

P6-86-126

Б.А.Аликов, Х.Н.Бадалов, К.Я.Громов,

Т.М.Муминов, И.А.Шаронов

АНАЛИЗ ЕІ-ПЕРЕХОДОВ В НЕЧЕТНО-НЕЙТРОННЫХ ЯДРАХ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ Влияние парных корреляций и кориолисова смешивания состояний на ЕІ-переходы в нечетных ядрах с N=99-103 Направлено в журнал "Известия АН СССР" и в Оргкомитет 36 Совещания по ядерной спектроскопии и структуре атомного ядра, Харьков, апрель 1986.

<sup>2</sup> Самаркандский государственный университет

1986

<sup>&</sup>lt;sup>1</sup> Научно-исследовательский институт прикладной физики Ташкентского государственного университета.

Интенсивные экспериментальные и теоретические исследования свойств нечётных деформированных ядер привели к эначительному прогрессу в описании энергий и других характеристик нижайших возбужденных состояний ( < 500 кэВ), имеющих преимущественно одноквазичастичный характер/I-3/. Исследования показали, что в теоретических расчётах свойств этих состояний важно учитывать остаточные взаимодействия: парные корреляции сверхпроводящего типа/4/, примеси вибрационных компонентов за счёт квазичастично-фононного взаимодействия<sup>4</sup> а также неадиабатические эффекты, обусловленные кориолисовым смешиванием состояний<sup>5,6</sup>.

Последовательные микроскопические расчёты энергий возбужденных состояний в нечётных ядрах, учитывающие эти остаточные взаимодействия, предполагают некоторую феноменологию, заключающуюся в выборе определенного насора свосодных параметров и "констант" взаимодействия. Это приводит к неоднозначности в расчётах при удовлетворительном описании энергий возбуждения. В этом случае хорошим тестом правильности описания свойств ядер может служить анализ вероятностей электромагнитных переходов, которые очень чувствительны к деталям структуры волновых функций начального и конечного состояний, связанных исследуемым 7-переходом. Наиболее интересным объектом для исследования являются вероятности ЕІ-переходов. Известно, что при описании электрических переходов заметную роль могут оказать все перечисленные выше остаточные взаимодействия. Особенно значительную роль здесь играет влияние парных корреляций, что было объектом изучения в ряде теоретических работ /7-9/. Было показано, что расчеты в одночастичной модели Нильссона С учётом парных корреляций приводят к некоторому улучшению согласия с экспериментом для переходов с  $\Delta K = 0$  /IO-I3/ ( K - проекция углового момента на ось симметрии ядра), однако для переходов с оК=I согласие с экспериментом остается довольно грубым (факторы задержки порядка 10<sup>2</sup> - 10<sup>3</sup>), причем результаты сильно зависят от выбора свободных параметров модели (например, параметров среднего поля) из-за высокой чувствительности вероятности электрического перехода к величине

сверхтекучей поправки  $R_f = u_i u_f - v_i v_f$ , которая в некоторых случаях может стать очень малой.

Представляет интерес анализ тех случаев ЕІ-переходов, когда другие взаимодействия – кориолисово смешивание и квазичастично-фононное взаимодействие дают незначительный вклад в матричные элементи переходов. Это дало бы возможность изучить эффект спаривания в "чистом" виде. Однако, по-видимому, случаи таких переходов очень редки (это, например, демонстрируют наши расчёты), и, следовательно, необходим полный анализ влияния всех остаточных взаимодействий на величины вероятностей ЕІ-переходов.

Так, в работе Базната и Пятова/I3/ отмечается, что величины матричных элементов оператора EI-перехода между состояниями с  $\Delta K = I$  почти на порядок меньше соответствующих величин для переходов с  $\Delta K = 0$ . Следовательно, корнолисово смешивание состояний может привести к значительному вкладу последних, тем более, что компоненты с  $\Delta K = I$  дополнительно могут быть подавлены за счёт малой величины сверхтекучей поправки R<sub>I</sub> в случае частично-дырочного перехода.

Объектом анализа в настоящей работе являются ЕІ-переходы (ΔK=I) типа 5/2<sup>-</sup>[512] — 7/2<sup>+</sup>[633], наблюдаемые в нечётно-нейтронных ядрах редкоземельных элементов <sup>I65</sup>Dy, <sup>I67</sup>,<sup>I69</sup>Er, <sup>I69</sup>,I71,I73<sub>Yb</sub>, <sup>I73</sup>,I75 <sup>Hf</sup>, W. Сревнение экспериментальных значений вероятностей ЕІ-переходов этого типа показывает значительные флуктуации их величин ( см. рис. I ).

Ранее вероятности этого типа исследовались в работах /14,15/. Было показано, что в расчетах с различными модификациями потенциала Нильссона очень важен учёт спаривательного взаимодействия. Учёт последнего значительно улучшает факторы задержки, особенно в случае ядер N =IOI, где переходы рассматриваемого типа частично-дырочные. Однако учёт только эффекта спаривания оказывается недостаточным. Не удается, например, объяснить большую задержку вероятности перехода в случае ядра 173 уь.

Анализ ЕІ-вероятностей типа 5/2<sup>-</sup> [512] = 7/2<sup>+</sup> [633] проводится нами в рамках неадиабатической вращательной модели с использованием реалистического потенциала Саксона-Вудса. Учёт спаривательного взаимодействия проведен в рамках модели независимых квазичастиц/4/. В работе количественно определена роль парных корреляций и кориолисова смещивания при формировании полной величины вероятности ЕІ-переходов исследуемого типа.



Рис. I. Сравнение экспериментальных значений приведенных вероятностей В(ЕІ, 5/2<sup>-</sup> [512] → 7/2<sup>+</sup> [633]) с теоретическими значениями в ядрах Dy, Er, Yb, Hf и W.

