

объединенный институт ядерных исследований дубна

P6-85-937

С.Т.Бонева, Э.В.Васильева, Ю.П.Попов, А.М.Суховой, В.А.Хитров, Ю.С.Язвицкий

ИССЛЕДОВАНИЕ γ -РАСПАДА 163 Dy С ПОМОЩЬЮ РЕАКЦИИ (n, 2γ)

Направлено в Известия АН СССР, серия физическая Данная работа продолжает цикл исследований двухквантовых χ -каскадов в реакции захвата тепловых нейтронов ядрами редкоземельных элементов. Ранее сообщалось $^{/1-4/}$ о результатах, полученных для 165 Ду , 175 ув , 144 ус и 168 $_{\it E}$ $_{\it C}$ соответственно. В данной работе на основе анализа двухквантовых каскадов в реакции 162 Ду (n, 2 χ) 163 Ду получены сведения об уровнях 163 Ду с энергией их возбуждения до 4,9 мэв. Методом суммирования амплитуд совпадающих импульсов (САСИ) выделялись двухквантовые каскады из случаев регистрации χ -квантов радиационного захвата тепловых нейтронов этим ядром.

Спектрометр САСИ имел два Ge(L) детектора с энергетическим разрешением 3,5 кэВ для перехода 1332 кэВ (60 Со). Полная эффективность регистрации каскада 60 Со в использованной геометрии 5 составляла 4,8 10 случая на один распад ядра-источника. Отбор случаев захвата тепловых нейтронов производился по методу времени пролёта на 30-метровой базе реактора ИБР-30. Энергетическая калибровка χ -спектрометра выполнена по аннигиляционной линии 511 кэВ и по известному одновылетному пику, соответствующему переходу 5881 кэВ в ядре 163 Ду 6 . Время накопления информации составило 248 часов. Результирующий спектр сумм амплитуд совпадающих импульсов (САСИ) изображен на рис. 1.

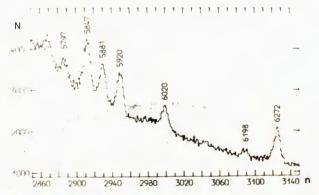


Рис. I. Спектр сумм амплитул совпадающих импульсов, измеренный в реакции $^{162}\mathcal{D}_{\mathcal{Y}}$ (n , 2 $^{\gamma}$) $^{163}\mathcal{D}_{\mathcal{Y}}$. По оси абсцисс — номер амплитудного канала; по оси ординат — число отсчетов.

Энергия (в кэВ), соответствующая полному поглощению двужквантовых каскадов, указана на рисунке над пиками. В этом спектре наблюдаются 7 пиков, появляющихся в результате регистрации двужквантовых каскадов, заселяющих основное и ряд возбужденных состояний ядра $163 \, \mathcal{D} y$ с энергиями 0, 73, 251, 351, 390, 422+427 и 475 кэВ.

В /1,2/ было показано, что в методике САСИ наиболее информативны так называемые дифференциальные спектры (ДС), накопленные из импульсов одного детектора, которые в сумме с совпадающими импульсами другого детектора дают пик полного поглощения в спектре САСИ. При обработке ДС использовался метод исключения влияния подложки под пиками в спектре САСИ, изложенный в /5/, и метод улучшения разрешения в ДС без потери эффективности /7/. После поправки на эффективность регистрации полученный ДС становится симметричным относительно его центра. На рис. 2 в качестве примера показан откорректированный ДС для пика полного поглощения с суммарной энергией 6272 кэВ. Площадь всех ДС нормировалась так, чтобы сумма отсчетов в каждом равнялась 100. Получены 7 ДС с суммарной энергией каскадов: 6272, 6198, 6020, 5920, 5881, 5847, 5797 къВ.

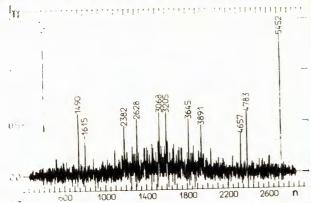


Рис. 2. Распределение интенсивностей у -каскадов с суммарной энергией 6272 кэВ (дийференциальный спектр). Цифры над пиками — энергии наиболее интенсивных у -переходов, кэВ.

