	G 7
322,41(0) ⁶	0,70(9)		28+I0	I	2285 - 16 62 4 ⁺ -5 ⁺
325,86(8)	1,47(10)	1,47(18)	≤7.7	$\mathbf{L}\mathbf{I}$	
30,33(9)	1,85(17)	1,49(27)	II+OU	ιđΙ	1803 - 1172 4 ⁺ - 3 ⁺
642,95(3) ⁶	0,99(17)	•	26+8	ıΛΙ	2343 ~ I700 4 ⁺ - 5 ⁺
544,66(8)	0,69(10)	1,18(28)	9,4+3,8	E2	
346,49(30) ⁶	0,23(8)		35 <u>+</u> Î5	MI	I869 - I22I 4 ⁻ - 3 ⁻
664,27(II) ⁰	0.55(7)		24+10	M	2213 ~ 1549 3 ⁺ ~ 3 ⁺
081,65(3)	3,35(13)	3,75(29)	I4+3	MI	2192 ~ 1510 5 ⁺ ~ 6 ⁺
.# ,28(4)	30,05(90)	29,2(13)	I4+2	MI	2073 - I375 4 ⁺ - 5 ⁺
709,08(3)	ა.95(I4)	3,62(21)	7.41.3	EZ	2175 ~ 1465 3 ⁺ ~ 2 ⁺
723,02(3)	2,18(12)	2,43(19)	7,2+I_6	E2	I263 ~ 539 4 ⁺ - 6 ⁺
46,570 H	0,30(10)		_		1286 - 539 4 ⁺ - 6 ⁺
758,75(10) ¹	0,53(10)		9,2+5,0	£2,41	
810,06(4)	79,8(24)	79,7(19)	I0+I	М	2073 - I263 4 ⁺ - 4 ⁺
816,27(4)	5,49(19)	5,49(33)	14+4	.AI	2I92 - I375 5 ⁺ - 5 ⁺
835,71(7)	0.64(7)	0,86(25)	13+7	MI	I375 - 539 5 ⁺ - 6 ⁺
857,5 1 (20) ⁶	0,43(9)		9,4+5,1	E2,4H	III7 - 260 2^{+} - 4^{+}
833,15(42)	0,17(8)	I,59(73)	€37	E1-M2	
200,75(5)	143(4)	144(3)	8,2+0,5	1.11	$2073 - 1173 4^4 - 5^4$
909 , 63(0) ⁶	5 , 59(33)		9,7±1,8	.4I	$2385 - 1375 4^4 - 5^4$
9 1 2,69(6)	74,2(22)	74,0(16)	4,5+0,3	122+41	$1172 - 200 \ 5^{\dagger} - 4^{\dagger}$
929,12(8)	14.88(45)	I5,75(53)) 7,2 <u>1</u> 0,5	П	2192 - 1253 5 ⁴ - 4 ⁴
350,37(23)**	^ _• 25(5)				2213 - 1265 3 [*] - 4 [*]
901,00(43)	0.17(10)	0,45(17)			$122I - 260 3^{-} - 4^{+}$
96%,95(4)	o . 90(c)	0.94(13)	3,8 <u>+</u> 1,5	. iI	$2345 - 1375 4^{\dagger} - 5^{\dagger}$
(10), 166	0,24(6)	0.50(18)	≤14		2213 - 1221 J - J
1002,73(4)	23,97(81)	25,45(62)	J,J±0,3	L2+(.1	I) 1263 – 25 0 4† – 4†
IO(I) ^P -	C,3I(6)				
1019,5(12)	(9)لان _• 0	0,87(50)	€2,9	LI,L2	2192 - 1172 5 - 3
1083*32(3)	2 , 93(81)	7,41(29)		:I	2285 - I263 4 ⁴ - 4 ⁴
1026,44 ^{0,1}	6,30(16)		G , 8 <u>ჯ</u>3ს	::11	$1286 - 260 4^{+} - 4^{+}$
1059,00(30)	0,33(8)	1,03(50	B,3 <u>+</u> U,6	"iI	$1117 - 78 2^{+} - 2^{+}$
1040,92(3)	I,94(7)	1,91(25)	-	1.1I	$2213 - 1172 3^{+} - 5^{+}$
1055,0(10)	0 ,18(6)	0,43(6)	≼8 ,9	$\Pi = \Pi_{\perp}$	
1061,50(12)	0,57(6)	0.50(11)	≤ 2	Lī	•
106J _# 74(6)	4,28(16)	5,72(IG)	6,31.2	:AI	2343 - 1265 4 ⁺ - 4 ⁺
1095,61(4)	509(9)	320(7)	2,62	E2	II72 - 78 5+ - 2+