- экспериментальные значения.
- рассчитанные значения с учётом сверхтекучих поправок и кориолисова смешивания.
- рассчитанные значения с учётом только кориолисова смеливания.
- одночастичная оценка с учетом сверхтекучей поправки.
- > одночастичная оценка.
- I. ОПРЕДЕЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ЗНАЧЕНИЙ ВЕРОЯТНОСТЕЙ ЕІ-ПЕРЕХОДОВ

на основе измеренных времен жизни  $T_{I/2}$ , а также значений энергий  $\mathcal{J}$ -переходов  $E_{\chi}$  относительных интенсивностей  $I_{\chi}$  и величин ко-

Таблища I. Приведенные вероятности ЕІ-лереходов типа 5/2<sup>-</sup> [512] = 7/2<sup>+</sup> [633]

.

| Fsw                                         | IO | 0,84                     | ~0,II<br>~2,6                        | 5,6                             | 0,25<br>3,9                          | 3,8                        | ≰6,7<br>≰I,9                              | I,5                                    |
|---------------------------------------------|----|--------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------|-------------------------------------------|----------------------------------------|
| ьср<br>Sw                                   | 6  | 0,47                     | ~0,96<br>~2,2                        | 2,9                             | 36<br>2,5                            | 5,0                        | ≰9,6<br>≰Ι,6                              | I,8                                    |
| Fsw<br>Sw                                   | 8  | 0,19                     | ~I6,4<br>~0,53                       | 24                              | 162<br>70                            | <b>1,</b> 6                | ≼8,5<br>≼4,4                              | 62 <b>,9</b>                           |
| мs<br>Ев                                    | 4  | 0,46                     | ~0,56<br>~1,1                        | 4,3                             | 7,8<br>0,58                          | 2,0                        | ≼4,5<br>≰ <b>Ι,</b> 9                     | 0,17                                   |
| B(ЕІ)<br>(e <sup>2</sup> барн)              | 6  | 6,2(21)-7                | ~ 1,7-7<br>~ 2,1-7                   | I,04(I0)-7                      | 3,53(23)-9<br>I,42(I2)-8             | I,42(6)-7                  | > I,4-8<br>≥ I,I-7                        | 7,0(3)-8                               |
| L <sup>¶</sup>                              | 5  | 7/2 <sup>+</sup>         | 7/2 <sup>†</sup><br>9/2 <sup>†</sup> | 7/2 <sup>+</sup>                | 5/2 <sup>-</sup><br>7/2 <sup>-</sup> | 7/2 <sup>+</sup>           | 7/2 <sup>+</sup><br>9/2 <sup>+</sup>      | 7/2*                                   |
| гï                                          | 4  | 5/2                      | 7/2                                  | 5/2                             | 7/2 <sup>+</sup>                     | 5/2 <sup>-</sup>           | 7/2                                       | 5/2-                                   |
| $E_{f}$ (R3B)                               | 3  | I84,23                   | 261,77<br>178,39                     | 346,5                           | I51,9<br>67,3                        | 191,30                     | 278,6                                     | 27,13                                  |
| $\mathrm{E}_{\mathrm{yp}}^{\mathrm{(KaB)}}$ | 2  | I84,23<br>(1.0(1)–9)/I7/ | 261,78<br>(~1,6-FO) <sup>a)</sup>    | <b>346,55</b><br>(I,0(I)-9)/I8/ | 243,7<br>(2,0(I)-7)/I9/              | 191,21<br>(3 35/15/ 0//20/ | (3,53(13)-3)<br>278,60<br>( ≰ 6,9-11)/21/ | I22,39<br>(2,65(20)-7) <sup>/20/</sup> |
| Ядро                                        | I  | I <sup>65</sup> Dy       |                                      | 167 <sub>Er</sub>               | 169 <sub>Er</sub>                    | <sup>169</sup> γb          | -                                         | 171 <sub>Yb</sub>                      |

Таблица I. /продолжение/

,

í

٠

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н                 | 2                                     | e                        | 4                | ß                                                        | 6                                      | 4                   | 8                  | 6                  | IO                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|--------------------------|------------------|----------------------------------------------------------|----------------------------------------|---------------------|--------------------|--------------------|--------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173 <sub>Yb</sub> | 350,7<br>(4,3(3)-I0)/22/              | 350,7<br>272,0<br>I7I,35 | 7/2 <sup>+</sup> | 5/2 <sup>-</sup><br>7/2 <sup>-</sup><br>3/2 <sup>-</sup> | 2,73(I5)-9<br>4,09(I8)-7<br>2,23(I3)-7 | I86<br>0,37<br>0,08 | 11,1<br>35<br>27,3 | 0,33<br>3,4<br>5,4 | 0,92<br>4,9<br>7,8 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173 <sub>Hf</sub> | I97,5<br>(I,6(4)-8) <sup>/I5/</sup>   | 90,3                     | 7/2+             | 5/2                                                      | 2,54(64)-8                             | 0,22                | 4 <b>,</b> I       | 3,2                | I,5                |
| I73 W 85+X (1,4(4)-8)/24/ 85,37 7/2 <sup>+</sup> $3/2^{-}$ 3,2(9)-7 0,48 (1,4(4)-8)/24/ 130,92 $7/2^{+}$ $3/2^{-}$ 2,58(26)-9 6,7 2 175 W 235,0 $7/2^{+}$ 235,0 $7/2^{+}$ $38.60$ $7/2^{+}$ $37/2^{+}$ $37/2^{-}$ 2,58(26)-9 6,7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 175 <sub>Hf</sub> | 207,4<br>(I,55(9)-9)/ <sup>2</sup> 3/ | 207,4<br>I25,9           | 7/2*             | 5/2                                                      | 2,05(I8)-7<br>3,8(6)-7                 | I,5<br>0,23         | 49,8<br>I0,5       | 1,1<br>3,2         | I,I<br>6,0         |
| I75 W 235,0<br>120,92 7/2 <sup>+</sup> 3/2 <sup>+</sup> 3/2 <sup>-</sup> 2,58(26)-9 6,7 2<br>1.2,58(26)-9 7<br>1.2,58(26)-9 7<br>1.2,58( | 173 W             | 85+X<br>(I,4(4)-8)/24/                | 65 <b>,3</b> 7           | 7/2+             | 5/2-                                                     | <b>3,</b> 2(9)-7                       | 0,48                | 6,5                | 0,62               | I                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175 W             | 235,0<br>(2,16(6)-7) <sup>/24/</sup>  | I30,92<br>38,69          | 7/2+             | 5/2                                                      | 2,58(26)-9<br>I,I5(7)-7                | 6,7<br>0,04         | 29I<br>25          | 2,7<br>0,67        | 5,0<br>0,75        |

оценено по величине Qo = 6,74/25/ барн для основного Запись 6,2(2I)-7 означает  $(6,2 \pm 2,I) \cdot IC^{-7}$ . а) Значение  $T_{I/2} \sim I,6 \cdot IO^{-IO}$  с оценено по величи состояния I65 Dy (подробно см. в разд. 3).

4

5

эффициентов внутренней конверсии ~<sub>Пол</sub>.<sup>ж)</sup> были вичислены приведенные вероятности ЕІ-переходов типа 5/2<sup>-</sup> [512] <del>→</del> 7/2<sup>+</sup> [633]. Полученные значения вероятностей ЕІ-переходов и соответствующие факторы задержки приведены в таблице I. Описание таблицы приводится в разделе 3.

