

P6-86-228

Ким У Зин, И Звара

РАСЧЕТЫ ТЕМПЕРАТУРЫ ОСАЖДЕНИЯ В ТЕРМОХРОМАТОГРАФИИ

ВВЕДЕНИЕ

Для экспрессного радиохимического анализа и идентификации продуктов ядерных реакций все шире используются процессы улетучивания и последующей адсорбции элементов или соединений из газовой фазы, например термохромотография ^{/1,2/}.

Селективность этого метода разделения определяется, в первую очередь, различием в энтальпиях адсорбции ΔH^0_a компонентов смеси на материале термохроматографической колонки. Для оценки воз-можности разделения смесей необходимо знать хотя бы приблизиттельные значения ΔH^0_a и иметь метод расчета их температур осаждения T_A на термохроматографической колонке при заданных экспериментальных условиях.

Рассмотрим идеальную термохроматографию в`колонках с постоянным температурным градиентом, т.е. с линейным падением температуры вдоль колонки. Айхлер и Звара ^{/3,4/} вывели следующее выражение, которое связывает термодинамические характеристики адсорбции, параметры эксперимента и результат - температуру осаждения:

$$\operatorname{Ei}^{*}\left(\frac{-\Delta H_{a}^{0}}{R T_{A}}\right) - \operatorname{Ei}^{*}\left(\frac{-\Delta H_{a}^{0}}{R T_{S}}\right) = -\frac{(t_{R} - t_{g})\overline{v}_{0} a}{s_{1} T_{0} \exp(\Delta S_{a}^{0} / R)} \equiv Y, \qquad /1/$$

где t_R - время опыта; \overline{v}_0 - объемный расход газа-носителя при температуре T_0 ; а - температурный градиент /a < 0/; T_A - температура осаждения; s_1 - поверхность участка колонки единичной длины; ΔS_a^0 - стандартная энтропия адсорбции; ΔH_a^0 - стандартная энтропия адсорбции; ΔH_a^0 - стандартная энтропия адсорбции; T_S - температура стартового участка; T_0 - произвольно выбранная "стандартная" температура; t_g - время движения газа от T_S к T_A ; $Ei^*(x)$ - интегральная показательная функция; для x << 1, как известно, $Ei^*(x) = (e^x/x)(1+1!/x+2!/x^2+\ldots)$. Уравнение /1/ можно решить лишь численно. В работах $^{/5,6/}$ представлены расчеты влияния изменения ΔS_a^0 и некоторых параметров опыта на значение T_A . В работе $^{/3/}$ решение уравнения /1/ приведено в виде универсального семейства кривых, которые представляют собой зависимость T_A (Y) для набора определенных дискретных значений ΔH_a^0 , чтобы оценивать T_A по известной ΔH_a^0 или наоборот. В работе $^{/5/}$ получены формулы для $\Delta H_a^0(T_A)$ из /1/методом последовательных приближений и охарактеризована их точ-ность.

В настоящей работе мы попытались развить анализ решения уравнения /1/, чтобы получить более точные и удобные приближения

для T_A как функции от ΔH^0_a и от параметров эксперимента аналитическими формулами /аналогичные выкладки можно сделать и для вычисления ΔH^0_a по T_A /. Результаты расчетов по приближенным формулам сравниваются с точным реешнием /1/ для некоторых частных случаев.

АНАЛИЗ СВОЙСТВ РЕШЕНИЯ ОСНОВНОГО УРАВНЕНИЯ

Ι

Обозначим $h_A^{}=-\Delta H_a^0 \ /R \, T$ и $h_S^{}=-\Delta H_a^0 \ / R \, T_S^{}$. Теперь можем записать /1/ в виде

 $Ei^{*}(h_{A}) = Ei^{*}(h_{S}) + Y.$ /2/

Примем некоторые очевидные <u>приближения</u>: а/ Величина t_g является функцией ряда параметров: $t_g = \frac{T_0}{av_0} \ln \frac{T_A}{T_S}$, где v_0 – линейная скорость газа-носителя при T_0 . Ее можно пренебречь, так как для всех практических важных случаев $t_g \ll t_R$.

б/ Энтропию адсорбции обычно приходится оценивать или вычислять по теоретическим формулам $^{/4/}$. Она зависит, главным образом, от картины адсорбции /локализованная или подвижная/ и частоты колебаний атомов решетки адсорбента. Кроме того, для подстановки в /1/ ее следует усреднять по интервалу температур $[{\rm T}_S\,,{\rm T}_A\,].$ Вследствие этих неопределенностей целесообразно начать анализ уравнения /1/, считая ΔS^0_a постоянной величиной.