1	2	3	4	5	G	7
1112,95(4)	8,34(41)	9,46(44)	4,6+0,4	ιΔΙ	2285 - II72	4 ⁺ - 3 ⁺
Ii15,34(IO)	1,68(18)	1,00(22)	4,4+0,9	AI	I375 - 260	5 ⁺ ~ 4 ⁺
II25,22(6)	0,46(6)	0,51(7)	8,8+2,2	(HI)		
1142,69(16)	0,17(3)	0,50(20)	< 8.8	EI-MI	I22I - 78	3~_ 2*
II47,0(IO)	0,09(3)	2,43(35)	≤ I35	EI12		
II66,40(I5)	6,38(5)	0,72(15)	€I,7	ΕI	I706 - 439	5~ 3
1171,49(36)	0,14(3)	1,26(23)	€2,9	EI-E2	2324 - II72	4+- 5+
II79,5(7)	0,09(3)	0.61(16)	≤4 E1	(E2(iII)		
1184,52(7)	1,69(7)	2,44(17)	2,5+0,3	E2	1265 - 78	4+- 2+
1205,C5(33) ⁰	0,19(3)		2.6 ± 1.0	122	I4 65 - 260	2+- 4+
I209,CI(I8)B	0,33(5)		3,6+I,4	E2 HI	1749 - 539	4+- G+
1236,7I(I3)0	0,24(5)		6.1 ± 2.5	MI	1778 - 539	5 +- 6+
1265,2I(14)B	0,27(3)		5,4+3,4	E2,MI	1803 - 539	4+- 6+
1288,86(8)	0,94(5)	0,77(IO)	2,5 <u>+</u> 0,4	E2.MI	I549 - 2 60	3 ⁺ - 4 ⁺
I322,88(7)	0,50(5)	0,76(I2)	I,9 <u>+</u> 0,4	E2	I862 - 539	5 +- 6+
1329,77(13)B	0,19(3)		3.0 ± 1.4	E2,MI		
1373,00(10)°	0,16(3)		$5,1\pm3,2$	IAI (
1587,26(6)	4,35(13)	4,05(IG)	I,7±0,2	E2	1465 - 78	2+- 2+
1397,5 1(4)	1,36(3)	1,72(24)	I,5 <u>+</u> 0,3	E2	1657 - 260	4+- 4+
•					I 4 76 - 78	2+- 2+
1400,25(48) ^e	0,46(12)	0,98(I5)	€2,9	EI-MI		
1402,56(3)	3,22(16)	ಚ್ , 09(<i>2</i> 3)	I,8 <u>+</u> 0,2	E2	I662 - 260	3+- 4+
1440,44(2)	2,91(10)	3,37(24)	I,6±0,2	E2	1700 - 2 60	3+- 4+
I446,34(I8) ^B	0,16(4)				1706 - 260	5 - 4+
1435,98(5)	3 ,19 (17)	3,34(IB)	I,8 <u>+</u> 0,3	Ε2	I465 - O	2+- 0+
1470,41(2)	3,54(15)	3,05(14)	$I_{,5+0,2}$	E2	1549 - 78	3+- 2+
1476,77(15) ⁰	0,17(5)		$I_{\bullet}9_{\pm}I_{\bullet}I$	E2, AI	I47 6 - 0	2+- 0+
1486,97(5)	5,74(21)	5,53(22)	$I_{•}4+0,I$	E2	17 4 9 - 260	4+- 4+
1518,69(٤) ^B	0,22(2)		2,9 <u>+</u> I,2	ып	1778 - 2GO	5+- 4+
1529,92(10)	0,38(3)	0,69(13)	≤I.7	EI,E2	I6OC - 78	2+- 2+
1532,94(40) ²	0,15(2)				2070 - 539	4+- 6+
I542,92(4)	5,06(26)	4,84(27)	I,5 <u>+</u> 0,2	12	I803 - 260	4+- 4+
1034,98(20) ^C	0,032(14)		I,∴±0,Σ	12.11		
I572 , 0(5)	0.I4(5)	0 , 20(3)	≤I ,5	II, I2		
1579,08(7)	0,39(5)	I.CI(10)			IG57 - 78	4+-2+
I584 ,I5(6)	15,21(47)	12,78(కు)	I,6 <u>+</u> 0,I	22+. i I	1332 - 78	3+ - 2+
1505,30(28)	0,079(20)	0,48(9)	≤ 5,5	EI-112		

```
2
                                           4
                                                   5
                                                  32, I I I I I I I I I I I
1300,60(3)
                             1.45(15) 1.6+0.4
                 I,48(:)
1008.92(10)
                 0.52(7)
                             0.52(7) 2.7+1.9
                                                  E2. H ICOS - C
                10,03(42) 16,74(41) 135,6,13 .2
                                                         1700 - TO
ISJ2,CI(5)
