1986

Ю.С.Замятнин

P6-86-821

СООбщения Объединенного Института Ядерных Исследований Дубна Открытый в 1984 году спонтанный распад ядер тяжелых элементов с испусканием частиц, промежуточных по массе между a-частицами и осколками деления, таких, как ${}^{14}C'{}^{1,2}$ /и ${}^{24}Ne'{}^{3,4}$, продолжает вызывать большой интерес. Об этом, например, свидетельствует число опубликованных за последние два года теоретических и экспериментальных работ, посвященных этому виду распада, которое уже достигло 30.

Интерес к этому явлению объясняется появившейся благодаря ему дополнительной возможности изучения ядерных процессов, связанных с существенной перестройкой ядра. Изучение механизма такой перестройки, которая может быть связана либо с формированием готового кластера в ядре с последующим его проникновением через потенциальный барьер /подобно *a*-распаду/, либо с коллективным движением ядерной материи, аналогичным процессу спонтанного деления, либо носит некий промежуточный характер, безусловно, представляется весьма привлекательным.

В этой связи целесообразно рассмотреть возможные эксперименты, позволяющие прояснить механизм распада и сделать выбор среди различных модельных представлений, описывающих этот процесс. В настоящей работе предпринята попытка качественного рассмотрения некоторых экспериментов, которые могут этому способствовать, трудностей их осуществления и путей их преодоления.

1. Одним из наиболее интересных направлений исследования является изучение вероятности испускания кластеров, более тяжелых, чем неон и, соответственно, распада более тяжелых исходных ядер^{*}. В этой области ядер расхождение в оценках, согласно различным модельным представлениям, достигает весьма значительной величины /более 4 порядков для масс распадающихся ядер $A \ge 240$ /, поэтому получение данных об изменении вероятности распада с увеличением заряда и массы кластера помогло бы выбрать модель, лучше согласующуюся с экспериментом.

Однако исследования, использующие изотопы элементов более тяжелых, чем уран, связаны со значительными трудностями, которые вызваны как резким возрастанием вероятности конкурирующего процесса спонтанного деления, так и сложностью получения необходимых изотопов. Рассмотрим эти трудности и возможные пути их преодоления.

Соъсавненный киститут BERBARA HC .IF AOBAHE

1

Предполагается, что дочерними ядрами во всех случаях распада остаются ядра, близкие к дважды магическому ²⁰⁸ Pb.

В табл.1 приведены теоретические оценки вероятности испускания кластеров и вероятность спонтанного деления $^{/5/}$ относительно α -распада для ряда изотопов элементов с Z>92. Из таблицы видно, что кроме 237 Np и 241 Am, изучение которых уже проводилось, но распад пока не был обнаружен $^{/6,7/}$, наиболее целесообразным представляется изучение распада четных нейтронодефицитных изотопов Pu и Cm. Так, с одной стороны, 236 Pu и 240 Cm имеют, согласно расчетам Поэнару и др. $^{/8/}$, наименьшее значение $\lg({\rm T}_{\rm c}/{\rm T}_{\rm d})$, где ${\rm T}_{a}$ и ${\rm T}_{\rm c}$ – парциальные периоды α -распада и распада с испусканием кластеров (Mg. Si).