## 2. МЕТОД РАСЧЕТА И ВЫБОР ПАРАМЕТРОВ

Энергии неротационных состояний исследуемых ядер рассчитывались в рамках модели независимых квазичастиц<sup>44</sup>. Энергии и волновые функции одночастичных состояний в аксиально-симметричном потенциале Саксона-Вудса вычислялись по методу, предложенному в работе Гареева и др. <sup>3</sup>.

Параметри потенциала среднего поля, выбранные нами для расчётов, приведены в таблице 2.

| Таолица 2. Параметры потенциала Саксон |
|----------------------------------------|
|----------------------------------------|

| Ядро              | V <sub>o</sub> (M∋B) | R <sub>o</sub> (фм) | $\alpha$ ( $m^{-1}$ ) | <b>ж</b> (фл <sup>2</sup> ) | B_20  | B40    |
|-------------------|----------------------|---------------------|-----------------------|-----------------------------|-------|--------|
| 165 <sub>Dy</sub> | 44,8                 | I,26                | I,75                  | 0,44                        | 0,295 | 0,010  |
| <sup>167</sup> Er | 48,8                 | I,24                | I,65                  | 0,44                        | 0,295 | 0,010  |
| 169Er             | 48,8                 | I,24                | <b>I,</b> 65          | 0,42                        | 0,300 | -0,0I3 |
| 169 Y D           | 44,8                 | 1,24                | I,67                  | 0,43                        | 0,287 | -0,009 |
| <sup>171</sup> Yb | 44,8                 | I,26                | I,67                  | 0,43                        | 0,287 | -0,024 |
| 173 <sub>Yb</sub> | 44,8                 | 1,26                | I,62                  | 0,42                        | 0,297 | -0,038 |
| 173 <sub>Ht</sub> | 44,8                 | I,26                | I,75                  | 0,44                        | 0,291 | -0,017 |
| 175 Hf            | 44,8                 | I,26                | I,65                  | 0,39                        | 0,289 | -0,033 |
| <sup>175</sup> W  | 44,8                 | I,26                | I <b>,7</b> 5         | 0,44                        | 0,286 | -0,041 |

Равновесные значения  $\beta_{20}$  и  $\beta_{40}$  определялись на основе  $G_2$  и  $G_4$ , рассчитанных в работе/25/, а в случае изотопов Hf и W получены нами в дополнительных расчетах по аналогичной методике.

Сверхтекучие поправки R<sub>7</sub> вычислялись с учётом эффекта блокировки по формуле<sup>/7/</sup>: 
$$\begin{split} & \mathsf{R}_{J}^{\alpha\alpha'} = ( \bigcup_{\alpha}^{(\alpha')} \bigcup_{\alpha'}^{(\alpha)} - \bigvee_{\alpha'}^{(\alpha')} \bigvee_{\alpha'}^{(\alpha)} ) \prod_{\substack{S \neq \alpha\alpha'}} ( \bigcup_{S}^{(\alpha')} \bigcup_{S}^{(\alpha)} + \bigvee_{S}^{(\alpha')} \bigvee_{S}^{(\alpha)} ) , \\ & \mathsf{г.дe} \\ & \bigcup_{\alpha}^{(\alpha')} = \left\{ 1/2 \left[ 1 + (\mathsf{E}_{\alpha} - \lambda_{\alpha'}) / (\Delta_{\alpha'}^{2} + (\mathsf{E}_{\alpha} - \lambda_{\alpha'})^{2} \right]^{1/2} \right\}^{1/2} , \ V_{\alpha}^{(\alpha')} = \left[ 1 - (\bigcup_{\alpha}^{(\alpha')}) \right]^{1/2} , \\ & \mathsf{E}_{\alpha} - \mathsf{odhovacturuhue} \text{ энергии} , \end{split}$$

асимптотические квантовые характеристики,

λα и Δα - хим. потенциал и корреляционная функция.

Ошнако, как правило, энергия одноквазичастичного состояния 5/2 [512] заметно больше экспериментального значения. Учет квазичастично-фононного взаимодействия недостаточно полно улучшает согласие с экспериментом. Расчёты равновесных деформаций показали, что деформация состояния 5/2<sup>-[512]</sup> меньше равновесной деформации основного состояния на  $\Delta \beta_{20} \sim 0,02$ . Если соответственно различию в деформациях скорректировать одночастичную энергию состояния 5/2 [512] в рассматриваемых ядрах. то его одноквазичастичная энергия уменьшается, что приводит к заметному улучшению согласия с величиной экспериментальной энергии. Кроме того, существенно изменяются величины сверхтекучих поправок  $R_{\tau}$ , соответствующих компонентам (5121-6331) и (5121-6421), которые, как показал проведенный ниже анализ, являются определяющими для величин вероятностей рассматриваемого типа ЕІ-переходов. Так, в случае 165 р, корренция одночастичного опектра изменяет сверхтекучие поправки от значений R<sub>T</sub> (5121-6331)=0,859 и R<sub>T</sub> (5121-6421)=0,011 до значений 0.523 и -0.278 соответственно, что соответствует величинам Rr, полученным в вычислениях для других изотонов с N = 99. Аналогичная коррекция одночастичной схемы проводилась нами для нечетно-нейтронных ядер с N = IOI и IO3.

Энергии и структура вращательных возбуждений исследуемых изотонов были рассчитаны в рамках неадиабатической вращательной модели/6/. Однако для того, чтобы улучшить согласие рассчитанных энергий рассматриваемых ротационных состояний, мы "подгоняли" энергии головных состояний полос к экспериментальным, сдвигая одночастичные энергии относительно поверхности Ферми и ослабляя некоторые матричные элементы < J<sub>+</sub>>.

Энергии состояний и амплитуды кориолисова смешивания приведены в таблице 3 для состояний отрицательной чётности и в таблице 4 для состояний положительной четности. В таблицах приведены только главные компоненты волновых функций рассчитанных состояний.

Инерциальный параметр  $A = \hbar^2/2 \mathcal{F}$  выбирался одинаковым для всех диагонализируемых состояний одной четности.

