2812/84

СООбщения Объединенного института ядерных исследований дубна

P6-84-149

Ц.Вылов, В.Б.Бруданин, В.М.Горожанкин, К.Я.Громов, И.Кульджанов^{*}, А.Маринов, А.Минкова, А.И.Муминов^{*}, В.Н.Покровский, Р.Ражаббаев^{*}, А.В.Саламатин

ИЗМЕРЕНИЕ СПИР'АЛЬНОСТИ НЕЙТРИНО ИЗ РАСПАДА ^{152m} Eu С помощью Ge(Li)- ДЕТЕКТОРА

* ИЯФ АН УЗССР, Ташкент

С помощью Ge(Li)-детектора объемом 100 см³ измерена спиральность нейтрино из распада ^{152m} Eu. Эксперимент выполнялся на реакторе BBP-CM ИЯФ АН УзССР в два этапа. Установка для измерения спиральности и контрольные измерения, выполненные на ней, описаны в $^{/1/}$. В настоящей работе приводятся результаты эксперимента, полученные на втором этапе.

1. ПОСТАНОВКА ЭКСПЕРИМЕНТА

Начиная с классического опыта Гольдхабера и др.^{/2/}, для определения спиральности нейтрино из радиоактивного распада использовался источник ^{152m} Eu, поскольку это позволяло существенно упростить постановку эксперимента.

Во-первых, в силу законов сохранения импульса и углового момента, для данной последовательности спинов и четностей $^{/3/}$, при захвате электронов из состояний с полным моментом 1/2 и при малом времени жизни состояния 1 - ($^{152} * Sm$) имеем

 $H_{v} = H_{v} \cos \theta$,

где H_y - спиральность /циркулярная поляризация/ излучения у963,4 кэВ, разряжающего уровень 1⁻⁽¹⁵² *Sm), H_y - спиральность /продольная поляризация/ нейтрино, θ - угол вылета у 963,4 кэВ относительно импульса ядра отдачи ¹⁵² Sm.

Во-вторых, используя процесс резонансного рассеяния /ставя дополнительный рассеиватель из 152 Sm /, можно значительно уменьшить эффективный интервал углов θ . Действительно, энергии нейтрино и уровня 963,4 кэВ близки, и возможна полная или почти полная компенсация потери энергии на отдачу при гамма-излучении, что в силу резкой энергетической зависимости сечения процесса рассеяния приводит к преимущественному выделению малых углов ($\cos \theta \approx 1$).

Следовательно, измерение спиральности нейтрино сводится к измерению циркулярной поляризации $_{\gamma}963,4$ кэВ, что можно сделать по ослаблению пучка при прохождении через намагниченный поглотитель /см., например, $^{/4/}$ /. Для этого необходимо измерить величину

$$\delta = 2 \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

121

111

объединсками институт исриних всследования БИБЛИСТЕНА

1

где N₊, N₋ - скорость счета какого-либо из переходов $\gamma_1 841,6$ или $\gamma_2 963,4$ кэВ, разряжающих резонансно-возбужденный уровень 963,4 кэВ, при противоположных направлениях магнитного поля.

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Блок-схема установки для измерения спиральности нейтрино показана на рис.1. Гамма-излучение 152m Eu проходит через анализирующий магнит, направление поля в котором периодически изменяется, и падает на рассеиватель из порошка 152 Sm₂ O₃.Спектр гамма-излучения, разряжающего резонансно-возбужденный уровень 963,4 кэВ 152 Sm, регистрируется Ge(Li) -детектором объемом 100 см³; коническая защита из вольфрама предохраняет детектор от прямого попадания гамма-квантов. Более подробно спектрометрическая аппаратура и другие методические вопросы описаны в /1/.

Источник 152m Еu получался в реакции 151 Еu(n,y). В качестве мишени использован порошок 151 Еu₂O₃ весом 10÷20 мг с обогащением 97%, помещенный в кварцевую ампулу. Мишени использовались повторно, максимальная кратность облучения /по 3÷4 мин./ данной мишени составляла 5÷7. В первых экспериментах активность источников 152m Еu составляла 100 мКи, затем постепенно была доведена до 1÷5 Ки.

С каждым источником проводилась серия измерений, длившаяся до 18-20 ч /т.е. до двух периодов полураспада 152 mEu /, что для наших условий эксперимента было близко к оптимальному. Система управления экспериментом обеспечивала в каждой серии автоматическое многократное повторение цикла измерений при разных направлениях магнитного поля и накопление двух результирующих спектров. Один из таких спектров показан на рис.2. Автономная микропроцессорная система $^{15/2}$ служит для записи спектров на магнитную ленту и для их предварительной обработки с целью контроля за ходом эксперимента. Полная обработка данных проводилась с помощью трехуровневой системы накопления, обработки и анализа спектрометрической информации $^{6/2}$ по методике $^{77/2}$; в частности, за N_{+} , N_{-} и их погрешности принимались оценки, даваемые програм-мой "КАТОК" $^{77/2}$ для фотопиков.