Таблица 1	
-----------	--

Исходные	Продукты распада		lg (T _c	$lg (T_c / T_a)$	
ядра			Поэнару ^{/8/}	Другие оценки	$\lg \langle T_f / T_a \rangle^{5'}$
²³⁷ Np	²⁰⁷ T1 +	³⁰ Mg	11,6	> 12,2 / 10/	>11,7
²³⁶ Pu	²⁰⁸ Pb +	²⁸ Mg	10,8	12,0-13,3/12/	9,1
²³⁸ Pu	²⁰⁶ Hg +	³² Si	13,1		8,7
²⁴⁰ Pu	²⁰⁶ Hg +	³⁴ Si	12,2		7,3
²⁴² Pu	²⁰⁸ Hg +	³⁴ Si	13,3		5,3
²⁴¹ Am .	²⁰⁷ T1 +	³⁴ Si	12,4	14,4 ^{/17/}	11,4
²⁴⁰ Cm	²⁰⁸ Pb +	³² Si	11,3	15,0-16,4 / 12	7,4
²⁴² Cm	²⁰⁸ Pb +	³⁴ Si	12,5		7,2
²⁴⁴ Cm	^{2,10} Pb +	³⁴ Si	15,2	25,5 ^{/11/}	5,9
²⁴⁶ Cm	²⁰⁶ Hg +	⁴⁰ S	14,4		3,6
²⁴⁷ Bk	²⁰⁷ T1 +	⁴⁰ S	12,5		~6
1					/при $T_{f} =$ T 249 ₂₂₁ (
249 p1-	20 3	46	12 /	-	= +f = BK/
5K 959	Au +	Ar	13,4		4,5
Es	²⁰⁵ Au +	*°Ca	14,0		7,1

С другой стороны, эти изотопы имеют наибольшее значение

lg (T_f / T_a), что связано с быстрым падением T_a при уменьшении массового числа изотопа данного элемента и слабым изменением периода спонтанного деления T_f . Такие значения $lg(T_f/T_a)$ соответствуют наименьшему фону осколков спонтанного деления. Но даже в лучшем случае (236 Pu) достижение в эксперименте относительной вероятности распада ~ 10^{-14} соответствует испусканию на один кластер ~ $10^{14} a$ -частиц и ~ 10^{5} осколков деления. При меньших значениях $lg T_f/T_a$, например, для 240 Cm, число осколков на один кластер будет еще больше, ~ $5 \cdot 10^6$.

Если использовать для регистрации кластеров методику трековых детекторов, нечувствительных к *a*-частицам $^{/3, 4/}$, оказавшуюся наиболее эфффективной в исследованиях такого рода, то при площади детектора ~ 10³ см² плотность треков осколков составит ~5000 на см². Такой фон, по-видимому, уже близок к пределу возможности регистрации кластеров. Некоторое улучшение ситуации может быть достигнуто помещением между слоем исследуемого изотопа и трековым детектором тонкой поглощающей фольги /из металла или пластика/, сильно уменьшающей пробег осколков и значительно меньше влияющей на пробег кластеров из-за большого различия их dE/dx в начале пробега.

Однако даже этот прием едва ли даст возможность проведения экспериментов с изотопами, для которых $\lg(T_f/T_a) < 7$. Кроме того, надо иметь в виду, что при регистрации детектором более чем 10⁷ осколков деления может стать заметной доля продуктов тройного деления с испусканием в качестве третьей частицы ядер кислорода, неона и др., которые сходны с изучаемыми кластерами и могут осложнить их регистрацию.

Теперь рассмотрим задачу получения требующихся для экспериментов изотопов.

Для получения нейтронодефицитных изотопов обычно используется облучение соответствующих мишеней ускоренными заряженными частицами, например, протонами, имеющими наибольший пробег в веществе мишени. Так, ²³⁶ Ри и ²⁴⁰ Ст могут быть получены по реакциям:

 237 Np(p, 2n) 236 Pu, 241 Am(p, 2n) 240 Cm,

а изотоп ²⁴⁷ Вк - по реакции ²⁴⁴ Сm(a, p)²⁴⁷ Вк.

Однако количество накопленных таким образом ядер в лучшем случае может составлять ~ 10^{14} в сутки, что при разумных времени облучения мишени и времени экспонирования детектора не дает возможности обнаружить распад с испусканием кластеров, если его относительная вероятность < 10^{-13} . В связи с этим имеет смысл рассмотреть другие возможности получения нейтронодефицитных изотопов, в частности, 236 Pu. Одной из таких возможностей может быть облучение 237 Np в высокопоточном реакторе на быстрых нейтронах. В этом случае 236 Pu образуется по реакции

²³⁷ Np(n, 2n) ²³⁶ Np
$$\frac{\beta^{-}}{22 \text{ vac}}$$
, ²³⁶ Pu,

причем скорость его накопления может достигать ~ 10¹⁵ ядер в сут-

ки, но при этом параллельно идет накопление 238 Pu по реакции 237 Np (n, γ) на тепловых и медленных нейтронах.