в/ Для практики в основном важны такие экспериментальные условия, когда T_A заметно ниже T_S , а следовательно, $E\,i^{*}(h_S\,) << << E\,i^{*}(h_A\,)$. Принимая все эти приближения, приходим к уравнению $E\,i^{*}(h)$ = Y, /3/

где правая часть не зависит от ΔH_a^0 или T_A . Поэтому его решение h /вводим это новое обозначение, чтобы оттенить частный случай/ является функцией только от Y, а ΔH_a^0 и T_A в этом случае строго пропорциональны друг другу:

$$\Delta H_a^0 (T_A) = -RhT_A \quad u \quad T_A (\Delta H_a^0) = -\Delta H_a^0 / Rh. \qquad /4/$$

В таблице приведены значения h, рассчитанные с относительной точностью \leq 0,0001 для широкого диапазона значений Y.

Линейная интерполяция данных таблицы обеспечивает необходимую точность значений h во всем диапазоне. Функция h (log Y) слегка выпуклая. Простое ее аналитическое приближение, обеспечивающее относительную точность $\leq 0,0008$ в пределах изменения log Y \succeq 7÷11, дается формулой

 $h = 2,1545 + 2,4096 \log Y.$ /5/

Наконец, оценим температуру T_{AS} , выше которой нельзя в /2/ пренебрегать членом Ei*(h_S) и надо решать именно это уравнение, 2

Та	блиц	a
----	------	---

Значенияћ и Rh по уравнению /5/ /R = 8,31441 Дж/моль,К = 1,98506 кал/моль К/

logY	h	· Kh	Rh
		(Дж/моль К)	(кал/моль К)
4,0	II,56I	96,13	22,95
4,5	12,827	106,61	25,47
5,0	I4,080	117,06	27,96
5.5	15,322	127,40	30,43
6,0	· 16,557	137,66	32,88
6,5	17,785	I47,87	35,32
7,0	19,006	158,03	37,74
7.,5	20,223	168,15	40,16
8,0	21,436	178,23	42,5I
8,5	22,645	188,28	44,97
9,0	23, 85I	198,30	47,36
9,5	25,053	208,30	49,75
10,0	26,253	218,28	52,14
IO,5	27,451	228,24	54,5I
II,O	28,647	238,18	56,89
II,5	29,840	248,II	59,26
12,0 [·]	31,032	258,02	61,63
I2,5	32,222	269,91	63,99
I3 ,0	33,4II	277,80	66,35
I3,5 ·	34,599	287,67	68,7I
I4,0	35,785	297,53	71,06

а не уравнение /2/. Пусть при T_{AS} решение /2/ отличается от h на некоторую относительно малую величину $\alpha\,h\,(\,<<\,h\,)$.

Используя "нулевое" приближение $Ei^{*}(h) = e^{h} / h$, имеем

$$e^{(1+a)h} = (1+a)hY + (1+a)\frac{h}{h_S}e^{nS}$$
.

Очевидные приближения в обеих частях уравнения дают далее $(1 + ah)e^{h} = e^{h} + e^{h}s'$,

οτκуда $e^{h_s - h} = ah$, $h(T_{AS} / T_s - 1) = ln(ah)$, и, окончательно,

$$\frac{T_{AS}}{T_S} = 1 + \frac{\ln(\alpha h)}{h} ; T_S - T_{AS} = -T_S \ln(\alpha h)/h.$$
 /6,

Таким образом, например, при $h\approx 20$ вплоть до температуры \approx 0,9 T_S вычисленное по /4/ значение T_A отличается от "точного" не более, чем на 1%.

II

Оценим изменение ${\rm T}_{\rm A}$, которое обозначим ${\rm T}_{\rm A}$, при умножении Y на некоторый коэффициент $\beta.$ Выведем уравнение, связывающее приращение значения h,являющегося решением /3/, и $\beta.$ Примем слова "нулевое" приближение Ei*(h). Тогда, дифференцируя и затем интегрируя уравнение

 $h - \ln h = \ln Y + \ln \beta$,

получаем

 $\Delta h = \ln \frac{h + \Delta h}{h} = \ln \beta.$

При Δh/h << 1 приближенно

 $\Delta h - \Delta h / h = \ln \beta$,

откуда $\Delta h = \frac{\ln \beta}{h-1} h$.

Нетрудно убедиться на основании данных таблицы, что последнее уравнение применимо даже далеко за пределами интервала $\beta = 0, 1 \div \pm 10$.