<sup>\*</sup> Получены интерполяцией данных, приведённых в таблицах Росселя /16/.

|   | Адро               | In   | Eyp(          | кэВ)        | AMUL                   | литуды смеш | ивания С  | ĸ        |
|---|--------------------|------|---------------|-------------|------------------------|-------------|-----------|----------|
|   |                    |      | эксп.         | теор.       | 7/2 <sup>-</sup> [514] | 7/2 [503]   | 5/2 [512] | 3/2 [521 |
|   | I65 <sub>Dv</sub>  | 5/2- | 184,2         | I84         | -                      | -           | 0,988     | 0,100    |
|   | -,                 | 7/2- | 261,8         | 261         | 0,012                  | 0,028       | 0,984     | 0,158    |
|   | 167 <sub>E</sub> r | 5/2  | 346,6         | 347         | -                      |             | 0,997     | 0,075    |
|   |                    | 7/2  | 430,0         | 430         | 0,023                  | 0,013       | 0,991     | 0,II5    |
| ĺ | <sup>I69</sup> Er  | 5/2  | 92,2          | 92          | -                      | -           | 0,998     | 0,053    |
| 1 |                    | 7/2  | 177,0         | I74         | 0,027                  | 0,020       | 0,996     | 0,082    |
| Į | 169 <sub>Yb</sub>  | 5/2  | 191,2         | 191         | -                      | ·           | 0,997     | 0,073    |
|   |                    | 7/2  | 278,6         | 277         | 0,032                  | 0,078       | 0,988     | 0,110    |
|   | 171Yh              | 5/2  | 122,4         | 122         | -                      | -           | 0,999     | 0,040    |
|   |                    | 7/2- | 207,9         | 207         | 0,033                  | -           | 0,997     | 0,062    |
| ł | 173 <sub>Yb</sub>  | 5/2  | 0             | 0           | -                      | -           | 0,999     | 0,054    |
|   |                    | 7/2  | 78,6          | 78          | 0,0I4                  | 0,010       | 0,996     | 0,083    |
|   | 173 <sub>Hf</sub>  | 5/2  | 107,2         | I08         | -                      | -           | 0,999     | 0,037    |
|   |                    | 7/2  | 197,3         | 197         | 0,030                  | 0,029       | 0,997     | 0,058    |
|   | 175 <sub>Hf</sub>  | 5/2  | 0             | 0           | -                      | -           | 0,998     | 0,062    |
|   | [                  | 7/2  | 8 <b>T</b> .5 | 82          | 0,037                  | 0,015       | 0,995     | 0,095    |
|   | 173 <sub>W</sub>   | 5/2  | 0+X           | 0           | -                      | -           | 0,994     | 0,112    |
|   |                    | 7/2  | 95 <b>+X</b>  | 94          | 0,102                  | 0,079       | 0,977     | 0,167    |
|   | <sup>175</sup> w   | 5/2  | <b>I04,</b> 0 | I04         | -                      |             | 0,998     | 0,042    |
|   |                    | 7/2  | 196,3         | <b>I9</b> 6 | 0,037                  | 0,025       | 0,997     | 0,066    |
|   | 1                  |      |               |             | 1                      |             |           |          |

## Таблица З. Амплитуды кориолисова смешивания для состояний отрицательной чётности

Вероятности EI-переходов вычислялись по формуле/13/:

$$\begin{split} & \mathsf{B}(\mathsf{E1}, \mathbf{I}_{i} \longrightarrow \mathbf{I}_{i}^{\prime}) = |\sum_{\kappa} \sum_{\kappa'} \mathsf{C}_{\mathsf{I}\kappa} \mathsf{C}_{\mathsf{I}\kappa'} \mathsf{R}_{\mathcal{J}} \left\{ < \kappa' \mid \mathcal{M}_{\kappa'-\kappa}^{1} \mid \kappa > x \\ & \times <\mathsf{I}\kappa \upharpoonright \kappa'-\kappa |\mathsf{I}'\kappa' > + (-1)^{\mathsf{I}+\ell+\kappa} \delta_{\kappa,1/2} \delta_{\kappa',1/2} < \kappa' \mid \mathcal{M}_{\kappa'+\kappa}^{1} \mid \widetilde{\kappa} > x \end{split}$$
×<I-1/2 11|I'1/2>}  $|^2$ , где  $\mathcal{M}_{\mu}^1 = e_{eff} r Y_{1\mu}$ ,  $e_{eff} = e \cdot \begin{cases} 1 - \frac{Z}{A} \\ -\frac{Z}{A} \end{cases}$ для протона

Сравнение экспериментальных и теоретических вероятностей переходов проводилось с помощью факторов задержки:

 $F = B(E1)_{reop} / B(E1)_{skcn} ,$   $IIpargem F_{sw}^{p} , F_{sw}^{c} , F_{sw}^{cc} , \overline{F_{sw}^{pc}}$  obtained the obtained of the obtained

| Ядро              | In               | Eyp(1         | cəB)          | AMILI                  | Амплитуды смешивания Сік |               |              |  |  |  |
|-------------------|------------------|---------------|---------------|------------------------|--------------------------|---------------|--------------|--|--|--|
| <br>_             |                  | эксп.         | теор.         | 9/2 <sup>+</sup> [624] | 7/2+ [633]               | 5/2+ [642]    | 3/2+ [651]   |  |  |  |
| 165 <sub>Dy</sub> | 7/2+             | 0             | 0             | -                      | 0,988                    | 0,156         | 0,020        |  |  |  |
| <i>by</i>         | 9/2+             | 83,4          | 82            | 0,142                  | 0,964                    | 0,222         | 0,038        |  |  |  |
| 167 <sub>F</sub>  | 7/2+             | 0             | 0             | -                      | 0,993                    | 0,119         | 0,014        |  |  |  |
| L1                | 9/2+             | 79,3          | 79            | 0,113                  | 0,977                    | 0,175         | 0,027        |  |  |  |
| I69 <sub>Fr</sub> | 7/2+             | 243,7         | 244           | -                      | 0 <b>,9</b> 97           | 0,07I         | 0,007        |  |  |  |
|                   | 9/2+             | 318,0         | 321           | 0,155                  | 0,982                    | 0,104         | 0,0I4        |  |  |  |
| I69 <sub>Yb</sub> | 7/2+             | 0             | 0             | -                      | 0,994                    | 0,105         | 0,014        |  |  |  |
| 10                | 9/2+             | 70,9          | 69            | 0,190                  | 0,970                    | 0,I4 <b>9</b> | 0,026        |  |  |  |
| I7IYh             | 7/2+             | 95,3          | <b>9</b> 5    | -                      | 0,987                    | 0,161         | <b>310,0</b> |  |  |  |
|                   | 9/2+             | <b>I</b> 67,6 | <b>I6</b> 8   | 0,081                  | 0,967                    | 0,236         | 0,053        |  |  |  |
| 173 <sub>Vb</sub> | 7/2+             | 350,7         | . <b>3</b> 51 | -                      | 0,98I                    | 0,190         | 0,028        |  |  |  |
| 10                | 9/2 <sup>+</sup> | 412           | 413           | 0,098                  | 0,942                    | 0,266         | 0,05I        |  |  |  |
| I73 <sub>Hf</sub> | 7/2+             | 197,5         | <b>I9</b> 8   | -                      | 0,982                    | 0,188         | 0,029        |  |  |  |
| ,,,               | 9/2+             | 255,5         | 256           | 0,269                  | 0,926                    | 0,258         | 0,053        |  |  |  |
| 175 <sub>Hf</sub> | 7/2+             | 207,4         | 208           | -                      | 0,969                    | 0,242         | 0,050        |  |  |  |
|                   | <u>;/2</u> +     | 258,2         | 20I           | 0,202                  | 0 <b>,91</b> 8           | 0,329         | Ũ,Ū89        |  |  |  |
| 173 W             | 7/2+             | 85 <b>+X</b>  | 85            | -                      | 0,982                    | 0,182         | 0,050        |  |  |  |
|                   | 9/2+             | I28+X         | <b>I2</b> 6   | 0,331                  | 0,910                    | 0,233         | 0,083        |  |  |  |
| 175 W             | 7/2+             | 235,0         | <b>23</b> 5   | -                      | 0,987                    | 0,158         | 0,03I        |  |  |  |
|                   | 9/2+             | 265,6         | 265           | 0,332                  | 0,917                    | 0,213         | 0.055        |  |  |  |