Поэтому более перспективной следует считать реакцию $^{237}\mathrm{Np}(\gamma,\mathrm{n})^{236}\,\mathrm{Np}$, приводящую к образованию тех же продуктов, но без образования $^{238}\mathrm{Pu}$. Для этой цели может быть использовано тормозное излучение линейного ускорителя электронов. Преимуществами этой реакции, по сравнению с реакциями на заряженных частицах, являются: возможность применения мишеней большей массы, вследствие более высокой проникающей способности тормозного излучения; более высокое сечение реакции, особенно в области гигантского резонанса; большие токи электронов, достижимые на линейных ускорителях. Все это в совокупности приводит к тому, что скорость накопления $^{236}\mathrm{Pu}$ в этом случае может достигать $\sim 10^{-16}$ ядер в сутки, а чувствительность эксперимента – величины $\sim 10^{-15}$.

2. Вторым важным направлением исследований механизма распада является изучение роли структурных факторов и их влияния на вероятность распада, на что впервые было указано в работе Кадменского и др.^{9/} С этой целью целесообразно проведение таких экспериментов, как изучение влияния четности распадающегося ядра на вероятность распада, определение вероятности конкурирующих способов распада ядра с испусканием различных кластеров, определение вероятности распада на возбужденные уровни дочернего ядра. Результаты подобных экспериментов могли бы установить, насколько велика аналогия с ролью структурных факторов, имеющих место при *a*-распаде.

Имеющиеся экспериментальные данные, хотя и немногочисленные, дают основание считать, что структура ядра, например, его четность, влияет на испускание кластеров. Так, если использовать зависимость lg T_c от энергии распада Q, аналогичную закону Гейгера – Неттола для α -распада, то можно обнаружить, что вероятность испускания $^{14}{\rm C}$ и $^{24}{\rm Ne}$ ядрами с нечетным Z или N (228 Ra, $^{231}{\rm Pa}$, $^{233}{\rm U}$), связанная с изменением спина или четности ядра в основном состоянии, меньше, чем для четно-четных ядер, распад

которых соответствует облегченным $0^+ \rightarrow 0^+$ переходам. Например, для распада $^{223}\text{Ra}(1/2^+) \longrightarrow$ $\rightarrow ^{209}\text{Pb}(9/2^+) + ^{14}\text{C}$ /см.рис./ фактор запрета равен ~ 100. Оценка аналогичной величины при испуска-

Рис. Зависимость парциального периода T_c распада изотопов радия с испусканием 14 С от энергии распада Q. • – экспериментальные значения T_c , полученные в работах / 1,2,7,14–17/.

нии ²⁴Ne, проведенная в работе ^{/10/}, показала, что фактор запрета равен 11 для ²³¹ Ра и \geq 19 для ²³³U. Однако круг исследованных ядер пока ограничен указанными примерами, и весьма желательно его расширить. С этой точки зрения представляют интерес эксперименты по изучению распада ²²⁹ Th, ²³⁴U и ²³⁵U с испусканием того же кластера ²⁴Ne.