Анализ положения и площадей разрешенных пиков в ДС позволил определить энергию и относительную интенсивность отдельных наиболее интенсивных каскадов. При этом из рассмотрения исключались

те каскады, один из квантов которых имел энергию меньшую, чем 520 кэВ. Данные о выделенных нами 250 каскалах привелены в табл. № I, где обозначено: E_T и E₂ - энергии первого и второго у -переходов каскада; I - относительная интенсивность с соответствущией ошибкой (δI); $\mathbf{E}_{\mathbf{M}}$ — энергия промежуточного уровня с ошибкой ($\delta \mathcal{E}_{\mathcal{M}}$). Значения интенсивностей I определялис ОТНОСИТЕЛЬНО СУМЫН ИНТЕНСИВНОСТЕЙ ВСЕХ КАСКАЛОВ. ЗАСЕЛЯЮИХ ЛАНный уровень (вилючая неразрешенные в эксперименте каскады), т.е. относительно всей площали дифференциального спектра. Порядок сдедования квантов в каскаде определялся методом, изложенным в /1/. Суть его состоит в том, что если в нескольких ДС обнаруживаются одинаковые по энергии / -переходы, то они с большой вероятностью могут соответствовать одному и тому же первичному перекоду (конечное состояние в разных ДС - разное). С помощью этого метода для 160 из всех 250 каскадов определён порядок следования /квантов. Благодаря этому для энергии возбуждения до ≈ 5 МаВ определены положения 58 промежуточных уровней (см. табл. 2), через которые проходят наиболее интенсивные каскады, вызванные распадом компаунд-состояния $^{163}\mathcal{D}_{4}$ с $\mathcal{I}^{\mathcal{R}}=\mathrm{I}/2^{+}$. Для тех каскадов, которые не были размещены в схеме распада по указанному методу, очередность вылета / -квантов определялась в предположе-X-квант с большей энергией. Coнии, что первичным является поставление полученных в нашем эксперименте значений энергии уровней с результатами других работ 76/ производится в табл. 3. Видно хорошее согласие в области энергий возбуждения ниже 2,2 мэВ с результатами, полученными в реакции (л, х). Но в наших результатах отсутствуют несколько уровней, которые наслюдались в (d, p) или (d, t) реакции. Не исключено, что эти уровни имеют спин > 5/2 и не наблюдаются в спектрах реакции (п, 2 х) из-за малости радиационных ширин переходов мульти-€ > 2. Энергия верхнего возбужденного уровня, который смогли обнаружить с помощью реакции (n, χ), в этом ядре составляет чуть более 2,26 МаВ. Методом САСИ выше этой энергии определено еще 33 уровня.

В табл. 4 приведены значения сумм абсолютных выходов каскадов на 7 конечных уровней с Е $_f$ < 475 кэВ. Эти значения получены на основе относительных интенсивностей каскадов из табл. В I с использованием для нормировки данных сб интенсивностях первичных жестких χ -переходов с энергией 5451,5122,5074, 4833, 4782 и 4747 кэВ, заимствованных из $^{/8/}$. При этом интенсивность переходов, измеренных в $^{/8/}$, была откорректирована с учетом современных данных $^{/9/}$. Также были использованы данные об относительных интенсивностях вторичных \mathfrak{g} —переходов, следующих за указанными выше первичными \mathfrak{g} —переходами, которые определялись по специально построенным спектрам совпадающих импульсов из кодов совпадений, полученных в данном эксперименте. Как видно из табл. 4, всего в семи ДС, соответствующих наблюдаемым двухквантовым каскадам, представлено около 28% ($\Sigma I_{\mathfrak{gg}} = 27.6 \pm 1.6$ %) полной радиационной ширины захватного состояния.