                                                         1713 - 78
1655.20(22)^{\circ}
                 0.057(21)
1652,48(19)<sup>B</sup>
                0.072(15)
                            0.87(35) \le 1
1565,88(4)
                 I.44(b)
                                                  \mathbf{a}I
                            2,80(34) I,3+0,6
                                                  12, II 1749 - 78 4<sup>†</sup> - 2<sup>†</sup>
1370,57(4)
                 2,72(12)
                                                  E2, II 1803 - 18 4^4 - 2^4
1724,45(6)
                 2.23(8)
                            2,18(10) 1,5+0,4
I743,24(I7)B
                0.15(2)
I804,80(20)B
                0.082(12)
                                                        2073 - 350 \text{ A}^{+} = 4^{+}
1812,92(9)
                1,04(4)
                            0.93(3) - 093+024
                                                 12
1004,09(54)18
                0.078(21)
                                                         2175 - 230 · + = 4<sup>t</sup>
1914,74(9)
                2,97(12)
                            2,92(14) 1,6+0,3
                                                  IL.
                0.099(15) \ 0.49(20) \le 6
                                                  FI - J2
1920,84(19)
                                                  EI = M \times 192 = 260 \times 5^{+} = 4^{+}
1931,83(7)
                0.18(2)
                            0.2I(4)
                                       ≤2.8
                            0.81(9) 056+043
                                                 E2,JI \pm 073 - 78 - 4^4 = 2^4
1994,28(7)
                0.77(5)
                                                         2205 - 200 I* = 4*
2024,39(7)
                            0,27(9) 1,9+0,7
                0.28(2)
                                                 ..1I
2047,55(22)B
                0,048(11)
                                                         2343 - 230 4" - 4"
                            1,51(30) 1,4+0,6
2083,23(12)
                I,09(8)
                                                 ΠL
                                                        2343 - 200 4+ - 4+
2096,40(16)
                0.34(2)
                            0,54(14) 1,249,4
                                                 Ii
2136,96(26)<sup>P</sup>
                0.032(8)
2205.10(23)
                0.080(6) 0.15(5) \le 1.1
                                                 EI-.H
                                                        2343 - 76 \quad 4^{+} - 2^{+}
2264,93(25)<sup>B</sup>
                0,035(3)
```