Другим возможным направлением исследований может быть сравнение вероятностей испускания разных кластеров одним и тем же изотопом, например, в таких распадах, как

 $2^{31}\mathrm{Pa} \xrightarrow{2^{3}\mathrm{F}}_{2^{4}\mathrm{Ne}} \xrightarrow{2^{4}\mathrm{Ne}}_{2^{8}\mathrm{Mg}} \xrightarrow{2^{4}\mathrm{Ne}}_{2^{8}\mathrm{Mg}} \xrightarrow{2^{36}\mathrm{U}} \xrightarrow{2^{8}\mathrm{Mg}}_{3^{2}\mathrm{Si}} \xrightarrow{2^{37}\mathrm{Np}} \xrightarrow{3^{30}\mathrm{Mg}}_{3^{1}\mathrm{A}\ell}$

Эти эксперименты могли бы дать как сравнение вероятностей испускания кластеров разной массы и заряда (Ne, Mg, Si), не выходя за рамки облегченных переходов (234 U, 236 U), так и соотношение вероятностей испускания кластеров разной четности (231 Pa, 237 Np). Существенно, что эти соотношения будут получены в одном эксперименте, что всегда предпочтительно.

Для успешного выполнения таких экспериментов наиболее подходящи случаи распада, при которых вероятности различных способов распада - одного порядка. Это требует регистрации меньшего суммарного числа актов распада, чем тогда, когда вероятности различаются на несколько порядков. Для выбора объектов исследования, с этой точки зрения, могли бы помочь предварительные теоретические оценки. Имеющиеся для этой цели данные содержатся в табл.2. Как видно из таблицы, проведение экспериментов, реализующих приведенные выше примеры, является вполне возможным. При этом следует заметить, что раздельная регистрация кластеров одного элемента, соседних по массе (²⁴ Ne, ²⁵Ne), требует применения иной методики, чем трековые детекторы, которые имеют плохое разрешение по массе регистрируемых частиц.

По-видимому, иные методы регистрации, имеющие лучшее энергетическое разрешение, потребуются и для экспериментов по обнаружению и определению вероятности распада на возбужденные уровни дочернего ядра. Так, например, уменьшение кинетической энергии кластера ²⁴Ne на 1 МэВ приводит к уменьшению его пробега в лавсане на 0,7 мкм, что меньше разрешающей способности трековой методики, а возбуждение более высоких уровней маловероятно.

В то же время, наряду с уменьшением вероятности распада при уменьшении энергии испускаемого кластера, можно предположить, что в тех случаях, когда переход на основное состояние связан с большим изменением спина ядра или изменением его четности, переход на возбужденный уровень может оказаться более структурно облегченным, что в определенной степени компенсирует уменьшеВ табл.1 приведены теоретические оценки вероятности испускания кластеров и вероятность спонтанного деления $^{\prime5\prime}$ относительно α -распада для ряда изотопов элементов с Z>92. Из таблицы видно, что кроме 237 Np и 241 Am, изучение которых уже проводилось, но распад пока не был обнаружен $^{\prime6,7\prime}$, наиболее целесообразным представляется изучение распада четных нейтронодефицитных изотопов Pu и Cm. Так, с одной стороны, 236 Pu и 240 Cm имеют, согласно расчетам Поэнару и др. $^{\prime8\prime}$, наименьшее значение $\lg ({\rm T}_{\rm c}/{\rm T}_{\rm a})$, где ${\rm T}_{\rm a}$ и ${\rm T}_{\rm c}$ - парциальные периоды α -распада и распада с испусканием кластера, т.е. наибольшую относительмую вероятность испускания кластеров (Mg. Si).

Исходные	·	lg (T_c / T_a)				
ядра	Продукты	распада	Поэнару ^{/8/}	Другие оценки	е lg (T _f /T _a) ⁵ и	
²³⁷ Np	207 _{T1} +	³⁰ Mg	11,6	> 12,2 / 10/	>11,7	
²³⁶ Pu	²⁰⁸ Pb +	²⁸ Mg	· 10,8	12,0-13,3/12/	9, 1	
²³⁸ Pu	²⁰⁶ Hg +	32 Si	13,1		8,7	
²⁴⁰ Pu	²⁰⁶ Hg +	³⁴ Si	12,2		7,3	
²⁴² Pu	²⁰⁸ Hg +	34 Si	13,3		5,3	
²⁴¹ Am.	²⁰⁷ T1 +	³⁴ Si	12,4	14,4 / 17/	11,4	
²⁴⁰ Cm	²⁰⁸ Pb +	³² Si	11,3	15,0-16,4 / 12	7,4	
²⁴² Cm	208 _{Pb} +	³⁴ Si	12,5		7,2	
²⁴⁴ Cm	210 Pb +	34 Si	15,2	25,5 ^{/11/}	5,9	
²⁴⁶ Cm	²⁰⁶ Hg +	⁴⁰ S	14,4		3,6	
²⁴⁷ Bk	²⁰⁷ T1 +	⁴⁰ S	12,5		~6	
1					/при Т _f = = Т _f ²⁴⁹ Bk/	
²⁴⁹ Bk	^{20 3} Au +	⁴⁶ Ar	13,4		4,5	
²⁵³ Es	²⁰⁵ Au +	⁴⁸ Ca	14,0		7,1	