Таблица 4. Амплитуды кориолисова смешивания для состояний положительной чётности

F<sub>w</sub> - фактор без учёта кориолисова смешивания, но с учётом сверхтекучей поправки  $R_{f}$ ;  $F_{sw}^{c}$  – фактор с учётом кориолисова смешивания, но без учёта  $R_{f}$ ;  $\frac{F}{sw}^{r}$  – фактор с учётом  $R_{f}$  и кориолисова смешивания;  $F_{sw}^{r}$  – фактор с учётом  $R_{f}$  и кориолисова смешивания, а также с

коррекцией одночастичной схемы при расчёте R

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ И АНАЛИЗ ВЕРОЯТНОСТЕЙ

Результаты расчётов приведены в таблице І.

В первой колонке указано ядро, во второй колонке - энергия возбухденного состояния и период полураспада, в третьей - энергия перехода, в четвертой и пятой колонках приведены квантовые характеристики начальных и конечных состояний, в шестой – экспериментальные значения приведенных вероятностей ЕІ-переходов, в 7 – 10 колонках приведены факторы задержки ЕІ-переходов (см. раздел 2).

Анализ вероятностей ЕІ-переходов типа 5/2<sup>-5</sup>/2 [512] ≠ 7/2<sup>+</sup>7/2 [633] удобно провести, разбив все исследуемые ядра на три группы, срответственно числу нейтронов N = 99, IOI и IO3. В первой группе ядер N =99 состояние 7/2<sup>+</sup> [633] является основным (за исключением <sup>173</sup>W. гле основное состояние не установлено), а состояния 5/2<sup>-[512]</sup> и 5/2<sup>+</sup>[642] являются частичным и дырочным возбужденными состояниями соответственно. Для этих ядер (<sup>165</sup>Dy, <sup>167</sup>Er, <sup>169</sup>Yb) следует ожидать малое значение поправки R<sub>1</sub> для компонента (5121-6421) частично-дырочного перехода относительно величин R<sub>1</sub> компонента (512<sup>+</sup>-633<sup>+</sup>), где переход идет с частичного возбужденного состояния на основное. Как следствие, следует ожидать подавления компонента (5121-6421) за счёт малой величины R<sub>1</sub>. Действительно, во всех рассматриваемых изотонах с N = 99 (см. табл. 5) главным компонентом является  $(5I2^{+}-633^{+})$ , а вклад компонента (512†-642†) мал. Например, в ядре 167Er вклад компонента  $(512\uparrow-642\uparrow)$  составляет ~ 10% от вклала компонента  $(512\uparrow-633\uparrow)$ . Другая особенность этих переходов в том, что вклалы рассматриваемых компонентов во всех изотонах с N = 99 имеют одинаковые фазы. В результате во всех этих изотонах вероятность EI-перехода  $5/2^- \rightarrow 7/2^+$ незначительно меняется в пределах от (I + 6).10<sup>-7</sup>е<sup>2</sup>барн. Полученные нами факторы задержки 0,84, 5,6, 3,8 и 0,62 соответственно для ядер 165 Dv , 167 Er , 169 Yb # 173 W показывают хорошее согласие рассчитанных значений вероятностей этого типа переходов с экспериментальными.

Иная ситуация наблюдается в изотонах с N = IOI (ядра  $^{I69}$ Er, I71<sub>Yb</sub>,  $^{I73}$ Hf и  $^{I75}$ W). В этой группе ядер основным состоянием является орбиталь  $I/2^{-}$ [52I], орбиталь  $5/2^{-}$ [5I2] – частичная, а орбитали  $7/2^{+}$ [633] и  $5/2^{+}$ [642] – дырочные возбужденные состояния. Здесь ожидается малое значение R<sub>f</sub> для обоих главных компонентов (5I2†--633†) и (5I2†-642†), причем для первого компонента значение поправки R<sub>f</sub> по абсолютной величине должно быть меньше, так как орбитали  $^{5I2†}$ и (633†> расположены более симметрично относительно поверхности Ферма, чем орбитали  $^{5I2†>}$ и  $^{1642+>}$  (см. табл. 5).

Наиболее четко эти внводи проявляются в случае изотопов 171 yb и  $173 \text{ H}_{f}$ . Рассчитанные значения поправок  $R_{f}$  равны  $R_{f}(5121-6331) = 0.046 \text{ и} R_{f}(5121-6421) = -0.373 \text{ в ядре } 171 \text{ yb}$ , а в случае  $173 \text{ H}_{f}$ , соответственно, -0.071 и -0.371. Различие в знаках  $R_{f}$  для компонента (5121-6331) в этих ядрах объясняется тем, что в ядре 171 yb квазичастичное состояние  $5/2^{-}$  [512] лежит выше квазичастичного состояния

10

e<sup>2</sup>. daph. B(EI)<sup>BKCII</sup> -

5/2 [512] 🕶 7/2<sup>+</sup>7/2 [633]

5. Анализ EI-переходов типа 5/2<sup>-</sup>

Ταόπηα

 $7/2^+$  [633], а в ядре 173 H<sub>4</sub> (то же и для ядер  $169_{\rm Er}$  и 173 W) наоборот. Это приводит к тому, что, во-первых, во всех изотонах с N = 10I за счёт относительно малой величины сверхтекучей поправки происходит подавление компонента (512†-633†), и, во-вторых, дополнительная задержка перехода типа  $5/2^- \rightarrow 7/2^+$  происходит за счёт некогерентного \*) вклада рассматриваемых компонентов (исключение – ядро  $171_{\rm Yb}$ , см. табл. 5). Хак результат, мы наблюдаем значительную задержку (на один-два порядка) ЕІ-переходов рассматриваемого типа в изотонах с N = I01 по сравнению с изотонами с N = 99. Полученые нами факторы задержки 0,25, I,5, I,5, 5,0, соответственно, для изотонов  $169_{\rm Er}$ ,  $171_{\rm Yb}$ ,  $173_{\rm Hf}$  и  $175_{\rm W}$  показывают, что учёт спаривания и кориолисова смешивания позволяет хорошо объяснить наблюдаемые величины вероятностей этого типа ЕІ-переходов.