Примечание: a - E , определены в работе /12/ кык среднегавеленные по всем известным литературным данным.

б - Линии, известные из спектров электронов конверсии 172 Lu и впервые наблюдаемые нами и спектрах газма-лучей.

в — Ногие гамма-линии, обнаружениие в налей работе. $r. \pi, e = E_{r}$ взяты из работ $\frac{5}{\sqrt{9}}$, $\frac{10}{\sqrt{10}}$ соответственно.

Схема уровней 172 Үь

На основе полученных экспериментальных данных мы проанализировали схему распада 172 Lu , данную в $^{/10}$ /. Результат показал, что в рамках наших значений Е . ± $\pm \Delta E_{\nu}$ (табл. 1) наблюдается хорошее согласие в энергетическом балансе для всех надежно установленных ранее уровней. Разногласие, наблюдаемое в /10 / было, таким образом, снято. Дополнительные данные о мультипольностях гамма-переходов, а также наличие новых гамма--драдем окунжомеон атинлопод и атинготу илиловеоп йэгүл ку известных состояний, более четко определить спины некоторых из них. Кроме того, введены уровни: 2^+ , 0 1117.77: 4 +.0 1286.60: 2 +.0 1476.47: 3 -.1 1221.40: $5^{+},2$ 1778,80 кэВ, обнаруженные ранее в ядерных реакциях и при распаде 172Tm, а также состояния $4^{-}(3)$ 1869,55; 4⁺(0) 1713,87; 3⁺2000,48 кэВ. Существование уровней 2181 и 1792 кэВ ,предложенных в работе $\frac{10}{10}$. не получило подтверждения в наших данных. В итоге. в схеме уровней ¹⁷²Yb размещено около 80% переходов. Суммарная интенсивность неразмещенных переходов составляет 2,5% на распад. В рамках построенной схемы (рис. 1,2) и оценки разности масс были определены заселенности уровней и вероятности бета-распада на них (табл. 2).

Состояния с K = 0⁺

Ротационная полоса 0^+ , 0^- , 1042,85; 2^+ , 0^- , 1117,805; 4^+ , 0^- , 1286,42 кэВ проявляется при распаде $172\text{Tm}/5/\mu$ во свех ядерных реакциях. Мы вводим уровни 2^+ , 0^- , 0

Рис. 1. Схема уровней ¹⁷²Yb с энергий до 2 МэВ.

Рис. 2. Схема уровней 172 Yb с энергией выше 2 13 В.

Табляца 2 Уровни 172 98, проявдяющиеся при распаде 172 Ди

I,K	Уров ень кэВ	≸ на рас-	log ft	Структура уровия
2+,0	1117,77(20)	≈ 0		n521 + n521 +
4+,0	1286,60(10)	≈ 0	İ	n 5121 - h 5121
2+,0	1476,47(15)	≈0	İ	(n633 1 - n633 1 52%
l				n521 1 - n521 1 46%
4 (0)	1713,87(14)	0,19	9,5	-
3,1	1221,40(16)			октуп.виб.+ n632 1 - n512 1
5,4	1640,52(4)	I,85	8,5	n52I ↓ - n6241
5,2	1706,36(4)	0,58	9,0	n642 1 - n521↓ 94%
4"(3)	1869,55(4)	0,21	9,3	$n633 + - n521 \downarrow$
3+,3	1172,35(4)	5,5	8,3	
4,3	1263,00(3)	1,3	9,0	n 512 ↑ + n 521 ↓
5*,3	1375,74(4)	0,71	9,2	
6,3	1510,08(4)	≈0		
2*,2	1465,98(5)	≈0		
3',2	1549, [4(5)	0,38	9,3	гамка-вибрац.
4+,2	1657,77(4)	0,17	9,5	
5+,2	1778,80(8)	1,0	9,7	
2*,2	1608,79(8)	≈0		
3*,2	1700,66(4)	3,2	8,3	n 5121 - n 5211
4+,2	1803,15(4)	0,39	9,0	
5+,2	6,87(6)	0,47	8,8	
3+,3	1662,80(3)	3,3	5,3	n 5051 n 5121
4+,3	1749,22(5)	0,26	9,3	
5+,3	1862,84(4)	0,08	9,6	
4*,4	2073,08(2)	59%	6 ,6	раці + р 404 і пли
5*,4	2192,04(3)	5,0	7,4	n 521↓ + n 514↓
3*(2,3)	2000,48(7)	0,16	9,2	
3*	2175,09(5)	I,6	8,0	,
3*12,3	2213,32(8)	0,84	8,2	
4*,3	2285,31(3)	5,2	7,3	Р411 + р 404 1 man
4+,3	2343,63(4)	1,95	7,5	n521↓ - n514↓

В реакциях (d, t) (3 He, α) $^{-2/}$ показано, что данные состояния имеют структуру ($\mathfrak{n}521.-\mathfrak{n}5214$) + ($\mathfrak{n}512^{\dagger}-\mathfrak{n}512^{\dagger}$).