Таблина 1

С другой стороны, эти изотопы имеют наибольшее значение

lg ($T_{\rm f}$ / T_{α}), что связано с быстрым падением T_{α} при уменьшении массового числа изотопа данного элемента и слабым изменением перио-

да спонтанного деления T_f . Такие значения $\lg (T_f/T_a)$ соответствуют наименьшему фону осколков спонтанного деления. Но даже в лучшем случае (236 Pu) достижение в эксперименте относительной вероятности распада ~ 10^{-14} соответствует испусканию на один кластер ~ 10^{14} *a* -частиц и ~ 10^{5} осколков деления. При меньших значениях $\lg T_f/T_a$, например, для 240 Cm, число осколков на один кластер будет еще больше, ~ $5 \cdot 10^6$.

Если использовать для регистрации кластеров методику трековых детекторов, нечувствительных к *a*-частицам $^{/3, 4/}$, оказавшуюся наиболее эфффективной в исследованиях такого рода, то при площади детектора ~ 10³ см² плотность треков осколков составит ~5000 на см². Такой фон, по-видимому, уже близок к пределу возможности регистрации кластеров. Некоторое улучшение ситуации может быть достигнуто помещением между слоем исследуемого изотопа и трековым детектором тонкой поглощающей фольги /из металла или пластика/, сильно уменьшающей пробег осколков и значительно меньше влияющей на пробег кластеров из-за большого различия их dE/dx в начале пробега.

Однако даже этот прием едва ли даст возможность проведения экспериментов с изотопами, для которых $\lg(T_f/T_a) < 7$. Кроме того, надо иметь в виду, что при регистрации детектором более чем 10⁷ осколков деления может стать заметной доля продуктов тройного деления с испусканием в качестве третьей частицы ядер кислорода, неона и др., которые сходны с изучаемыми кластерами и могут осложнить их регистрацию.

Теперь рассмотрим задачу получения требующихся для экспериментов изотопов.

Для получения нейтронодефицитных изотопов обычно используется облучение соответствующих мишеней ускоренными заряженными частицами, например, протонами, имеющими наибольший пробег в веществе мишени. Так, ²³⁶ Рu и ²⁴⁰ Cm могут быть получены по реакциям:

 237 Np (p, 2n) 236 Pu, 241 Am (p, 2n) 240 Cm,

а изотоп 247 Bk - по реакции 244 Cm $(a, p)^{247}$ Bk.

Однако количество накопленных таким образом ядер в лучшем случае может составлять ~ 10¹⁴ в сутки, что при разумных времени облучения мишени и времени экспонирования детектора не дает возможности обнаружить распад с испусканием кластеров, если его относительная вероятность < 10^{-13} . В связи с этим имеет смысл рассмотреть другие возможности получения нейтронодефицитных изотопов, в частности, ²³⁶ Pu. Одной из таких возможностей может быть облучение ²³⁷ Np в высокопоточном реакторе на быстрых нейтронах. В этом случае ²³⁶ Pu образуется по реакции

²³⁷ Np(n, 2n) ²³⁶ Np
$$\beta^-$$
 236 Pu,
22 vac.