И, наконец, рассмотрим группу ядер с N = IO3 (изотопы  $^{I73}$ Yb и  $^{I75}$ Hf). В этих ядрах основным состоянием является орбиталь 5/2<sup>-</sup>[5I2], а орбитали 7/2<sup>+</sup>[633] и 5/2<sup>+</sup>[642] – дырочные.

Полученные значения R<sub>1</sub> для обоих компонентов (5121-6331) и (5121- 6421) относительно велики |R1 ~ 0,8 (см. табл. 5), но вклад обоих компонентов в полную вероятность переходов некогерентен. Таким образом, результат зависит от относительных величин вкладов обоих колпонентов. Так, в случае ядра 173 үь оба компонента сравнимы по величине, а в случае 175Hf компонент (6421-5121) приблизительно в два раза больше величины компонента (6331-5121). Напомним, что матричный элемент (5121-6421) поиблизительно на норялок больше величины матричного элемента (5121-6331), при этом матричный элемент типа (5121-6331) всегда положителен, а матричный элемент (5121-6421) отрицателен жж). Это приводит к тому, что в случае япра 173 уь наблюдается значительная задержка (на два порядка) перехода 7/2+7/2 [633]  $\rightarrow$  5/2<sup>-</sup>5/2 [512], относительно аналогичного перехода в ядре  $^{173}$ Hf. Полученные нами факторы задержки 0,92 и I,I для ядер  $^{173}$  Yb и  $^{175}$ Hf указывают на очень хорошее согласие с экспериментом. Значения факто-ров задержки, полученные в работе/17/ (168 и 4,3, соответственно), указывают на необходимость учёта кориолисова смешивания состояний при расчётах приведенных вероятностей этого типа переходов.

Рассмотрим теперь вероятности ЕІ-переходов типа 7/2<sup>-5</sup>/2 [512] → 7/2<sup>+</sup>7/2 [633], наблюдаемые в большинстве рассмотренных выше ядер. В отличие от вероятностей рассмотренного выше типа, в этом случае за счёт кориолисова смешивания ожидается появление в волновой функции состояния 7/2<sup>-5</sup>/2 [512] дополнительных компонентов, учёт которых может повлиять на полную вероятность ЕІ-перехода рассматриваемого типа. Действительно (см. табл. 6), величины компонентов (503†-633†), (514↓ -633†), а также (512†-651†) и (521†-651†) в ряде случаев сравнимы с уже рассмотренными компонентами (512†-633†) и (512†-642†), и их учёт важен при расчёте полной вероятности ЕІ-перехода типа 7/2<sup>-</sup> → 7/2<sup>+</sup>.

В случае 165 Dy (N= 99) первое врадательное состояние с  $1^{\pi} = 7/2^{-1}$ (261.8 кэВ) ротационной полосы 5/2<sup>-</sup> [512] разряжается (MI+E2) - переходом на головной уровень полосы и ЕІ-переходами на уровни 7/2<sup>+</sup> (О кэВ) и 9/2<sup>+</sup> (178.4 кэВ) полосы основного состояния 7/2<sup>+</sup> [633] . Расчёт показывает. что основной вклад в вероятность EI-переходов  $7/2^{-} \rightarrow 7/2^{+} \times 7/2^{-} \rightarrow 9/2^{+}$  major komiohehth (5031-6331) x (5121-6421). Если рассчитать экспериментальные значения вероятностей переходов, разряжанних уровень 261,8 кэВ с учётом оценки Т1/2 ≤ 35 пс/21/, то цля EI-переходов типа  $7/2^- \rightarrow 7/2^+$  и  $7/2^- \rightarrow 9/2^+$  получаем факторы задержки 40,02 и 40,73, соответственно. Кроме того, вычисленное значение B(E2,  $7/2^- \rightarrow 5/2^-$ ) > 7,5 e<sup>2</sup>daph<sup>2</sup> слишком велико для этого типа внутриротационного перехода (при расчёте мы использовали значение  $c^2 = I, I \cdot IC^{-I} / 2I/$ ). Оценку времени жизни для уровня 201,8 квВ можно получить (используя теоретическое значение квадрупольного момента  $Q_{c} = 6,74$  daph<sup>(25/)</sup>, вычисляя вероятность B(E2) внутриротационного перехода: Т<sub>1/2</sub>(261,8 кэВ) ~ 0,16 нс, т.е. время жизни этого уровня более чем в 4 раза превышает результат, указанный в работе/21/. Рассчитывая значения приведенных вероятностей ЕІ-переходов, разряжающих

уровень 261,8 кэВ с Т<sub>I/2</sub> ~ 0,16 нс, получим следующие значения: В(EI, 7/2<sup>-5</sup>/2 [512] → 9/2<sup>+</sup>7/2 [633] ) ~ 2,1·10<sup>-7</sup>e<sup>2</sup> барн, и В(EI, 7/2<sup>-5</sup>/2 [512] → 7/2<sup>+</sup>7/2 [633] ) ~ 1,7·10<sup>-7</sup>e<sup>2</sup> барн, тогда соответствующие факторы задержки ~ 2,6 и ~ 0,1 для этих переходов показывают также лучшее согласие с экспериментом. Значение фактора задержки ~ 0,1 для второго типа перехода можно объяснить тем (см. табл. 6), что главный компонент (512†-633†) почти полностью компенсируется компонентом (512†-642†). Это приводит к высокой чувствительности теоретического значения вероятности к параметрам расчёта, так как из-за неопределённости энергии состояния 5/2<sup>+</sup> [642] трудно оценить величину R<sub>1</sub> для частично-дырочного компонента (512†--642†) рассматриваемого гамма-перехода.

Рассмотрим теперь результаты расчётов вероятностей ЕІ-переходов типа 7/2<sup>-5</sup>/2 [512] = 7/2<sup>+</sup>7/2 [633] в ядрах с N = 99 (изотоны <sup>165</sup> Dy

<sup>\*)</sup> Термин "Когерентный" мы применяем для случая компонентов полного матричного элемента, имеющих одинаковые знаки, а "Некогерентный" - разные знаки.