Заметим, что выбранный нами цикл измерений /см. рис.3.1/ требует введения поправки на распад источника. Эта поправка может быть либо очевидным образом введена в значения N_+ (N_-), либо в сами наблюдаемые значения δ' . В последнем случае благодаря малости δ' поправка постоянна и составляет $\pm \lambda t$, где t - длительность цикла, знак "+" /"-"/ соответствует первоначальному направлению поля "up", т.е. регистрации N_+ /"down", N_- /. Для принятого значения $T_{1/2} = 9,32$ (1) $4^{/3}$ и использованных в опыте времени измерения 180 с при заданном направлении магнитного поля и времени переключения магнита 10 с /т.е. t = 190 с/, поправка составляет 0,00392. Разность неисправленных значений δ' при

Рис.1. Блок-схема экспериментальной установки с Ge(Li)-детектором для измерения спиральности нейтрино из распада ^{152m} Eu.

Рис.2. Спектр резонансно-возбужденных гамма-квантов при распаде ^{152m} Eu, измеренный с помощью Ge(Li)-детектора объемом 100 см³.

различных начальных направлениях поля составила у нас 0,008 \pm 0,005, что очень близко к $2\lambda t$. При недостаточно известном значении периода полураспада можно было бы использовать цикл вида рис.3.2, когда в линейном приближении поправка на распад равна нулю.

В общей сложности проведено 46 серий измерений величины δ . Стандартное отклонение δ определялось по формуле:

$$\Delta \delta = \frac{4}{(N_{+} + N_{-})^{2}} [(\Delta N_{+} N_{-})^{2} + (\Delta N_{-} N_{+})^{2}]^{\frac{1}{2}}, \qquad /3/$$

где ΔN_{+} и ΔN_{-} стандартные отклонения количества гамма-квантов N_{+} и N_{-} соответственно. Значения δ с поправкой на распад, найденные по N_{+}, N_{-} для гамма-квантов с энергией 841,7 кэВ ($^{152} * S_{m}$) и 1460,3 кэВ (40 K), приведены на рис.4 и в табл.1,

Рис.3. Возможные циклы изменения магнитного поля.

Рис.4. Результаты измерений величин δ для резонансно-рассеянных гамма-квантов при распаде ¹⁵² теи.

где указано начальное направление магнитного поля (H_i). Для иллюстрации некоторых серий измерений на рис.5 приведены фрагменты аппаратурных спектров, а также полученные значения N_\pm с погрешностями и вычисленные на их основе значения δ . Значение δ для гамма-квантов с энергией 841,7 кэВ (152m Eu) и 1460,8 кэВ (40 K).

	0 - 841.7 k	δ - 1460.8 keV	Hi		δ - 841.7 keV	δ - 1460.8 keV	-
1254567890 125456789	-0.0569 0.03 -0.0569 0.03 -0.0220 0.050 +0.0230 0.057 +0.037 0.037 -0.037 0.037 -0.0328 0.022 -0.0164 0.022 -0.0164 0.022 -0.0152 0.022 -0.0152 0.022 -0.0152 0.022 -0.0152 0.022 -0.0152 0.022 -0.0152 0.022 -0.0152 0.022 -0.0146 0.022	+0.00+1 0.01+7 -0.004+ 0.0185 -0.0177 0.0165 -0.0176 0.0165 +0.0185 0.0165 +0.0055 0.0155 +0.0059 0.0135 -0.0071 0.0135 -0.0051 0.0150 -0.0051 0.0150 -0.0051 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0077 0.0151 -0.0075 0.0151 -0.0075 0.0151 -0.0075 0.0151 -0.0015 0.0151 -0.0015 0.0151 -0.0015 0.0151 -0.0015 0.0151 -0.0015 0.0151 -	D D D D D D D D D D D D D D D D D D D	33333567890 11234456	-0.0377 -0.0377 -0.0347 -0.0347 -0.0347 -0.0347 -0.041 -0.0455 -0.0141 -0.0455 -0.0141 -0.0455 -0.0141 -0.0455 -0.0141 -0.0455 -0.0141 -0.0455 -0.0141 -0.0455 -0.0141 -0.0151 -0.0151 -0.0151 -0.0151 -0.0151 -0.0151 -0.0151 -0.0121 -0.0151 -0.0121 -0.0151 -0.0	-0.0071 0.0134 -0.0052 0.0135 +0.0135 0.0135 +0.0135 0.0135 +0.0135 0.0135 -0.0065 0.0117 -0.0025 0.0109 -0.0055 0.0109 -0.0038 0.0130 +0.0055 0.0109 -0.0056 0.0010 +0.0056 0.0050 -0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0050 +0.0056 0.0056 +0.0056 0.0056 +0.0056 0.0056 +0.0056 0.0056 +0.0056 0.0056 -0.0056 0.0056 -0.0056 0.0050 -0.0056 0.0050	
3 28222020202020202	-0.0178 0.005 -0.0126 0.022 -0.0125 0.017 -0.0155 0.013 -0.0155 0.013 -0.0135 0.013 -0.0173 0.015 -0.0274 0.012 -0.0173 0.015 -0.0091 0.014 +0.0015 0.018	-0.0082 0.0142 -0.0059 0.0142 -0.0059 0.0142 -0.0035 0.0118 +0.0035 0.0110 +0.0008 0.0138 +0.0008 0.0138 +0.0008 0.0138 +0.0007 0.0096 +0.0027 0.0127	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	-0.0221 ± 0.0025 0.0019 CPRIMER	+0.0003 ± 0.0017 0.0014 CPRAHER U	