причем скорость его накопления может достигать ~ 10¹⁵ ядер в сут-

2

3

ки, но при этом параллельно идет накопление ²³⁸ Pu по реакции ²³⁷ Np (n, y) на тепловых и медленных нейтронах.

Поэтому более перспективной следует считать реакцию $^{237}Np(\gamma, n)^{236}Np$, приводящую к образованию тех же продуктов, но без образования ^{238}Pu . Для этой цели может быть использовано тормозное излучение линейного ускорителя электронов. Преимуществами этой реакции, по сравнению с реакциями на заряженных частицах, являются: возможность применения мишеней большей массы, вследствие более высокой проникающей способности тормозного излучения; более высокое сечение реакции, особенно в области гигантского резонанса; большие токи электронов, достижимые на линейных ускорителях. Все это в совокупности приводит к тому, что скорость накопления ^{236}Pu в этом случае может достигать $\sim 10^{-15}$.

2. Вторым важным направлением исследований механизма распада является изучение роли структурных факторов и их влияния на вероятность распада, на что впервые было указано в работе Кадменского и др.^{9/} С этой целью целесообразно проведение таких экспериментов, как изучение влияния четности распадающегося ядра на вероятность распада, определение вероятности конкурирующих способов распада ядра с испусканием различных кластеров, определение вероятности распада на возбужденные уровни дочернего ядра. Результаты подобных экспериментов могли бы установить, насколько велика аналогия с ролью структурных факторов, имеющих место при α -распаде.

Имеющиеся экспериментальные данные, хотя и немногочисленные, дают основание считать, что структура ядра, например, его четность, влияет на испускание кластеров. Так, если использовать зависимость lg T_c от энергии распада Q, аналогичную закону Гейгера – Неттола для *a*-распада, то можно обнаружить, что вероятность испускания ¹⁴C и ²⁴Ne ядрами с нечетным Z или N (²²³ Ra, ²³¹Pa, ²³³ U), связанная с изменением спина или четности ядра в основном состоянии, меньше, чем для четно-четных ядер, распад

которых соответствует облегченным $0^+ \rightarrow 0^+$ переходам. Например, для распада $^{223}\text{Ra}(1/2^+) \longrightarrow$ $\rightarrow ^{209}\text{Pb}(9/2^+) + ^{14}\text{C}$ /см.рис./ фактор запрета равен ~ 100. Оценка аналогичной величины при испуска-

Рис. Зависимость парциального периода T_{c} распада изотопов радия с испусканием ¹⁴С от энергии распада Q. • – экспериментальные значения T_{c} , полученные в работтах ^{/1,2,7,14-17/}.

нии ²⁴Ne, проведенная в работе ^{/10/}, показала, что фактор запрета равен 11 для ²³¹ Ра и \geq 19 для ²³³U. Однако круг исследованных ядер пока ограничен указанными примерами, и весьма желательно его расширить. С этой точки зрения представляют интерес эксперименты по изучению распада ²²⁹ Th, ²³⁴U и ²³⁵U с испусканием того же кластера ²⁴Ne.

Другим возможным направлением исследований может быть сравнение вероятностей испускания разных кластеров одним и тем же изотопом, например, в таких распадах, как

 $\begin{array}{c} \overset{23}{}_{Pa} \overset{23}{}_{24} \overset{F}{}_{Ne} & \overset{234}{}_{U} & \stackrel{2}{}_{28} \overset{24}{}_{Ne} & \overset{24}{}_{Ne} & \overset{236}{}_{U} & \stackrel{28}{}_{30} \overset{Mg}{}_{32} \overset{237}{}_{Np} & \stackrel{30}{}_{31} \overset{Mg}{}_{32} \overset{31}{}_{Si} \ell \end{array}$

Эти эксперименты могли бы дать как сравнение вероятностей испускания кластеров разной массы и заряда (Ne, Mg, Si), не выходя за рамки облегченных переходов (²³⁴U, ²³⁶U), так и соотношение вероятностей испускания кластеров разной четности (²³¹ Pa, ²³⁷ Np). Существенно, что эти соотношения будут получены в одном эксперименте, что всегда предпочтительно.

