

P6-87-190

Ф.Рёш, Чан Ким Хунг, М.Миланов, В.А.Халкин

ЭЛЕКТРОМИГРАЦИЯ РАДИОНУКЛИДОВ БЕЗ НОСИТЕЛЕЙ.

НЕЙТРАЛЬНЫЕ ИОДИДНЫЕ И БРОМИДНЫЕ КОМПЛЕКСЫ ²⁰¹ TI(I) БЕЗ НОСИТЕЛЯ В ВОДНЫХ РАСТВОРАХ

Направлено в журнал "Isotopenpraxis"

Введение

Непрочные комплексы таллоиона с галлоидами и другими однозарядными лигандами ранее изучались различными группами авторов^{/I-9}.Ими было установлено образование моноядерных комплексов с числом лигандов от I до 4, а для иодидных ассоциатов даже до 6.

В большинстве работ объектами исследований были труднорастворямые соли ТI (I). Определялась зависимость их растворимости от концентрации анионов-лигандов в растворах с переменной и постоянной высокой нонной свлой (µ). Исходя из кривых растворимости, можно было рассчитать состав и стабильность образующихся в этих условнях комплексов, если сделать ряд допущений, например, об изменении активности иснов и о произведениях растворимости таллосолей в концентрированных растворах электролитов переменного состава. При постановке исследований методами растворимостей в бромилных и иолилных системах возникают дополнительные экспериментальные трудности из-за чрезвычайно низких концентраций $(10^{-5} - 10^{-7} \text{ моль/л})$ Т((1) в растворах. 06ласти, в которых преимущественно существуют нейтральные и однозарядные отрицательные комплексы, совпадают с минимумами на кривых растворимости бромида и нодина Ti (I) в растворах, солержаних одножменные анионы-лиганлы. Поэтому константы устойчивости таллокомплексов удобней определять, по нашему мнению. принципиально другим методом - измерением подвижности II (I) в разбавленных растворах фоновых электролитов при постоянной цонной силе и переменных концентрациях анионов-лигандов. Раз-

Descaling whethery NACHEMA BOOSEDOBANAS BHS/IN TERA

работанный нами вариант метода горизонтального зонного электрофореза конов /IO-I2/ позволяет проводить прямые измерения скоростей миграции микроколичеств элементов, меченных радионуклидами, и рассчитывать на основании экспериментальных данных индивидуальные подвижности ионов, их константы гидролиза и комплексообразования /I3-I6/.

Настоящая работа посвящена определению констант устойчивости нейтральных ассоциатов TLBr и TLI. Эксперименты выполнены с радиоталлием – ²⁰¹ TL без носителя.

Экспериментальная часть

Препарат ²⁰¹ Т! был получен из в/о "Изотоп". Он содержал относительно большие количества Na (!, от которых таллий отделяли сорбщией на колонке, заполненной катионитом Дауэкс 50х8. Таллий вымывали H (! ~ I моль/л, раствор упаривали досуха и растворяли радиоталлий в H (!04 I·10⁻² моль/л + N₂ H₅⁺ I·10⁻³ моль/л. Этот раствор, активностью ~ I ГЕк/мл, был исходным при приготовлении рабочих растворов радиоталлия. Методика, организация и аппаратура эксперимента были такими же, как в наших предыдущих работах /I3-I6/. Измерения подвижности I! (I) были проведены при Δ E = I0,00(I) В·см^{-I} и T = 298,I(I) К в растворах следующих фоновых электролитов:

I. H(K)(l04, I,5·10⁻³ ≤ μ ≤ 0,50; 0,3 ≤ pH ≤ 6,5;
2. 9·10⁻² ≤ [KI] ≤ I.10⁻⁵ моль/л -H(K) (l04, μ =0,I, pH I,3-2,0;
3. 9·10⁻² ≤ [K Br]≤I·10⁻⁵ моль/л -H(K) (l04, μ =0,I, pH I,3-2,0.
Для стабилизации таллойона к растворам добавляли гидразин,
порядка 10⁻⁴ моль/л. Чтобы проверить влияние на результаты измерений возможных случайных эффектов, связанных с использованием ²⁰¹ Гl без носителя, в нескольких опытах концентрация
таллия в фоновых электролитах была 1·10⁻⁴ моль/л. Все растворы

готовились из реактивов квалификации ху и чда на бидистиллированной воде.