Рис.5. Фрагменты аппаратурных спектров для различных отношений эффект/фон.

Суммарная оценка δ получена как средневзвешенное с весами i-го измерения

$$1/(\Delta \delta_i)^2$$
. /4/

Находились также оценки стандартного отклонения Δ_1 /"чисто статистическое"/ и Δ_2 /из фактического разброса точек/:

W, = 1

Таблица 1

$$\Delta_{1} = \left(\sum_{i=1}^{n} W_{i} \right)^{-\frac{1}{2}}, \qquad (5)$$

$$\Delta_{2} = \left[\frac{\sum_{i=1}^{n} W_{i} (\delta - \delta_{i})^{2}}{(n-1) \sum_{i=1}^{n} W_{i}}\right]^{\frac{1}{2}}.$$
 /6/

В эксперименте найдено

 $\delta(841,7 \ \kappa \Im B^{-152} * Sm) = -0,0221 + (\Delta_1 = 0,0023; \Delta_2 = 0,0019), /7/$

$$\delta(1460, 8 \times 3B^{-40} K) = +0,0003 + (\Delta_1 = 0,0017; \Delta_2 = 0,0014).$$
 /8/

Оценки Δ_1, Δ_2 трудно объединить, поскольку для Δ_1 нелегко оценить число степеней свободы, но тем не менее близость значений Δ_1, Δ_2 не противоречит предположению о статистической однородности выборки δ_i .

Была сделана также оценка величины δ по площадям фотопика линии 963,4 кэВ из серии 39-46, которые проводились с наиболее интенсивными источниками $^{152\mathrm{m}\,\mathrm{Eu}}$:

 $\delta(963, 4 \text{ k} \Rightarrow B^{-152} * Sm) = -0,0192 + (\Delta_1 = 0,0059; \Delta_2 = 0,0041). /9/$

Эта оценка совместима с оценкой /7/, но, учитывая некоторую неоднозначность обработки участка 963 кэВ /фактически представлявшего триплет, см. $^{/1/}$ /, мы не приводим объединенной оценки и считаем окончательным результатом оценку /7/.

Заметим, что правильность определения знака величины δ была проверена с помощью тормозного излучения 32 P, имеющего известную / отрицательную/ спиральность.

3. СПИРАЛЬНОСТЬ НЕЙТРИНО

а/ Циркулярная поляризация у 963,4 кэВ

Как известно /4/, для метода пропускания

$$\delta = 2 \operatorname{th} (\operatorname{nLi}_{\mathcal{O}_{c}} H_{\gamma}) \approx 2 \operatorname{nLi}_{\mathcal{O}_{c}} H_{\gamma}.$$

Здесь: п - число атомов поглотителя /железа/ в 1 см³, равное 8,5·10²²; L- длина поглотителя /по полю/, равная в нашем случае 7 см; f - число ориентированных электронов на 1 атом железа /принимается, что при насыщении f = 2,06/; σ_c - сечение компто-новского рассеяния, чувствительное к циркулярной поляризации /для $\mathbf{E}_{\gamma} = 963,4$ кэВ имеем $\sigma_c = 10,4\cdot10^{-27}$ см²/, при антипараллельных спинах электрона и фотона; H_{γ} - циркулярная поляризация.