Таблица І

Энергии $\mathbf{E_I}$ и $\mathbf{E_2}$ J -квантов каскадов, их относительная интенсивность $I = \delta I$ и энергия промежуточного уровня $\mathbf{E_M}$ $\pm ($ $\delta \mathbf{E_M})$ для разных полных энергий каскадов $\mathbf{E_I}$ + $\mathbf{E_2}$

	E_1	E_2	I	δI	EM	8Em	
1	2	3	4	5	6	7	
		E1+62	= 6272,1				
1 2	5450,4 4781,7	821,2 1490,0	11,72 4,83	0,26	820,2 1488,2	0,3 1,3	
2 3 4	4433,8 4318,1	1837,9 1953,6	0,68 0,68	0,20	1835 1 1949,9	2,0	
	4135.7	2136,1	0,51	0,26	2134,5	0,8	
5 6 7	4074,9 3932,2	2196,8 2339,6	1,60 1,43	0,25	2197,3 2337,9	1,5	
8	3921,9 3638,3	2349,9 2433,5	0,79 1,80	0,33	2347,8 2432,1	1,0 1,3 0,6	
10	3811,5 3686,6	2460,3	0,52	0,27	2459,4	0,2	
12	3643,9	2585,2 2627,9	1,41 4,08	0,28	2583,1 2626,3	2,0 1,8	
13	3436,7 3400,6	2835,1 2871,2	0,90 1,10	0,34	2835,5 2871,7	1,0	
15	3292,1 3274,4	2979.8 29 9 7,5	0,51 1,07	0,33 0,34 0,39	2977,6 2997,1	2,0 0,5	
17	3225,2	3046,7	272	0,35	3047,5	1,7	
19	3204,3 3169,0	3067,6 3102,9	1,32	0,35 0,38 0,36	3066,8 3103,2	0,4	
20	3057,6 2919,8	3214,3 3352,1	4,01 1,32 1,31 1,36	0,38 0,32	3216,9 3352,5	2,8	
22	2774,5 2657,2	3497,4 3614,7	1,55 1,28	0,32	3497,4 3612,2	1,0	
24	2535,5	3736,5	1,32	0,26	3737,5	1,5 1,5	
25 26	2391,4 1530,6	3880,6 4741,6	1,05	0,34	3883,9 4738,6	2,7	
27 28	5675, 4 5606, 3	596,9 666,5	0,28	0,12			
29 30	5217,6 4899,4	1055,1 1373,3	1.05 0,40	0,24			
31	4885,2	1387,5	0,74	0,23			

			**				
1	2	7			Tac	илица I	(продолжение)
	-	3	4	5	6	7	*
32 33 34 35 36 37 38 39 40 41	4657,2 4499,0 4489,9 4449,4 3890,7	1592,7 1615,4 1773,7 1782,8 1823,3 2382,0 2557,4 2732,8 2765,5 2938,1 3084,5	0,51 2,62 0,88 0,33 0,63 2,92 1,19 0,46 1,64 1,13	0,22 0,22 0,20 0,20 0,19 0,33 0,27 0,29 0,32 0,33 0,35			
		E1+6	6198,2				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	5451,0 5219,3 4781,9 4577,4 4438,5 4322,9 4137,2 3622,2 2956,7 1344,2 5514,0 5249,1 4115,7 3895,9 3568,7	746,9 978,7 1416,1 1620,6 1759,5 1875,2 2060,8 2575,9 3241,5 4854,1 684,7 949,6 2081,7 2302,8 2630,0	20,74 2,29 8,72 3,05 2,03 2,22 2,55 2,56 2,68 2,13 2,08 2,42 2,42 2,45 3,30 2,74	0,84 0,91 1,04 0,94 0,89 1,07 1,22 1,26 1,32 0,97 0,84 0,89 1,20 1,48	820,2 1050,0 1488,2 1693,4 1835,1 1949,9 2134,5 2648,3 3314,3 4928,4	QB 2,4 1,3 Q5 2,0 2,0 Q8 Q,0 1,7	
		E1+62	6020,5				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 22 12 22 23 24 5 26 27	5451,0 5187,0 5123,6 5016,4 4781,2 4075,7 3811,8 3544,2 3433,9 3296,2 3203,7 3088,8 3041,1 2956,6 2920,5 2531,7 5412,9 4963,2 4747,1 4220,8 4114,5 3505,3 35116,8 3077,8 3033,4	569, 1 833,0 896,5 1003,7 1238,9 1944,5 2208,5 2476,1 2586,3 2724,1 2816,6 2931,5 2979,2 3063,7 3099,9 3488,7 608,1 1028,5 1057,8 1273,	2,69 3,33 5,65 1,62 1,00 1,48 2,44 1,50 1,67 4,76 5,67 3,75 1,88 4,01 1,05 1,24 1,13 0,86 1,24 1,61 2,19 3,21 3,03	0,36 0,53 0,49 0,52 0,39 0,55 0,57 0,74 0,67 0,68 0,95 0,95 0,95 0,70 0,38 0,37 0,42 0,53 0,72 0,73 0,96	820,2 1082,1 1147,8 1254,8 1488,2 2197,3 2459,4 2727,5 2835,5 2977,6 3066,8 3180,7 3229,8 3314,3 33552,5 3737,5	0,3 1,8 0,5 0,2 1,3 1,5 0,7 1,0 2,0 1,5 0,1 0,2 1,5	