Для успешного выполнения таких экспериментов наиболее подходящи случаи распада, при которых вероятности различных способов распада - одного порядка. Это требует регистрации меньшего суммарного числа актов распада, чем тогда, когда вероятности различаются на несколько порядков. Для выбора объектов исследования, с этой точки зрения, могли бы помочь предварительные теоретические оценки. Имеющиеся для этой цели данные содержатся в табл.2. Как видно из таблицы, проведение экспериментов, реализующих приведенные выше примеры, является вполне возможным. При этом следует заметить, что раздельная регистрация кластеров одного элемента, соседних по массе (²⁴ Ne, ²⁵Ne), требует применения иной методики, чем трековые детекторы, которые имеют плохое разрешение по массе регистрируемых частиц.

По-видимому, иные методы регистрации, имеющие лучшее энергетическое разрешение, потребуются и для экспериментов по обнаружению и определению вероятности распада на возбужденные уровни дочернего ядра. Так, например, уменьшение кинетической энергии кластера ²⁴Ne на 1 МэВ приводит к уменьшению его пробега в лавсане на 0,7 мкм, что меньше разрешающей способности трековой методики, а возбуждение более высоких уровней маловероятно.

В то же время, наряду с уменьшением вероятности распада при уменьшении энергии испускаемого кластера, можно предположить, что в тех случаях, когда переход на основное состояние связан с большим изменением спина ядра или изменением его четности, переход на возбужденный уровень может оказаться более структурно облегченным, что в определенной степени компенсирует уменьше-

Исходное ядро	Испукаемый]		
	кластер	Поэнару ^{/8/}	Кадменский ^{/ 1}	^{0/} Другие работы
²³¹ Pa	23 _F	12,8		$11,55^{/11/}$
	²⁴ Ne	10,0		11,0 / 13/
238 _U	²⁴ Ne	10,7	12	<u> </u>
	²⁵ Ne	10,9	12,4	$\begin{cases} 10, 2^{/11/} \\ 9, 6^{/13/} \end{cases}$
	²⁸ Mg	12,2	12,1	
²³⁴ U	²⁴ Ne	11,9	13,2	
	²⁶ Ne	12,3	12,85	$\begin{cases} 11,75^{/11/} \\ 11,8^{/13/} \end{cases}$
	²⁸ Mg	10,6	11,1	·
²³⁵ U	²⁴ Ne ²⁵ Ne ²⁶ Ne	12,0 12,0 12,3	13,4 12,5	
	²⁹ Mg ²⁹ Mg ³⁰ Mg ³² Si	11,2 11,3 12,3 11,8	11,7	·
²³⁶ U	²⁸ Mg ³⁰ Mg ³² Si ³⁴ Si	12,1 12,1 12,1 12,1 13,1	12,0	
§ _{37 Np}	³⁰ Mg ³¹ A1 ³² Si	11,6 12,9 11,6	12,2	

Таблица 2

ние проницаемости кулоновского барьера. Обнаружение распада на возбужденные уровни и измерение их вероятности в зависимости от спина и четности позволит судить о том, какую роль при испускании кластеров играет та или иная перестройка структуры ядра. Наиболее подходящими дочерними ядрами для таких экспериментов могут быть четно-нечетные 207 Tl и 209 Pb, образующиеся при распаде 223 Ra, 231 Pa, 233 U, 237 Np.

Приведенные в работе примеры показывают, что видна достаточно широкая программа исследований нового вида распада ядер, осуществление которой может способствовать лучшему пониманию путей протекания сложных процессов перестройки ядра. Однако ряд описанных выше экспериментов требует применения более точных методов регистрации частиц и определения их параметров, чем трековые детекторы, обладающих в то же время сравнимой с ними светосилой и эффективностью.