жж) Матричные элементы оператора гY<sub>1</sub>, вычислялись нами по программе "MATREL "/26/.

Таблица 6. Анализ ЕІ-переходов типа 7/2 5/2 [512] = 7/2+7/2 [633]

| С-квадра: ампли-                        | N =               | 99                | N =       | I0I              | N =               | 103               |
|-----------------------------------------|-------------------|-------------------|-----------|------------------|-------------------|-------------------|
| туды смешивания<br>в %                  | <sup>165</sup> Dy | <sup>169</sup> ҮЬ | 169<br>Er | <sup>175</sup> W | <sup>173</sup> ҮЬ | 175 <sub>Hf</sub> |
| 7/2" :(C 512t> +                        | 96,8              | 97,6              | 99,2      | 99,4             | 99,2              | 99.0              |
| C 521 ++                                | 2,5               | 1,2               | 0,7       | 0,4              | 0.7               | 0.9               |
| C15031> +                               | 0,1               | D,6               | 0,0       | 0.I              | 0.0               | 0.0               |
| C15I44> )                               | 0,0               | 0,I               | 0,I       | 0,1              | 0,0               | 0,I               |
| 7/2+ :(01633+>+                         | 97,6              | 98,8              | 99,4      | 97,4             | 96,2              | 93,9              |
| C/642†> +                               | 2,4               | 1,1               | 0,5       | 2,5              | 3,6               | 5,9               |
| C165I+> )                               | 0,04              | 0,02              | 0,02      | 0,1              | 0,1               | 0,3               |
| R(514+- 633†)                           | 0,73              | 0,70              | 0,29      | 0,24             | 0,19              | 0,11              |
| R <sub>1</sub> (5031- 6331)             | 0,77              | 0,74              | 0,48      | 0,46             | 0,42              | 0,43              |
| R(512t- 633t)                           | 0,52              | 0,59              | -0,15     | -0,14            | -0,87             | -0,80             |
| R(512+- 642+)                           | -0,28             | -0,18             | -0,4I     | -0,32            | -0,89             | -0,85             |
| R(5121- 6511)                           | -0,36             | -0,23             | -0,5I     | -0,43            | -0,90             | -0,88             |
| R(5211- 6511)                           | -0,88             | -0,86             | -0,9I     | -0,91            | -0,97             | -0,97             |
| M(514+- 633+) *                         | 0,07              | 0,18              | 0,06      | 0,08             | 0,004             | 0.03              |
| M(5031- 6331)                           | -0,13             | -0,29             | -0,09     | -0,15            | -0,04             | -0,07             |
| M(5I2t- 633t)                           | -0,25             | -0,28             | 0,09      | 0,07             | 0,45              | 0,30              |
| M(512†- 642†)                           | 0,22              | 0,10              | 0,17      | 0,36             | I,09              | I,42              |
| M(512†- 651†)                           | -0,03             | -0,0I             | -0,0I     | -0,07            | -0,09             | -0,15             |
| M(52It- 65It)                           | 0,01              | 0,0I              | 0,002     | 0,01             | 0,0I              | 0,02              |
| B(EI) <sup>эксп</sup> ·10 <sup>-8</sup> | 17                | I,4               | 1,42      | <b>II,</b> 5     | 40,9              | 38                |
| F(EI) <sup>2</sup> sw                   | 0,1               | 6,7               | 3,9       | 0,75             | 4,9               | 6,0               |

<sup>к</sup> M(5I4↓- 633†) - вклад компонента (5I4↓- 633†) в полный матричный элемент в IO<sup>-2</sup>e•Фм, B(EI)<sup>эксп</sup> - е<sup>2</sup>.барн.

и <sup>169</sup> үЬ). Основной вклад в вероятность перехода дают компоненты (5121-6331), (5121-6421), (5031-6331) и (5141-6331) (см. табл. 6). Ясно, что как и в случае рассмотренного выше перехода  $5/2^- \rightarrow 7/2^+$ , компонент (5121-6421) должен быть подавлен за счёт малой величины поправки  $R_{f}$ . Причем в <sup>165</sup> Dy компоненты (5121-6331) и (5121-6421) практически уничтожаются за счёт их некогерентного вклада, а в <sup>169</sup> үь вклад компонента (5121-6421) меньше, чем компонента (5121-6331) (см. табл. 6). Если учесть полученные выше выводы относительно измеренного в работе<sup>18</sup> времени жизни состояния 261,8 кзВ в ядре <sup>165</sup> Dy, то факторы задержки для переходов типа  $7/2^- \rightarrow 7/2^+$ , равные ~ 0,1 и  $\leq 6,7$  для изотопов <sup>165</sup> Dy и <sup>169</sup> Yb соответственно, показывают разумное согласие с экспериментальными оценками.

Аналогичные переходы наблюдаются также в изотонах с N = 101 ( $^{169}$ Er и  $^{175}$ W). Здесь вследствие частично-дырочного характера перехода подавлен компонент (633†-512†), и компонент (642†-512†) яв-

ляется определяющим. Кроме того, как видно из таблицы 6, в случае ядра  $^{169}$  Er компоненты (512<sup>+</sup>-633<sup>+</sup>) и (503<sup>+</sup>-633<sup>+</sup>) сравнимы по величине, но имеют противоположные знаки, что приводит к их компенсации и уменьшению величины полного матричного элемента перехода. Это объясняет тот факт, что величина вероятности перехода  $7/2^+ \rightarrow 7/2^-$  в ядре  $^{169}$ Er на порядок меньше аналогичного перехода в ядре  $^{175}$ W.

В случае ядер с N = IO3 поправки R для основных компонентов (633†-512†) и (642†-512†) относительно велики, а их вклады – когерентны. Полученные нами факторы задержки 4,9 и 6,0 указывают на достаточно удовлетворительное согласие с экспериментом.

4. BHBOILH

Проведенный анализ вероятностей EI-переходов типа 5/2<sup>-</sup> [512] = 7/2+ [633] показал. что наряду с учётом спаривательного взаимодействия, которое в этом случае играст важную роль, необходим последовательный расчёт в рамках неалиабатической вращательной модели, учитывающей кориолисово смешивание состояний. Значительные примеси в волновую цункцию состояния 7/2<sup>+</sup> [633] дают компоненты 5/2<sup>+</sup> [642] и 3/2<sup>+</sup> [651]. Последний компонент имеет заметную величину в более тяжелых по А нечётно-нейтронных ядрах и в состояниях с большой величиной 1<sup>π</sup>. Так как матричный элемент M(5I21-6421) приблизительно на порядок больше матричного элемента М(5121-6331), а примесь орбитали (6421> в волновую функцию состояния 7/2+ [633] составляет ≤ 4%, то с учётом геометрических факторов компонент (5I21-6421) должен составлять приблизительно I/5 часть величины компонента (5I2<sup>+</sup>-633<sup>+</sup>). Дальнейшая ситуация зависит от величины сверхтекучей поправки. Так, в случае изотонов с N = 99, за счёт малой величины  $\mathsf{R}_{f}$  происходит подавление компонента (5121-6421), а в случае изотонов с N = IOI - подавление компонента (5121-6331). В ядрах с N = 103 значения  $R_{\pi}$  для обоих компонентов велики, и полная вероятность EI-перехода зависит от знака вкладов этих компонентов. Эта ситуация очень наглядно проявляется на примере ядра 173 үь . гле указанные компоненты практически уничтожают друг друга, в результате чего наблюдается сильная задержка EI-перехода типа  $7/2^+7/2$  [633]  $\longrightarrow 5/2^-5/2$  [512] .