		•			Таблица	I (mp	одолжение)							Тобжино Т	(manamanya)
1	2	3	4	5	6	7			1	2	3	4	5	6	(продолжение) 7
		E ₁ +E ₂ =	5920,3						6	4782,4 4578,3	1098,8 1302,9	3,76 4,07	0,30 0,33	1488,2 1693,4	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 1	5335,5 5218,1 5212,3 5111,2 5074,7 4831,6 4782,7 4319,6 4073,7 4050,1 4025,3 4000,2 3932,7 3910,3 3839,4 3799,4 3744,8 3709,6 3664,2 3655,6 3514,1 3435,9 3398,0	584,2 701,6 707,4 808,5 845,0 1088,2 1137,1 1600,3 1846,2 1869,8 1894,6 1919,7 1987,2 2009,7 2080,5 2120,5 2175,2 2210,4 245,9 2484,1 2522,0	2,90 1,98 2,46 0,70 6,05 1,90 3,63 1,51 0,77 1,03 0,98 1,57 1,27 0,78 1,27 0,93 1,51 1,03 1,03 1,03 1,03	0,17 0,66 0,67 0,29 0,31 0,20 0,31 0,30 0,29 0,28 0,27 0,29 0,35 0,35 0,35 0,35 0,35	934,9 1050,0 1056,1 1159,7 1196,3 1437,6 1488,2 1949,9 2197,3 2221,1 2243,3 2269,0 2337,9 2361,7 2432,1 2471,5 2525,8 2562,0 2606,7 2614,1 2755,1 2871,7	0,4 0,1 0,1 1,0 1,0 1,0 1,0 1,0 1,0		Company	8 9 10 11 12 13 14 15 16 17 18 19 20 12 223 24 25 27 28 29 31	4072,4 4030,1 4001,6 3799,5 3690,3 3664,4 3642,8 3152,0 2935,1 2533,2 1531,9 5218,2 4740,7 4473,3 4314,2 4266,7 3683,9 3539,3 33448,5 3413,3 3393,3 3393,4 2984,4	1808,7 1851,1 1879,5 2081,7 2190,9 2216,8 2238,4 2676,4 2729,1 2946,1 3347,9 4349,2 662,9 1140,8 1566,9 1614,4 2197,1 2341,7 2432,6 2467,7 2487,4 2507,6 2896,7	1,93 0,91 4,17 1,13 2,07 2,32 0,91 1,16 1,59 2,33 4,45 1,10 2,91 1,10 2,91 1,10 1,07 1,31 1,17	0,32 0,40 0,43 0,90 0,44 0,45 0,45 0,45 0,33 0,33 0,94 0,47 0,45 0,45 0,45 0,45	2197,3 2243,3 2269,0 2471,5 2583,1 2606,7 2626,3 3066,8 3118,0 3333,7 3737,5 4738,6	1,3 C,5 1,9 1,6 C,0 1,8 C,8 C,8 C,8 C,8 C,8 C,8 C,8 C,8 C,8 C
24 25 26	3359,1 3291,7 3221,7	2560,9 2628,3 2698,3	0, 8 4 1,14 1,77	0,39 0,37 0,42	2912,5 2977,6	2,0					E1+62=	5847,1			