Из

 $T_{A} + \Delta T_{A} = - \Delta H_{a}^{0} / R(h + \Delta h)$

находим

$$T_A + \Delta T_A = T_A / (1 + \frac{\ln \beta}{h-1})$$
 w $\Delta T_A = -T_A \ln \beta / (h-1 + \ln \beta)$. /7/

Для получения численных значений h + Δh , а затем и ΔT_A , разумеется, можно использовать уравнение /5/ или данные таблицы. Однако формула /7/ более наглядно описывает, например, изменение T_A при варьировании одного из экспериментальных параметров и фиксированных значениях остальных. Видно /см.уравнение /1//, что изменение значений t_R , \overline{v}_0 , а или $1/S_1$ /по отдельности/, в одинаковое число раз приводит к одному и тому же ΔT_A .При $h\approx 20$ и $\beta\approx 10$ отношение ΔT_A / T_A составляет 10÷15%.

III

В общем случае ΔS_a^0 зависит от температуры, и следовательно, Y = Y(T) .В частности, в модели подвижной адсорбции можно принять $\Delta S_a^0 = R \ln \left[1 \text{ см}^{-1} \tau_0 (RT/2\pi M) \right]^{\frac{1}{2}}$, /8/

где τ_0 - период колебаний адсорбированных атомов /молекул/ перпендикулярно поверхности, М - масса поля, а сомножитель см⁻¹ обусловлен выбором определенного стандартного отношения концентраций молекул в газе и на поверхности ^{/4/}. В этом конкретном случае

$$Y(T) = Y(T_0) \cdot (T/T_0)^{-\frac{1}{2}}.$$

Взяв энтропийный член при температуре $\mathrm{T}_{\!A}$, из уравнений /1/ и /3/ получаем

$$E i^{*}(-\frac{\Delta H_{a}^{0}}{R T_{A}}) = Y(T_{0}) \cdot (\frac{T_{A}}{T_{0}})^{-\frac{1}{2}}.$$
 /9/

В общем случае, при степенной /с показателем n / зависимости Y от температуры, использование уравнения /7/ приводит к

$$T_A = T_A^0 / (1 + \frac{n}{h_0 - 1} \ln \frac{T_A}{T_0}),$$
 /10/

где $h_0 = h[Y(T_0)]$, т.е. решение уравнения /3/ при Y = Y(T_0), и $T_A^0 = -\Delta H_a^0 / R h_0$. В большинстве случаев $|n \ln (T_A / T_0)| << h$ и T_A не может сильно отличаться от T_A^0 . Поэтому весьма точное приближение решения /10/ должно даваться формулой

$$T_{A} = T_{A}^{0} / (1 + \frac{n}{h_{0} - 1} \ln \frac{T_{A}^{0}}{T_{0}}).$$
 /11/

Если принять $\ln \;(T^0_A \;/\; T_0\;) \;\approx\; (T^0_A \;-\; T_0\;) / \; T^0_A$, то приходим к линейной зависимости

$$\Gamma_{A} = \frac{-\Delta H_{a}^{0}}{R h_{0}} \left(1 - \frac{n}{h_{0} - 1}\right) + \frac{n}{h_{0} - 1} T_{0} .$$
 (12/

Можно показать, что это уравнение касательной к решению уравнения /2/ в точке $T_{\rm A}$ = T_0 .

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ОБСУЖДЕНИЕ

Нами вычислены "точные" значения T_A из уравнения /2/, когда энтропия определяется формулой /8/ /принято τ_0 = 1 · 1.0 $^{-12}$ с/, при следующих значениях параметров: t_R = 60 мин, v_0 = 20 см 3 /мин, a = -10 К/см, s_1 = 10 см 2 /см, M = 220 г/моль и T_0 = 298 К. Отсю-

4

5

Рис.1. График функции $T_A (\Delta H_a^0)$ при $T_S = 1473 K \mu Y(T_0) =$ = 9,51.10⁸; сплощная кривая решение уравнения /2/: пунктир - вычисление по приближенной формуле /4/.

да $Y(T_0) = 9,5114 \cdot 10$. Расчетная кривая приведена на рис.1. Там же показана прямая по формуле /4/ при h = $h_0 = 23,798$: $T_A = -5,0539 \cdot 10^3 \Delta H_a^0$./Здесь 100 200 300_{-AHa}^{-AHa} и ниже T_A дается в единицах К, а ΔH_a^0 в Дж/моль/. На рис.2 показаны относительные ошибки значений T_A . вычислен-

ные по формулам /4/, /11/ и /12/ в виде функции от "точной" Т_А.

Отметим некоторые характерные черты этих результатов: - Простейшая формула /4/ может привести к заметным ошибкам. Отметим, что аппроксимация решений уравнения /2/ прямой, проходящей через начало координат, методом наименьших квадратов /равные веса/ в интервале значений $-\Delta H_a^0 = 0.250$ кДж/моль, что соответствует $T_A \leq 1300$ К, приводит к $T_A = -5,1832 \cdot 10^3 \Delta H_a^0$ /эффективное h = 23,204, т.е. на 2,5% меньше h_0 - см.выше/.