В (n, y)-реакции $^{(4)}$ и при распаде 172 Tm/5/ наблюпалось ротационное состояние 2 ,0 1476,62 кэВ. Основное состояние имеет энергию 1405,7 кэВ $^{(4)}$. Мы полагаем, что при распаде 172 Lu проявляется уровень 2 ,0 1476,47 кэВ (рис. 1), заселяющийся сверху. Отношение интенсивностей переходов I_y (1476): I_y (1397): I_y (358), разряжающих его, различаются при распаде 172 Tm (1:2,7:0,03) и распаде 172 Lu (1:8:3). Очевидно, это связано с двойным расположением гамма-переходов 358 и 1397 кэВ в схеме распада 172 Lu (см. табл. 1). Что касается структуры этой полосы, то, по-видимому, она достаточно коллективизирована, поскольку уровни ее проявляются в реакции (p, t) $^{(3)}$ и не проявляются в (d, p), (d, t)-реакциях. На этом основании ей можно прилисать структуру однофононного состо шия $n633^{\dagger} - n633^{\dagger}$ (52%), n5214 - n5214 (46%), предсказанного в работе $^{(14)}$ при энергии 1,7 МэВ.

Мы вводим также новое состояние $4^+(0)$ 1713,87 кэВ, которое разряжается только на уровни полос $\mathbf{K}^\pi=0^+$. Этот факт и воэможная мультипольность E0+E2 у 427 кэВ поэволяют предполагать, что это состояние является ротационным в полосе с $\mathbf{K}^\pi=0^+$. Если парамстр инерции этой полосы \mathbf{A}^\approx 12 кэВ (как в случае двух предыдущих полос с $\mathbf{K}^\pi=0^+$), то основное состояние должно иметь энергию ≈ 1473 кэВ, а второй уровень 2^+ ,0 ≈ 1545 кэВ. В реакциях (\mathbf{d},\mathbf{p}) , (r^i,t) , $({}^3\mathrm{He},\alpha)^{-1}$, чаблюдались уровни с близкой энергией: 1475, 1544 и 1720 кэВ. Подобные состояния не проявились в (\mathbf{p},t) -реакции. По-видимому, они имеют значительную долю двухквазичастичной компоненты.

Состояния с отрицательной четностью

Мы вводим при распаде 172 Lu уровень 3 1221,40 кэВ, который наблюдался ранее только в реакциях (d,d'), (d,t), (n, γ). При распаде 172 Lu он заселяется сверху.

Данный уровень является ротационным в полосе октупольных колебаний K=1 с большим вкладом компоненты $n633 \uparrow - n512 \uparrow /2/$.

Уровень 1640,52 кэВ разряжается двумя сильными переходами на полосу K=3 (рис. 1). Спин его может быть 4^- или 5^- . Из величины относительной приведенной вероятности R=0,70 следует, что при $I^\pi=4^-$ должно быть K=3 ($R_{\text{теор.}}=0,46$), а при $I^\pi=5^-$ K=3 ($R_{\text{теор.}}=1,0$) или K=4 ($R_{\text{теор.}}=0,46$). Однако более вероятной кажется комбинация I^π , $K=5^-$, 4, ибо только в этом случае можно объяснить отсутствие разрядки уровня 1640 кэВ на уровни 3^+ и 6^+ полосы K=3.

Теорией при энергии 1,8 МэВ в 172 Yb предсказывается двужвазичастичное состояние 172 H 172 П 172 Вначение 172 Вначение 172 Вначение 172 В 172 П 172 П 172 В пользу его двужвазичастичной структуры служит и то, что в реакциях $(\mathbf{d}, \mathbf{p})^{1/2}$ Наблюдался уровень с близкой энергией 172 С 172 С 172 В 172 С 172 С 172 В 172 С 172 С 172 Р 172 С 172 Р 172 С 172

Состоянию 1706 36 кэВ в работе $^{/10/}$ был приписан спви (4,5,6) $^+$. Пз наших данных следует, что $I^{\pi}=5^-$. Как видно из табл. 3, квантовое число K равно 2. Согласно расчетам работы $^{/14/}$, в 172 Yb должны быть два колле тивных состояния с $K=2^-$ при энергиях 1,4 и 2,4 МэВ. Однако на вижнее состояние распад 172 Lu запрешен (основная компонента его $^{624^+}$ - $^{621^+}$ 79%), на второе бета-распад возможен: $^{642^+}$ - $^{621^+}$ 94%. Не исключено, что уровень 1706 кэВ относится к ротационной полосе этого состояния. Значение вероятности бета-перехода на его (60 g ft = 9,0) не противоречит этой интерпретации.