227 28 29 30 31 33 33 34 35 36 37 38 40 41 42 44 44 45 46 47 48 49	3204,2 3165,6 3152,9 2935,8 2915,2 2660,3 2384,1 5387,1 4742,8 4346,2 4267,1 3790,9 3755,9 3729,8 3683,6 3577,8 3409,5 3369,4 3347,8 3239,4 3132,7 2973,4	2715,9 2754,4 2767,1 2984,3 3004,9 3259,9 3536,1 533,9 1178,2 1574,8 1653,9 1936,2 2130,1 2165,1 2191,2 2237,4 2343,2 2511,5 2511,5 2513,6 2788,3 2947,6	1,70 1,39 1,70 1,38 1,04 1,04 1,09 1,11 1,36 1,91 0,83 0,83 1,03 1,03 1,08 1,08 1,87	0,42 0,39 0,41 0,38 0,40 0,35 0,20 0,30 0,24 0,28 0,28 0,34 0,37 0,41 0,45 0,45 0,45 0,45 0,42	3047,5 3066,8 3103,2 3118,0 3333,7 3352,5 3612,2 3883,9	1,7 0,4 0,8 0,0 2,0 2,5 2,7			1 2 3 4 5 6 7 8 9 10 11 213 14 15 6 17 18 9 22 1 22 3 24	5223,4 5214,1 5190,7 5122,7 4784,9 4577,2 4435,4 4391,6 4071,5 4021,6 4071,5 4021,7 4004,1 3934,5 3924,5 3924,5 3705,7 3685,4 3658,2 3647,5 3623,0 3514,6	623,9 633,2 656,5 724,6 1062,4 1270,1 1411,8 1449,8 1525,7 1686,6 1775,7 1819,5 1843,1 1912,8 1922,8 1939,0 2051,6 2101,7 2141,5 2161,8 2189,0 2199,7 2224,2 22332,7	1,46 1,65 1,77 2,43 1,77 2,43 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,7	0,17 0,17 0,17 0,23 0,29 0,29 0,27 0,31 0,23 0,22 0,21 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23	1050,0 1058,1 1082,1 1147,6 1488,2 1693,4 1835,1 1872,5 1949,9 2197,3 2243,3 2269,0 2337,9 2347,8 2361,7 2475,2 2552,8 2562,0 2583,1 2614,1 2626,3 2648,3 2755,5	201,85 0201,00 201,00 1,01 1,01 1,01 2,4 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
		E1+62=	5881,1					-	24 25 26	3514,6 3435,5 3357,9	2332,7 2411,7 2489,3	1,06 1,40 1,05	0,41 0,37 0,40	2755,1 2835,5	2,1 1,0
1 2 3 4 5	5336,7 5212,1 5111,3 5074,8 4832,6	544,5 669,1 769,9 806,4 1048,6	1,25 4,29 5,28 1,94 1,90	0,23 0,42 0,38 0,38 0,31	934,9 1058,1 1159,7 1196,3 1437,6	0,6 0,9 0,1 0,0 1,8			27 28 29 30 31 32	3273,4 3169,1 3154,1 3091,7 3054,1 2940,1	2573,8 2573,8 2678,1 2693,1 2755,5 2793,1 2907,1	0,81 0,88 0,70 2,52 0,88 1,78	0,32 0,34 0,34 0,51 0,40	2912,5 2997,1 3103,2 3118,0 3180,7 3216,9 3333,7	0,6 0,5 1,4 0,8 1,5 2,8 2,0