Расчёты показали также, что для хорошего согласия с экспериментом необходимы были более точные значения сверхтекучих поправок  $R_f$ , которые мы получали "ручной" подгонкой энергий одночастичных состояний. Уменьшение факторов задержки для всех приведенных в таблице I переходов и особенно одновременное улучшение факторов задержки для переходов типа  $5/2^{-}5/2$  [512]  $\rightleftharpoons$   $7/2^{+}7/2$  [633] и  $7/2^{-}5/2$  [512]  $\rightleftharpoons$   $7/2^{+}$  7/2 [633] и  $7/2^{-}5/2$  [512]  $\rightleftharpoons$   $7/2^{+}$  7/2 [633] . Наблюдаемых в одном и том же ядре, подтверждают наши выводы.

Очевидно, улучшение согласия приведенных вероятностей EI-переходов с экспериментом можно получить в случае использования одночастичного спектра, рассчитанного с учётом различия в величинах равновесной деформации. Кроме того, предварительные оценки учёта выбрационных примесей показывают на улучшение в два-три раза согласия с экспериментом.

## ЛИТЕРАТУРА

- I. Bunker M.E., Reich C.W. Rev.Mod.Phys. 1971, 43, p. 348.
- 2. Бор О., Моттельсон Б. Структура атомного ядра. Т.2, "Мир", М., 1977.
- 3. Гареев Ф.А. и др. ЭЧАЯ, 1973, 4, с.357.
- 4. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 5. Kerman A.K. Kgl.Dan.Vidensk.Selsk. Mat.-Fys.Medd. 30, No 15, 1956.
- 6. Базнат М.И. и др. ЭЧАН, 1973, 4, с.941.
- Гадецкий О.Г., Пятов Н.И. Изв. АН СССР, Серия физ., 1965, 29, с.830. Препринт ОИАИ, Р1907, Дубна, 1964.
- 8. Vergnes M.N., Rasmussen J.O. Nucl. Phys., 1965, 62, p. 233.
- 9. Meiling W., Stary F. Preprint ZPK-PhA 21, 1966.
- IO. Соловьев В.Г. Влияние парных корреляций сверхпроводящего типа на свойства атомных ядер. Атомиздат, М., 1963.
- II. Pyatov N.I. Acta Phys.Polon., 1964, 25, p. 21.
- I2. Monsonego G., Piepenbring R. Nucl. Phys., 1964, 58, p. 593.
- IЗ. Базнат М.И., Пятов Н.И. Ядерная физика, 1973, 18, с.762.
- I4. Andrejtsheff W. et al. Phys.Lett. 1972, 40B, p. 92.
- I5. Rezanka I. et al. Phys.Rev., 1973, C7, p. 1633.
- I6. Rosel F. et al. Atomic Data and Nucl.Data Tables, 1971, 21, p.137.
- I7. Andrejtscheff W., Schilling K.D. Z.Physik, 1978, A289, p. 107.
- I8. Funke L. et al. Nucl. Phys. 1968, A118, p. 97.
- 19. Bonitz M. Thesis Deutsche Academie der Wissenchaften zu Berlin, 1969.
- 20. Lobner K.E.G. Z. Physik., 1968, 216, p. 372.
- 2I. Nabielek H. Thesis, Physikinstitut Reaktorzentram Sibersdorf, Austria, 1968.
- 22. Jastrebski J. et al. Nucleonika, 1966, 11, p. 471.
- 23. Unik J.P. Bull.Am. Phys. Soc. 1964, 9, p. 108.
- 24. Walker P.M. et al. J. Phys. (London), 1978, G4, p. 1655.
- 25. Аликов Б.А. и др. Препринт ОМЯА, 4-83-535, Дубна, 1983.
- 26. Малов Л.А. и др. Препринт ОИЛИ, Р4-83-811, Дубна, 1983.

Рукопись поступила в издательский отдел З марта 1986 года. Аликов Б.А.и др.

Анализ El-переходов в нечетно-нейтронных ядрах редкоземельных элементов. Влияние парных корреляций

и кориолисова смешивания состояний на Е1-переходы

в нечетных ядрах с №=99-103

Приведенные вероятности Е1-переходов типа 5/2<sup>-</sup>[512]‡ 7/2<sup>+</sup>[633] в нечетнонейтронных ядрах с №=99-103 анализируются в рамках неадиабатической вращательной модели с использованием волновых функций и энергий одночастичных состояний, в аксиально-симметричном потенциале Саксона-Вудса. Поведение приведенных вероятностей исследуемых переходов в зависимости от числа нейтронов объясняется главным образом кориолисовым взаимодействием и парными корреляциями сверхтекучего типа. Получено хорошее согласие с экспериментом /факторы задержки Е1-переходов F≲6/. Объяснена сильная задержка перехода 350,7 кэВ в ядре <sup>173</sup>уь.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

## Перевод 0.С.Виноградовой.

Alikov B.A. et al. Analysis of El-Transitions in Odd-Neutron Nuclei of Rare-Earth Elements. Influence of Pairing Correlations and Coriolis Coupling on El-Transitions in Odd Nuclei with N=99-103

P6-86-126

P6-86-126

The reduced probabilities of E1-transitions of  $5/2^{-}[512] \neq 7/2^{+}[633]$  type in odd-neutron nuclei with N=99-103 are analysed on the basis of nonadiabatic rotator model with using wave functions and energies of single-particle states in axial-symmetric Woods-Saxon potential. Behaviour of reduced probabilites of the studied transitions depending on neutron number is explained mainly by Coriolis interaction and pairing correlations of superfluid type. A good agreement with experiment has been obtained (hindrance factors of E1transitions F  $\leq$  6). Essential delay of 350.7 keV transition in 173Yb nucleus is explained.

The investigation has been performed at the Laboratory of Nuclear Problem, JINR.

16