- Формула /11/ позволяет вычислять Т в широком диапазоне с высокой точностью / << 1%/. Уравнение /6/ может быть использовано для характеристики верхнего предела применимости формулы /11/ при заданном уровне точности α выше 0,1% /сравни рис.2/.

- Формула /12/ для рассматриваемого примера имеет вид $T_{\rm A}$ = = 5,1647·10⁻³ ΔH_a^0 - 6,5356. Метод наименьших квадратов дает здесь T_A = -5,2381 ΔH_a^0 - 9,4922.

ЗАКЛЮЧЕНИЕ

1. Поскольку точность экспериментального определения Т_А вряд ли может быть лучше 1%, для расчетов Та можно в первую очередь рекомендовать формулу /11/ с тем, что h_0 определяется по данным таблицы или из уравнения /5/. Соответствующая /11/ формула для расчета ΔH^0_a из экспериментальных значений \mathbf{T}_{A} получается преобразованием /10/:

$$\Delta H_a^0 = - R h_0 T_A \left(1 + \frac{n}{h_0 - 1} \ln \frac{T_A}{T_0} \right).$$

Рис.2. Относительные ошибки приближенных формул для функции T_A (ΔH_a^0), приведенной на рис.1. Номера кривых соответствуют номерам формул в тексте. Отмечена Так для a = 1%.

..2. Указанные формулы могут быть использованы на участке кривых $T_A(\Delta H^0_a)$ и $\Delta H^0_a(T_A)$ вплоть до T_{AS} из уравнения /6/. 3. Ошибки расчета по простейшей формуле /4/ могут иногда вы-

ходить за пределы точности экспериментального определения $T_{\rm A}$. Поэтому /4/ нельзя рекомендовать для универсального использования. Ошибки будут еще больше, чем указано на рис.2, в случае |n| > 1/2.

4. Формула /7/позволяет с большей точностью рассчитывать ΔT_{Δ} при варьировании какого-либо параметра.

5. Для диапазона $T_{AS}\div T_S$ необходимо численно решать уравнение /2/. Надо, однако, отметить, что на опыте невозможно реализовать строго линейный ход температуры вблизи T_S , который предполагается при выводе уравнения /1/. Слабая зависимость T_A от ΔH_a^0 затрудняет использование соответствующего участка колонки для разделения. Поэтому можно рекомендовать подбирать с помощью /6/ стартовую температуру так, чтобы температура осаждения всех компонентов смеси была ниже T_{AS} .

ЛИТЕРАТУРА

- 1. Merinis J., Bonssieres G. Anal.Chim. Acta., 1961, v.25, p.498.
- 2. Звара И., Тарасов Л.К. ЖНХ, 1962, т.7, с.2665.
- 3. Айхлер Б., Звара И. ОИЯИ, Р12-8943, Дубна, 1975.
- 4. Eichler B., Zvara I. Radiochim.Acta, 1982, v.30, p.233.
- Fremont Lamouramme R. et al. In: Hand book of the Physics and Chemistry of the Actinides. Vol.3, North Holland, Amsterdam, 1985.

Рукопись поступила в издательский отдел

11 апреля 1986 года.

6. Айхлер Б. и др. ОИЯИ, Р12-9454, Дубна, 1976.

Ким У Зин, Звара И. Р6-86-228 Расчеты температуры осаждения в термохроматографии

В результате анализа основного уравнения линейной идеальной термохроматографии для колонки с постоянным температурным градиентом выведены приближенные аналитические формулы, описывающие зависимость температуры осаждения T_A /максимум термохроматографического пика/ от энтальпии адсорбции ΔH_A^0 и от нараметров эксперимента при учете зависимости энтропии адсорбции от температуры. Формулы справедливы в широком диапазоне значений переменных величии и, как показало сравнение с численным решением основного уравнения, обеспечивают точность приближения выше точности экспериментального определения T_A . Получена также формула для расчета ΔH_a^0 как функции от T_A и условий опыта.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод авторов

Kim U Jin, Zvara I. P6-86-228 Calculation of the Deposition Temperature in Thermochromatography

By analysis of the basic equation of the ideal linear thermochromatography for columns with constant temperature gradient, there were deduced some approximate analytical formulae which discribe the dependence of the deposition temperature T_A (maximum of the thermochromatographic peak) on the enthalpy of adsorption, ΔH_a^0 . and on experimental parameters, the dependence of the entropy of adsorption on temperature is allowed for. The formulae are valid within broad range of values of the variables, comparison with the numerical solution of the basic equation demonstrates, that their accuracy is better than that of experimental T_A 's. Formula for calculating ΔH_a^0 as a function of T_A and the experimental conditions is obtained as well.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986

8