Для нового уровня 4^- 1869,55 кэВ, вводимого нами, характерна разрядка M1-переходами на все состояния отрицательной четности (рис. 1). По-видимому,это состояние смешанное, с большой долей K=3. При энергии 1,7 МэВ в 172 Yb предполагается двухквазичастичное состояние с K=3 n633 t- n521 $t^{-/14}$ /. Возможно, уровень 1869 кэВ относится к этому состоянию. При этом становится понятен способ его разрядки: для всех

переходов на уровни отрицательной четности отсутствует запрет по ассимптотическим квантовым числам. Бета-переход на уровень данной структуры должен быть более задержан, чем на уровень 1640 кэВ, что мы и наблюда-ем (табл. 2).

Состояния с К = 3

Ротационная полоса K = 3 на уровне 1172 кэВ (рис,1) наиболее необычна для четно-четного деформированного ядра: она расположена ниже гамма-вибрационного состояния. Исследована она наиболее полно, уровни полосы проявляются во всех реакциях, при распаде ¹⁷²Tm и ¹⁷²Lu. Структура ее п512 + п5214 надежно установлена. Мы вволим лишь гамма-переход 835,71 кэВ с уровня 1375 кэВ.

Другая ротационная полоса К = 3 на уровне 1662 кэВ (рис. 1) проявляется, кроме распада 172 Lu, в реакцыях (d, t), $(^3$ He, $\alpha)^{/2/}$, а основное состояние при распале 172 Tm $^{/5/}$. Мы дополняем разрядку уровней 1749 и 1862 кэВ гамма-переходами 1209 и 599 кэВ, соответственно. Определение природы данной полосы менее однозначно, по сравнению с предыдущей. В реакциях (d, t) ей приписана структура n505 t- n512t. Но в этом случае log ft = 6,77/5/ для бета-перехода n[505] -p[411]. 172 Тт на уровень 1662 кэВ кажется слишком малым. Однако другая возможная интерпретация состояния 1662 кэВ как р4041-р4114 /14/встречает еще большие трудности: при этом бета-распад¹⁷² Lu p[411] → n[521] не имеет запрета. а в 172 Tm n[512] $^{\uparrow}$ \rightarrow n[404], должен быть более запрещен. В действительности же наблюдается обратная картина. По-видимому, состояние 1662 кэВ имеет сложную структуру: $n 505^{\circ} \sim n 512^{\circ}$ плюс большая доля компоненты n 512 [†] - n 521[‡] за счет смешивания с соседней полосой кэВ). Наличие примеси с К = 2 подтверждается расчетами относительных приведенных вероятностей гамми.-переходов с уровней 1662 и 1749 кэ $B^{/10}$ /. Вклад этой примеси значительно облегчает бета-распад 172 Тт и делает возможным бета-распад ¹⁷²Lu на уровни этой полосы.

Cостояние с K = 2

В 172 Yb ротационные полосы с K = 2 на состояниях 1465 и 1608 кэВ (рис. 1) наблю аются во всех реакциях, при распаде 172 Тт и 172 Lu . К настоящему времени установлено, что состояние 1465 кэВ является гаммавибрационным, а состояние 1608 кэВ содержит большую долю компоненты n 512 t - n 521. . Значения log ft для бета-переходов в 172 Lu согласуются с этой интерпретацией (табл. 2). Мы дополняем разрядку уровня 1465 кэВ переходами 348 и 1205 кэВ. Наиболее спорным в этой полосе является уровень 5+. Он не идентифицирован ненепосредственно в реакциях (d, p). Авторы /10/ предположили, что состоянием 5 + является уровень 1792 кэВ (на основании параметра инерции). Нам это кажется неубедительным, т.к., во-первых, уровень с такой энергией не наблюдался в реакциях и, во-вторых, разрядка его обоснована очень слабо: она негипична для данной полосы, причем уровень разряжается двумя переходами, один из которых (у 134 кэВ) был расположен авторами еще в двух местах схемы. Мы полагаем, что состоянием 5 + может быть уровень 1778,80 кв. разряжающейся на уровни полосы основного состояния подобно другим уровням полосы K = (1465 кэВ) (рис. 1). Кроме того, в реакциях $(d,t)^{/2}$ наблюдается уровень с близкой энергией 1779 кэВ. Тот факт, что мультипольности и238 и у 1518 кэВ М1 не должно противоречить этому размещеиню, поскольку в ядре 172 у в ввиду сильного смешиваиия, М1-переходы на основное состояние наблюдаются с уровней и с большими К (например, с уровня 1375, рис. 1).