Результаты и обсуждение

Подвижность ²⁰¹ II⁺оставалась постоянной в растворах фоновых электролитов, не содержащах бромиды и иодиды, при изменении более чем на два порядка – от I,5·10⁻³ моль/л до 0,50 моль/л – концентрации HClO₄; при увеличении pH от 0,3 до 6,5 при $\mu = 0, I$ и в присутствии I·10⁻⁴ моль/л таллия (I) в растворах с $\mu = 0, I$ и в присутствии I·10⁻⁴ моль/л таллия (I) в растворах с $\mu = 0, I$ и в присутствии I·10⁻⁴ моль/л таллия (I) в растворах с $\mu = 0, I$ и р H 2. Результаты этой серии экспериментов представлены на рис. I. Рассчитанную, исходя из них, среднюю величину подвижности таллоиона, мы рассматриваем как индивидуальную подвижность TI⁺ в хлорнокислых растворах с I,5·10⁻³ $\leq M \leq 0,50$ при 298, I(I) K: $U_{TU}^* + 7, 3(3) \cdot 10^{-4}$ см²с^{-I}в^{-I}. Она получилась близкой к подвижности 7C⁺ в бесконечно разбавленных

растворах ($\mu = 0$): $\mu_{7\ell}^{\mu=0} = 7.75 \cdot 10^{-4} \text{ см}^2 \text{с}^{-1} \text{B}^{-1}$, рассчитанной на основании справочных данных /17/ о предельной подвижности таллоиона.

Нейтральные комплексы [TI] и [TI Br]

Экспериментальные результаты измерений брутто-подвижности $Tl(I)(\overline{u}_{Tl(I)})$ в растворах фоновых электролитов при $\mu = 0, I$ и концентрациях Br = u I = 0, I моль/л и ниже представлены на рис. 2. Характер зависимостей $\overline{u}_{Tl(I)} = f([X])$ позволяет сделать предположение о том, что в бромидсодержащих растворах, $[Br] \leq 0, I$ моль. π^{-I} , изменение подвижности обусловлено образованием только нейтрального комплексного соединения [Tl Br], а в иодидсодержащих – [Tl I] и, вероятно, [$Tl I_2$]

В последнем случае зависимость брутто-подвижности Tl(I) от концентрации аниона-лиганда описывается уравнением (I):

$$\overline{U}_{T[(I)]} = \frac{U^{\circ}T[I^{+}+U^{\circ}[T[I_{2}^{-}]] \cdot \beta_{2}[I^{-}]]^{2}}{1 + \beta_{4}[I^{-}] + \beta_{2}[I^{-}]^{2}}, \quad (I)$$

где $u_{[T[I_2]}^{\circ}$ – индивидуальная подвижность однозарядного комплекса, β_1 и β_2 – константы комплексообразования. Поскольку измерения проводились в растворах, где концентрации [T[I_2]⁻ были относительно низкими, то при решении системы уравнений (I) методом наименыших квадратов по программе MINUIT /I8/ мы задали величину $u_{[T[I_2]}^{\circ}$ = -7(2)·I0⁻⁴ см²с^{-I}В^{-I}. Это сделано исходя из известных данных о приблизительно равных абсолютных величинах подвижностей однозарядных оксалатных комплексов трехвалентных металлов /I4,I5/, а также Np 0₂⁺ и[Np0₂(OH)₂]^{7/I6/}. Другие постоянные: u_{Tl}° , β_1 и β_2 принимались независимыми и подбирались свободно.