Таблища 2

Зарегистрированные энергии вторичных переходов, возбуждаеных первичным γ -переходом \mathbb{F}_{χ} на уровень \mathbb{F}_{χ} для разных каскадов

	1				E;	S		
E,	EM	6272	6198	6021	5920	5881	5847	5797 =EI +E
FIFO	0017	000	FUG	540			de.	•
5450,8	821,3	820	747	569	507		× 1	
5336,1	936,0		007		583	545		
5221,0	1051,1	,	977		698		626	57.7
5212,8	1059,3			0774	706	668	634	
5188,9	1083,2			831			659	
5123,2	1148,9			897			724	
5111,2	1160,9				808	770		
5074,7	1197,4				844	807	1	
5016,2	1255,9			1004				782
4833,4	1438,7				1086	1048		964
4782,8	1489,3	1488	1415	1237	1136	1098	1064	1015
4577,6	1694,5		1620			1304	1270	
4435,9	1836,2	1835	1762				1411	
4398,5	1873,6			1	1		1449	1399
4321,1	1951,0	1950	18'77		1598		1526	1477
4161,7	2110,4					11	1686	1636
4136,5	2135,6	2135	2061					
4073,6	2198,5	2198		1946	1846	1808	1774	
4049,8	22223				1869			1748
4027,7	2244,4				1891	1854	1820	
4002,0	2270,1				1917	1879	1845	
3933,1	2339,0	2338			1986		1914	
3923,2	2348,9	2348		1			1924	
3909,3	2362,8				2010		1938	
3838,9	2433,2	2432			2080			
3811,6	2460,5	2460		2208				
3799,5	24726				2120	2082		
3795,8	2476,3					2.002	2052	2002.
3745,2	2526,9				2174		2102	
3708,9	2563,2				2210		2138	2089
3687,9	2584,2	2583			1	2193	2160	2110
3664,3	2607,8	-505			2255	2217	2.00	2.10
3656,9	2615,2				2262	22.17	2190	
3644,7	2627,4	2626		-	2.202	2236	2203	2153
3622,6	2649,5	2020	2575			2230	2225	2133
3543,4	2728,7		23/3	2476			2223	2254
	2,20,,			2470				4.634

Таблица	I	(продолжение)
	_	A S P O WONTWOUND !

	1 2	3	4	5	6	7	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 3715, 8 3693, 9 3503, 0 3494, 1 3409, 2 3392, 3 3290, 8 3099,0	5,0 3461,2 7,3 4312,8 7,9 4506,3 7,1 558,1 7,2 690,3 7,9 969,1 7,9 969,1 7,9 1246,0 1246,0 1259,1 7,1 422,3 1500,5 6 1580,4 1740,7 0 2132,1 2453,8 2453,8 12556,3 2748,0	1,20 3,86 0,40 0,40	0,38 0,38 0,31 0,16 0,17 0,18 0,22 0,19 0,20 0,19 0,28 0,27 0,19 0,28 0,38 0,43 0,33 0,43 0,37 0,37	3497,4 3883,9 4738,6 4928,4	1,0 2,7 1,4 1,7	
		E ₁₊₈	2= 5797,4	,-			
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 20 21 22 23 24 25 27 28 29 30 10 11 2 12 20 20 20 20 20 20 20 20 20 20 20 20 20	5223,3 5016,0 4835,9 4784,6 4323,4 4162,7 4049,6 3795,9 3711,5 3689,2 3644,7 3518,8 3167,3 3050,7 3041,3 2938,2 2386,7 1532,6 5126,4 5080,6 4813,5 4348,6 4315,3 3817,2 3698,9 3472,1 3458,4 3362,5	574,8 781,6 961,7 1013,0 1398,0 1474,2 1634,8 1748,0 2001,7 2086,0 2108,3 2152,9 2254,8 2278,7 2630,2 2746,8 2756,2 2859,3 3410,7 4264,8 670,7 716,5 983,6 1448,5 1481,8 1979,9 2098,3 2324,1 2338,6 2434,6	2,79 0,97 1,35 2,55 3,24 1,26 2,39 2,30 1,51 2,38 1,53 1,66 2,54 1,61 2,25 2,45 1,92 2,46 0,14 2,46 1,38 1,57 1,65 2,20 1,57 1,65 2,20 1,57 1,65 2,20 1,57 2,20 2,30 2,45 1,51 2,29 2,45 1,51 2,29 2,45 1,51 2,29 2,45 1,51 2,29 2,45 1,51 2,29 2,45 1,51 2,51 2,52 2,52 2,53 2,53 2,53 2,54 2,54 2,54 2,54 2,54 2,54 2,54 2,54	0,45 0,55 0,40 0,51 0,67 0,59 0,48 0,61 0,58 0,57 0,55 0,57 0,55 0,91 0,92 0,73 0,59 0,57 0,46 0,55 0,40 0,59 0,57 0,60 0,59 0,56 0,56	1050,0 1254,8 1437,6 1488,2 1872,5 1949,9 2109,3 2221,1 2475,2 2563,1 2626,3 2727,5 2755,1 3103,2 3216,9 3229,8 3333,7 3883,9 4738,6	2,4 0,1,8 1,1 1,0 0,1 2,4 0,7 2,1 4,4 2,8 0,1 2,7 1,4 2,7 1,4	