Основное состояние другой полосы с K=2 1608,79 кэВ наиболее интенсивно проявляется при распаде $^{172}\mathrm{Tm}$, при распаде $^{172}\mathrm{Lu}$ оно проявляется слабо. Мы направляем с ротационного уровия 4^+ 1803 кэВ гамма-переходы 1263 и 254 кэВ; гамма-переходы 145 и 427 кэВ, предложенные в 10 /, не удовлетворяют балансу энергий. Наибольшие изменения внесены в разрядку рагационного уровня 5^+ 1826 кэВ. Гамма-переходы 134, 1387 и 1666 кэВ,

каправленные с него в работе $^{/10}$ /, не могут быть расположены здесь: y134 квВ идет на уровень 1792, который весьма сомнителен, и расположен еще в другом месте схемы; y1387 квВ не удовлетворяет бальнсу энергий; y1666 квВ, направленный на 4^+ , $0_{\bf g}$, имеет мультипольность Е1. Мы полагаем, что с уровия 1926 квВ идут два перехода, оба на состояния йолосы 1172 квВ, что типично для разрядки полосы ${\bf K}$ $^{\prime}$ = 2, 1608 квВ.

Состояние с K = 4

Наиболее интенсивно заселяется при распаде 172Lu уровень 4 2073,08 квВ (табл. 2). Его ротационным состоянием 5 + является уровень 2192,04 квВ (рис. 2). Мы направляем с уровня 2073 квВ дополнительно переходы 523, 1532 квВ, а с уровня 2192 квВ — гамма-переходы 118, 329 и 534 квВ. Гамма-переход 399 квВ, введенный с уровня 2192 квВ в/10/, не удовлетворяет балансу энергий. Сравнение экспериментальных и теоретических вероятностей гамма-переходов (табл. 4) не дает однозначного ответа о значении K = 3 или K = 4 данной полосы.

Уровни с энергией больше 2 МэВ

При распаде 172 Lu наблюдались состояння 3 2175; 4 2285; 4 2343 и (2,3,4) $^{+}$ 2213 кэВ $^{/10}$ /. Мы дополняем разрядку данных уровней переходами $_{V}$ 174 кэВ

Таблица 3

У-переходы, кэВ	R эксп.	R reop. K=2	K=3	K=4
y 443,330	9,2 <u>+</u> I,5	7,I	I,0	0,46
¥ 443,I96	9,5 <u>+</u> I,7	9,8	I,4	0,07
y 330, I96	I,0 <u>+</u> 0,I	1,4	1,4	0,15

Таблица 4

		4 ⁺ 2073 кэВ				5* 2192 xaB		
В эксп		· .		ł -	0,93(IO) (7607, 523)	0,55(3) ()929, 816)	0,58(3) ()929, 68I)	I,05(6) ()816, 681)
!		I,67(IO) ()4IO, 323)	0,52(I0 ()4I0, 2I0)	0,32(7 ()323, 210)	ĺ			
D	K=4	0,30	0,03	0,12	0,56	0,46	0,07	0,15
reop.	3	2,32	I,85	0,79	0,14	1,03	I,4I	I,37
	2	12,5	22	I,78	2,25	7,I	9,8	I,37

Таблица 5

		4+ 22	4 [‡] 2285 кэВ			3 ⁺ 22I3 жəB	
F 91	кси.	I,07(7) ()III2, I022)	0,77(9) ()III2, 509)	0,73(8) ()1022, 909)	0,32(2) ()1080, 967)	2,60(74)	0,17(4)
		5,95(77)	3,97(68)	0,56(7)	0,57(18)	()604. 512)	()1040. 950)
		()622, 536)	()622. 422)	()536, 422)	()594, 480)		
R	K=4	0,25	0,03	0,12	0,12	-	-
reop.	3	2,3	I,85	0,79	0,79	0,35	0,33
	2	12	22	I,78	I.78	I.4	2.5