В результате этих расчетов получена константа устойчивости нейтрального таллоиодидного комплекса $\beta_1 = II5(25) \ \pi \cdot \text{моль}^{-I}$. Вторая константа из-за относительно большого интервала заданных величин $u^{\circ}[1]^{-1}$ и разброса экспериментальных данных при $[1^{-}] \ge 0,05$ моль/л определена с большой ошибкой: $\beta_2 \simeq$ $\simeq 400(250) \ \pi \cdot \text{моль}^{-I}$ и может служить только для оценки порядка этой валичины. Вычисленная подвижность $T\ell^+: u_{T\ell} = +7,20(15) \cdot 10^{-4} \ cm^2 c^{-I} B^{-I}$ хорошо согласуется с определенной в прямых экспериментах.Кривая, рассчитанная по уравнению (I) с использованием выше приведенных средних величин постоянных параметров, удовлетворительно совпадает с экспериментальными точками (рис. 2).

Для бромидсодержащих систем, где нет влияния на $\widetilde{u}_{\ T(\{I\}\}}$ комплексного аниона, уравнение (I) трансформируется в

 $\vec{U}_{Tl}(\mathbf{I}) = \frac{\mathbf{U}_{Tl}^{*} + \mathbf{U}_{Tl}^{*}}{1 + \beta_{1} [\beta_{\Gamma}^{-}]} \qquad \text{ for } \beta_{1} = \frac{\mathbf{U}_{Tl}^{*} - \mathbf{U}_{Tl}(\mathbf{I})}{\mathbf{U}_{Tl}(\mathbf{I}) \cdot [\beta_{\Gamma}^{-}]} \cdot (2)$

5

Решение системы уравнений (2) дало величину константы устойчивости нейтрального комплекса [T[Br] $\beta_1 = 5,25(35)$ л-моль^{-I}.

Рассчитанные нами константы устойчивости таллокомплексов трудно сравнивать с большинством имеющихся данных, так как последние получены в растворах, отличающихся по составу от тех, в которых измерена подвижность Г((I).

Однако нам представляется, что допустимо сравнение с константами, рассчитанными исходя из зависимостей растворимостей иодида и бромида таллия в растворах с нарастающей ионной силой: 0,0I \leq [KI] \leq 5,5 моль/л, $\beta_1 = 34 : 28 \ {\rm J} \cdot {\rm Mons}^{-I}$ /2,3/ и 0,3 \leq [KBr] \leq 4,0 моль/л, $\beta_1 = 5,4 : 3,8 \ {\rm J} \cdot {\rm Mons}^{-I}$ /4/. В первом случае величина константы втрое меньше нашей и, по-видимому, неверна, поскольку подстановка ее и второй константы в уравнение (I) дает существенно более высокие расчетные величины $\overline{U}_{T[{I]}}$, чем экспериментальные. Для таллобромидного комплекса сравниваемые величины были близкими. Следует также отметить, что определенная в LiCl04 0,5 моль/л $\beta_1 = 5,35 \ {\rm J} \cdot {\rm Mons}^{-I}$ /4/ совпадала с вичисленной нами константой.

Исследование свойств микроколичеств элементов методом электрофореза, как правило, проводится в разбавленных ($\mu =$ 0,I - 0,2) растворах фоновых электролитов. Однако проведенная серия экспериментов позволяет сделать заключение: наша экспериментальная установка, в принциде, разрешает работать и в более концентрированных растворах с ионной силой порядка I. Тогда при измерениях подвижности ²⁰¹ Гl (I) без носителя при переменных концентрациях анионов-лигандов появляется возможность определять константы устойчивости не только нейтрельных, но и заряженных комплексов таллогалогенидов с двумя - тремя лигандами. Особий интерес, с нашей точки эрения, в данном случае будут представлять получающиеся при математической обработке экспериментальных данных величины индивидуальных подвижностей этих комплексных анионов.