Автор выражает глубокую благодарность Л.Б.Пикельнеру за поддержку работы и В.И.Фурману - за полезные дискуссии и ценные замечания.

ЛИТЕРАТУРА

зí

- 1. Rose H.J., Jones G.A. Nature, 1984, 307, p.245.
- 2. Александров Д.В. и др. Письма в ЖЭТФ, 1984, 40, с.152.
- 3. Сэндулеску А. и др. Краткие сообщения ОИЯИ, № 5-84, с.5, 1984.
- 4. Barwick S.W. et al., Phys.Rev.C., 1985, 31, p.1984.
- 5. Горбачев В.М., Замятнин Ю.С., Лбов А.А. Взаимодействие излучений с ядрами тяжелых элементов и деление ядер. Атомиздат, М., 1976, с.129.
- Б. Третьякова С.П. и др. Краткие сообщения ОИЯИ, № 13-85, с.34, 1985.
- 7. Hourani E. et al. Phys.Lett., 1985, 160B, p.375.
- 8. Poenaru D.N. et al. Atomic Data and Nuclear Data Tables, 1986, 34, p.423.
- 9. Кадменский С.Г. и др. Сообщение ОИЯИ, Р4-85-368, Дубна, 1985.
- Кадменский С.Г. и др. В сб.: Труды Международной школы по структуре ядра /Алушта, 14-22 окт. 1985 г./, ОИЯИ, Д4-85-851, Дубна, 1985, с.385.
- 11. Рубченя В.А. и др. Изв.АН СССР, сер.физ. 1986, 50, с.1016.
- 12. Грашин А.Ф., Ефименко А.Д. Ядерная физика, 1986, 43, с.1330.
- 13. Shi Yi-Jin, Swiatecki W.J. Nucl.Phys., 1985, A438, p.450.
- 14. Price P.B. et al. Phys.Rev.Lett., 1985, 54, p.297.
- 15. Gales S. et al. Phys.Rev.Lett., 1984, 53, p.759.
- 16. Kutschera W. et al. Phys.Rev.C., 1985, 32, p.2036.
- 17. Barwick S.W. et al. Phys.Rev.C., 1986, 34, p.326.

Рукопись поступила в издательский отдел 18 декабря 1986 года.

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 x.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжёлых ионов. Алушта, 1983.	6 р. 55 к.
A2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к
π1 2-84-599	Тоулы VII Мажаународного сечинара до росбазнач физики высоких энергий. Дубна, 1984.	5 p. 50 x.
» Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984 /2 тома/	7 p. 75 ĸ.
Д10,11-84-818	Труды V Международного совещания по про- Блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983 Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	3 р. 50 к. 13 р.50 к.
Д4~85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
д11-85-791	Труды Международного совещания по аналитическим вычислениян на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
д13-85-793	Труды XII Международного симпезиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
Зак Излете	азы на упомянутые книги могут быть направлены 101000 Москва, Главпочтамт, п/я 7 льский отлел Объединенного института ядерных	по адресу: 9 исследовани й

Замятнин Ю.С. Перспективы изучения радиоактивного распада тяжелых ядер с испусканием нуклонных кластеров

Рассмотрены возможные эксперименты, направленные на выяснение механизма спонтанного распада ядер тяжелых элементов с испусканием частиц, промежуточных по массе между а -частицами и осколками деления, и способствующие выбору модельных представлений, описывающих этот процесс. Обсуждены трудности осуществления таких экспериментов и воэможные пути их преодоления,

P6-86-821

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубиа 1986

Перевод О.С. Виноградовой

Zamaytnin Yu.S. P6-86-821 Prospects for the Investigation of Radioactive Decay of Heavy Nuclei with the Nucleon Clusters Emission
Some experiments are discussed aimed at clarifying a mecha- nism of heavy element nucleus spontaneous decay with emission of particles which mass is intermediate between a -particle and fission fragments. These experiments could provide a possi- bility for choosing different models describing this process. The difficulties of performance of such experiments and pos- sible ways of their overcoming are discussed.
The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986