(гр. 2175); у 909, 622 кэВ (ур. 2285); у 2264, 1171, 642, 480 кэВ (ур. 2343); у 991, 950, 664, 604 кэВ (ур. 2213) юнс. 2). Спин уровня 2213 определен нами как 3 $^+$. Мультипольность у 625(E1) и у 664 кэВ (E2) противоречит их размешению /10 $^-$ с уровней 2175 и 2285 кэВ, солтеметственно. Мы вводим новое состояние 3^+ 2000,48 кэВ, газряжающееся на уровни полосы K = 3, 1662 кэВ. Как спедует на табл. 5, для уровней 2285 и 2343 кэВ квантовор число K = 3, для уровня 2213 кэВ трудно сделать выбор между K = 2 и 3.

Исходя из краитовых чисел K и большой заселяемости уровней 2285 и 2343 квВ, можно предположить, что один из них имеет структуру p411. — p404., а другой — n521. — n514 — 144. В пользу этого служит и одинаковый способ разрядки уровней 2285, 2343 и 2073 квВ, а также те обстоятельство, что наличие сильного смешивания с состояниями — K = 3 уровня 2073 квВ не приводит к заторможен юсти бета-перехода на него.

Авторы работы /10/предполагали, что уровии $3^{\circ}2175\,\mathrm{KeB}$ и $4^{\circ}285\,\mathrm{KeB}$ составляют ротационную ислосу K=3. Нам это кажется неубедительным: во-первых, способы разундки обсих уровией сильно различаются; во-вторых, вероятность заселения основного состояния меньше, чем потационного (табл. 2) — обычно наблюдается обратная картина (для K=3); э-третьих, параметр инерции получаются равным $A=13.7\,\mathrm{KeB}$, в то эремя как лля другах полос с K=3, $A=11\,\mathrm{KeB}$ (полосы $1172\,\mathrm{m} 1662\,\mathrm{KeB}$); в-четвертых, кинтовое число K уровня неизвестно.

В заключение авторы выражают искрениюю признательность И.И.Громовой и Н.А.Лебедеву за высокое качесвто радиоактивных источников.

Литература

- D.G.Burke, B.Elbek. Mat.Fys. Medd.Dan. Vid.Selsk.,36, No. 6 (1967).
- B.A.O'Neil, D.G.Burke.Nucl.Phys., A182, 342 (1972).

- 3. M.A.Oothcudt, N.M.Hints.Nucl.Phys., A213, 221 (1973).
- G.Alenius, S.E.Arnell, C.Schale, E.Wallander. Physica Scripta., Vol. 3, No.2, 55 (1971).
- C.W.Reich, R.C.Greenwood, R.A.Lokken. Nucl. Phys., A228, 365 (1974).
- B. Harmatz, T.H. Handley, J.W. Mihelich. Phys. Rev., 123, 1758 (1961).
- 7. В.В.Тучкевич, В.А.Романов, М.Г.Иодко, Изв. АН СССР, сер.физ. 24, 1457 (1960).
- 8. G. Kaye. Nucl. Phys., Alo8, 625 (1968).
- 9. В.А.Балалаев, Б.С.Джелепов и др. Изв. АН СССР, сер.физ. 36, 71 (1972).
- D.Sen, E.F.Zganjar. Nucl.Phys., A148, 634 (1970).
- С.Р. Аврамов, В.С. Александров и др. Тезисы XXV Совещания по ядерной спектроскопии и структуре ядра. Ленинград, 1975 г. стр. 99.
- В.А.Балалаев, Б.С.Джелепов и др. Изв. АН СССР, сер.физ. 38, 681 (1974).
- A.H.Wapstra, N.B.Gove.Nucl.Data Table 9, No. -5 (1971).
- Е.П.Григорьев, В.Г.Соловьев. "Структура четных деформированных ядер" М., Наука, 1974.

Рукопись поступила в издательский отдел 10 апреля 197**€** года.