E,		E ₂								
	Em	6272	6198	602I	5920	5881	5847	5797		
3515,8	2756,3				2403		2332	2282		
3435,5	2836,6	2836		2584	2484		2412	2202		
3399,3	2872.8	2872			2520		2412			
3358,5	2913,6				2561		2489			
3293,3	2978,8	2978		2726	2626		2407			
3273,9	2998,2	2997					2573			
3223,5	3048,6	3048			2696					
3204,2	3067,9	3067		2815	2715	2677				
3167,8	3104,3	3103			2751		2680	2630		
3153,0	3119,1				2766	2728	2694	2020		
3090,3	3181,8			2929			2757			
3054,1	3218,C	3217					2793	2744		
3041,2	3230,9			2979				2757		
2956,7	3315,4		3241	3063			1			
2937,3	3334,8				2982	2944	2910	2861		
2918,5	3353,6	3353		3101	3001					
2773,6	3498,5	3498			ì		3074			
2658,7	3613,4	3612		0.0	3260		j			
2533,5	3738,6	3738		3486		3348				
2387,0	3885,1	3884			3532		3460	3411		
1532,3	4739,8	4739				4349	4315	4266		
1342,6	4929,5	·	4855 .			-	4505			

Таблица 3 Сопоставление результатов определения энергий возбужденных состояний разными методами

(n, 28)	(n, 8)	(d, p)	(d,t)	(n.28)	(n.8)	(d,p)	(d,t)
82I 859/* 885/* 936 1051 1059 1082 /1115/	82I 859 884 935 949 1049 1056 1088 1111	827 86I 887 918 949 I058 I087	857 882 911 933 947 1050 1059 1063 1109	2244 2270 /2287/ 2339 2349 2363 /2379/ /2387/	2262	2259 2288 2317 2351	2275 2285 2378 2378 2387

n,28	(n,8)	(d, p)	(d,t)	(n, 28)	(n, x)	(d, p)	(d,t)
II49 II6I 7II9I/ II97	1150	1159	II64 II9I	2460 2473 2476			
	1199	1199	1198 1250	2526 2563 2584			
,256 1279/ 1309/	-	1284	1276 1312	2608 2615			2609
1394/		1342	I360 I395	2627 2649 /2694/			2645 269I
439 489	I444 I493	I436 I448 I494	1427	2729 2756 2837			2001
1531/	1532	1533 1549	I499 I527	2873 2914 2979			
1593/		1549	1572	2998 3049			
1593/ 1615/	1619	1629	1613 1631	3068 3104			
694	1695	I663 I696 I7I3	I660 I691 I708	3119 3182 3218			
		1734	1753	323I 3315			
1799/	7010	1795 1817	1812	3335 3354			
836 874	I842 I875	I870 I887	I843 I876	3498 3613 3739			
(1925/ 1951	1923	1007	I923 I949	3885 4740			
1958/	1956	I957 I988	1986	4930			
/2005/	2003	2012					
	2045 2104		2042 2105				
2110	2143	2114					
2136 2158/ 2198	2I6I 2I93	2196	2I56 2I94				
2222	2216	2225					
	2200						

^{*} уровни, приведенные в скобках, получены в предположении, что первичным переходом является переход большей энергии. Соответствующие величины приведены только для тех случаев, когда уровень наблюдался в реакциях (n, y), (d, ρ) и (d, t).