/10/

Заметим, что в нашей геометрии величина δ не зависит от угла между направлениями магнитного поля и импульса гамма-кванта, так как увеличение длины пути через поглотитель в точности компенсируется уменьшением сечения рассеяния.

Отсюда

$$\delta = 0.0255 \cdot H_{\gamma}$$
 /11/

и, подставляя значение δ из /7/, находим

$$H_v = -0.87 \pm 0.10$$
. (12/

Полученное нами значение H_{γ} относится к эксперименту с идеальным железным поглотителем. На самом же деле в реальных измерениях намагничивание на концах анализатора неполное и, следовательно, возникает задача определения эффективной длины поглотителя, т.е. фактически множителя f. К сожалению, до настоящего времени удовлетворительного решения этой проблемы не найдено, и можно лишь, аналогично ^{/2/}, принять, что множитель f известен с точностью 10%. Тогда с учетом систематической погрешности

$$H_{\gamma} = -0.87 \pm 0.14$$
. /13/

б/ Спиральность нейтрино

Как отмечалось ранее, имеем

$$H_{\nu} = H_{\gamma} / \cos \theta , \qquad (14)$$

и для оценки \mathbf{H}_{ν} необходимо рассчитать $\cos \theta$.

Вероятность процесса резонансного рассеяния после электронного захвата с i-ой оболочки атома Eu,с учетом теплового движения в источнике и рассеивателе, а также отдачи ядра на испускание гамма-кванта и нейтрино, будет резко зависеть от значения энергии /если пренебречь малыми поправками/

$$\epsilon = E - \frac{E^2}{Mc^2} + \frac{E_{\nu i}}{Mc^2} E \cos \theta + E\beta.$$
 (15/

Здесь Е- энергия гамма-кванта, испущенного с уровня 963,4 кэВ с вероятностью

$$L(E) \sim \frac{1}{1 + (\frac{E - E_o}{\Gamma/2})^2}$$
, /16/

 E_p - энергия, а Γ - ширина уровня 963,4 кэВ; Mc^2 - масса ядра

 152 Sm; E_{vii}- энергия нейтрино, испускаемого при электронном захвате с і-ой оболочки с относительными вероятностями, которые можно взять из^{/8/}; θ - угол между импульсами ядра отдачи и гамма-кванта, причем вероятность

$$\rho(\cos\theta) = \frac{1}{2}; \qquad /17/$$

 $\beta = v/c$ - суммарная проекция скоростей теплового движения атомов источника и рассеивателя на направление импульса гамма-кванта, причем вероятность

$$G(\beta) \sim \exp(-\beta^2/2\sigma^2), \qquad (18/$$

где $\sigma^2 = k(T_1 + T_2) / Mc^2 = 2kT / Mc^2$ /при $T_1 = T_2$ /. В качестве эффективной температуры T можно принять T = 336 °K /см.^{/9/}/. Тогда

где функция

$$f(\mathbf{E},\theta,\beta) = \frac{1}{1 + \left(\frac{\epsilon - \mathbf{E}_{o}}{\Gamma/2^{-1}}\right)^{2}}$$
/20/

описывает вероятность резонансного рассеяния для энергии ϵ (E, θ , β).

Значения $\cos\theta$ были рассчитаны для электронного захвата с К-, L-, М- и N-оболочек двумя способами /численное интегрирование и метод Монте-Карло/, которые дали достаточно близкие результаты /см. табл.2/. Учитывая относительные вероятности захвата, получаем $\cos\theta = 0.93$. Отметим, что это значение слабо зависит от изменения величин Q+и T /см. рис.6 и 7/, и можно принять, что погрешность в значении $\cos\theta$ не превосходит 0.01.

Таблица 2

				L	COBO	•
*		оболочка	Ιc	Без учета	C yverom I	(E) # G()
				L(E) H G(A)	Монте- Карло	ЧЕСЛ.
1	K	181/2	0.8402	0.845	0.928	0.935
2	L	251/2·2P1/2	0.1255	0.947	0.922	0.926
3	H	381/2,3P1/2	0.0276	0.969	0.922	0.924
+	N	481/2,4P1/2	0.0067	0.975	0.921	0.924
		Среднее		0.862	0.927	0.934

Значение сов для разных оболочек (K, L, M, N).