- I. Кульба Ф.Я., Миронов В.Е. Химия таллия (комплексные соединения) Госхимиздат, Л., 1963 (с.17-120).
- 2. Кульба Ф.Я., Миронов В.Е.-ЖНХ, 1957, т.2, № 12, с.2734.
- 3. Кульба Ф.Я., Миронов В.Е.-ЖНХ, 1957, т. 2,№ 12, с.2741.
- 4. Федоров В.А., Робов А.М., Исаев И.Д., Алексеева А.А.
- -XHX, 1974, T. 19, 1 5, c.1466.
- 5. Bond A.M., Hefter G. -J.Electroanalyt.Chem., 1972, v.34,p.227.
- 6. Федоренко А.М., Гюннер Е.А.-ЖНХ, 1974, т. 19, № 7, с.2560.
- 7. Bond A.M.-J.Phys.Chem., 1970, v. 74, p. 331.
- 8. Федоров В.А., Исаев И.Д., Робов А.М. и др.-ЖНХ, 1972, т. 17, № 4. с.951.
- 9. Manuers J.P., Moralles K.G., Williams J.P.-J.Inorg.Nucl.Chem., 1971, v. 33, p. 2085.
- IO. Milanov M., Doberenz W., Marinov A., Khalkin V.A. J.Radioanal.Nucl.Chem., 1981, v. 82, p. 101.
- II. Миланов М., Доберенц В., Драйер Р. и др.-Радиохимия, 1982, т. 24, с.520.
- 12. Миланов М., Чан Ким Хунг, Шонинский Д. и др. ОИЯИ, Р6-86-549. Дубна, 1986.
- I3. Milanov M. et al. JINR E12-86-144, Dubna, 1986.
- 14. Рёп Ф., Чан Ким Хунг, Миланов М., Халкин В.А. ОИЯИ, PI2-86-272. Дубна, 1986.
- 15. Рёш Ф., Херрманн Р., Чан Ким Хунг и др. ОИЯИ, Р6-86-646, Дубна, 1986.
- 16. Рёш Ф., Миланов М., Чан Ким Хунг и др. ОИЯИ, Р6-86-829, Дубна, 1986.
- I7. Pearson R., Handbook of electrochemical constants, Butter-Worth.Sc.Publ., London, 1959.

4

18. James F., Roos M. CERN Computer 6000 Series Program

Library, Lond-Write-Up D506, D516 (1971). Рукопись поступила в издательский отдел 27 марта 1987 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

19. Биофизика

Реш Ф. и др.

Электромиграция радионуклидов без носителей. Нейтральные иодидные и бромидные комплексы $2^{01} T\ell(I)$ без носителя в водных растворах

Прямыми измерениями скоростей миграции ионов одновалентного таллия, определена его подвижность при 298,1 (1) К в разбавленных водных растворах $H(K)C\ell O_4 : u^{\circ}T\ell^+ = +7,3(3) \times \times 10^4 cm^2 c^{-1} B^{-1}$. Эта величина оставалась постоянной при изменении ионной силы (μ) в интервале от $1,5 \cdot 10^{-3}$ до 0,5 и pH растворов от 0,3 до 6,5. На основании экспериментальных данных о зависимости подвижности одновалентного таллия от концентрации анионов-лигандов рассчитаны при 298,1 (1) К и $\mu = 0,1$ константы устойчивости нейтральных таллокомплексов [$T\ell$ I] и [$T\ell$ Br] равные 115 (25) л·моль⁻¹ и 5,25 (35) л·моль⁻¹ соответственно.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Rösch F. et al. Electromigration of Carrier-Free Radionuclides. Iodide and Bromide Complexes of Carrier-Free 201 Tl (1) in Aqueous solutions

Individual ion mobility of ${}^{201} T\ell(I) u^{\circ}_{TI}^{+} = +7.3(3)x x 10^{-4} cm^3 s^{-1} V^{-1}$ was observed at 298.1(1)K in aqueous solutions of $H(K)C\ell O_4$, $1.5 \cdot 10^{-3} \le \mu \le 0.5$ and $0.3 \le pH \le 6.5$. Experimental dependences of ${}^{201} T\ell(I)$ overall ion mobilities on concentrations of ligand anions in solutions of perchlorate background electrolytes have been used to calculate stability constants of neutral thallium complexes [T\ell I] and [T\ell Br] at 298.1(1)K and $\mu = 0.1$. They are 115(25) l·mol⁻¹ and 5.25(35) l·mol⁻¹, respectively.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

P6-87-190