Таблица 4

Абсолютный выход $I_{\chi\chi}$ (в % на захват) каскадов с суммарной энергией $\sum \bar{E}_{\chi}$ кэВ, \bar{E}_{f} и $\mathcal{I}^{\mathcal{R}}$ – энергия, спин и четность конечного уровня каскада /6/

ΣE _γ	6272	6198	6021	5920	588I	5847 ^a	5747
Ef	U	73	251	351	390	421,8;427,7	475
J×	5/02	7-2	5+2	1-2	302	3, 5, 2	52
INX	5,9 <u>+</u> 0,4	I,I±0,2	2,7 <u>+</u> 0,2	5,2 <u>+</u> 0,4	4,9 <u>+</u> 0,9	6,3 <u>+</u> I,I	I,5±0,6

а) Дублет, сумма интенсивностей двужквантовых каскадов на уровни 421.8 и 427.8 кэВ.

Литература

- I. Попов Ю.П. и др. Изв. АН СССР, сер.физ., 1984, т. 48, № 5, с. 891-900.
- 2. Васильева Э.В. и др. Изв. АН СССР, сер.физ., 1984, т. 48, № 10, с. 1907—1913.
- 3. Попов Ю.П. и др. Изв. АН СССР, сер.физ., 1984, т. 48, № 9, с. 1830—1832.
- 4. Васильева Э.В. и др. ОИЯИ, Р6-85-22, Дубна, 1985.
- 5. Богдзель А.А. и др. ОИЯИ, РІ5-82-706, Дубна, 1982.
- 6. Nucl. Date Sneets, 1980, v. 29, No 4, p. 653.
- 7. Суховой А.М., Хитров В.А. ПТЭ, № 5, 1984, с. 27.
- 8. Shult O.W.B. et al. Phys. Rev. v. 154, No 4., p.1146 (1967).
- 9. Nuclear Data Tables, 1981, v. 26, p. 511.

Рукопись поступ**ила в издатель**ский отдел 25 декабря 1985 года.

Бонева С.Т. и др. Р6-85-937 Исследование у-распада 163 Dy с помощью реакции (n, 2y)

Методом суммирования амплитуд совпадающих импульсов с двух Ge(Li) детекторов определены интенсивности 250 двухквантовых у-каскадов, заселяющих 8 низколежащих уровней компаунд-ядра 163 Dy. В схеме уровней ¹⁶³Dy размещено 160 таких каскадов; получены значения энергий возбуждения 58 уровней этого ядра. Также определено, что общая интенсивность всех двухквантовых каскадов в измеренных спектрах соответствует 23% полной радиационной ширины S-резонансов ядра ¹⁶³Dy.

Работа выполнена в Лаборатории нейтронной физики ОИЯН.

Препринт Объединенного института ядерных исследований. Дубна 1985

Перевод О.С.Виноградовой

Boneva S.T. et al. P6-85-937 Investigation of 163 Dy Gamma-Decay in the (n, 2ν)-Reaction

The intensities of 250 cascades of γ -transitions that populate eight low-lying levels of \$^{168}\$ Dy-compound-nucleus are determined by the summation method of amplitudes of toin-ciding pulses from two Ge(Li)-detectors. In a \$^{163}\$ Dy-level scheme 160 cascades are located; the values of 58 level energies of this nucleus are determined. It has been found that the sum of intensities of all two-quanta γ -cascades corresponded to 28% of total S-resonance radiation width of 163 Dy.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute, for Nuclear Research. Dubna 1985