Таблица 3 Результаты измерения циркулярной поляризации гамма-квантов 963,4 кэВ (^{152 m} Eu) в различных экспериментах

	Antopa	Fox	lerestop.	щ,я
1	Goldhaber et al.	1958	HeJ(T1)	-(67 * 10)
2	Marklund, Page	1958	HeJ(T1)	-(80 \$ 30)
3	Palathingal	1970	HaJ(T1)	-(61 ± 12)
4	CPRAHEE	-	-	-(66 * 8)
5	PACTER	1958	-	- 84
6	PACHET	1963	-	- 93
7	Наотопрак работа	1983	Ge(L1)	-(87 1 10)

Таким образом, без учета возможной систематической погрешности в множителе Lf имеем

$$H_{\nu} = -/0,93 \pm 0,10/.$$
 /22/

В отличие от ранее опубликованных результатов /2,10,11/ эти данные находятся в согласии с предположением о 100%-ной продольной поляризации нейтрино. Заметим, что принятое нами значение f является верхней границей, так что уточнение f может привести лишь к приближению значения H_{ν} к -1. Экспериментальные и расчетные /при $H_{\nu} = -1/$ данные о циркулярной поляризации у 963,4 кэВ ($^{152\,m}$ Eu) суммированы в табл.3.

В заключение авторы хотели бы поблагодарить академика Б.М.Понтекорво за интерес к работе, а также А.Н.Синаева, Н.И.Журавлева, Н.А.Лебедева и В.Г.Сандуковского за поддержку, участие и помощь в реализации эксперимента.

8

ЛИТЕРАТУРА

- 1. Вылов Ц. и др. ОИЯИ, Р6-84-148, Дубна, 1984.
- 2. Goldhaber M. et al. Phys.Rev., 1958, 109, p.1015.
- 3. Baglin C.M. Nucl.Data Sheets, 1980, 30, p.1.
- 4. Schopper H. Nucl.Instr. and Meth., 1958, 3, p.158; УФН, 1959, т.69, вып.3, с.513.
- 5. Сидоров В.Т. ОИЯИ, 6-83-552, Дубна, 1983.
- 6. Бруданин В.Б. и др. ОИЯИ, 6-82-023, Дубна, 1982.
- 7. Вылов Ц. и др. ЭЧАЯ, 1978, т.9, вып.6, с.1350.
- 8. Джелепов Б.С. и др. Бета-процессы, "Наука", Л., 1972.
- 9. Стародубцев С.В. Полное собрание научных трудов, ФАН, Ташкент, 1971, т.3, с.372.
- 10. Marklund I., Page L.A. Nucl. Phys., 1958, 9, p.244.
- 11. Pallathingal J.C. Phys.Rev.Lett., 1970, 24, p.524.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.	
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.	
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.	
д4-80-271	Труды Междуиародной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.	
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.	
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.	
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.	
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.	
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.	
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.	
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80) к.	
д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	. 7	5 K.	
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	P.	. 30	Οк.	
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	5 P.	. 01	0 к.	
Д2,4-83-179	Труды ХУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	. 80) к.	
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11	P	. 4(<mark>) к.</mark>	
д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2	р.	50) к.	
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	p	. 5	5 K	
д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	:	2 p	. 0	0 к.	

Заказы на упомянутые книгн могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Изпательский отдел Объединенного института ядерных исследований

Рукопись поступила в издательский отдел 7 марта 1984 года

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

19. Биофизика

Вылов Ц, и др. Измерение спиральности нейтрино из распада ^{152m}Eu с помощью Ge(Li) -детектора

Постановка нового эксперимента по определению спиральности нейтрино из распада $^{152}mE_u$ по степени циркулярной поляризации у-квантов 963,4 кэ8 (H_y) была вызвана тем, что полученная нами теоретическая оценка H_y, учитывающая тепловое движение в источнике и рассеивателе, захват электронов не только с K-, но и с L-, M-, N-оболочек и т.д., оказалась равной -0,93, что заметно отличается от результатов ранее выполненных экспериментов. Новое измерение величины H_y с помощью Ge(Li) -детектора объемом 100 см³ дало значение -0,87+0,10, которое согласуется с теоретической оценкой и с предположением о полной левой продольной поляризации нейтрино.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубиа 1984

Перевод О.С.Виноградовой

Vylov Ts. et al. P6-84-149 A Measurement of the Neutrino Helicity from the Decay of 152m Eu with Ge(Li) Detector

The new experiment on the determination of the neutrino helicity from the decay of 152m Eu by the measurement of the 963.4 keV gamma-ray circular polarization (H_x) was performed. Our theoretical estimate of H_y taking into account not only the intrinsic level width and K-capture but also the thermal motion and the capture in a higher shells is - 0.93, which obviously disagrees with the results of previous experiments. The new measurement of H_y with a 100 cm³ Ge(Li) detector has given the value -0.87+0.10, which is in good agreement with both the above-mentioned estimate and the assumption of the neutrino helicity to be H_y = -1.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

P6-84-149