

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

дубна

1490 83

P6-82-918

BUINOB 4.

ЭЛЕКТРОСТАТИЧЕСКИЙ БЕТА-СПЕКТРОМЕТР В ОБЛАСТИ ЭНЕРГИИ 0,5-50 кэВ

Направлено в сборник "Прикладная ядерная спектроскопия"

1982

Ц.Вылов, А.Минкова, А.Х.Иноятов, С.Бацев, К.Я.Громов, А.Маринов, П.Петев, В.Т.Сидоров, В.Г.Чумин Объединенный институт ядерных исследований, Дубна

Ш.Бриансон, Р.Ж.Вален, Б.Легран, О.Гобло, Д.Лекутюрие Центр ядерной спектроскопии и масс-спектрометрии, Орсэ, Франция В течение многих лет главным методом прецизионного анализа энергетического распределения бета-частиц является магнитный анализ. За это время были разработаны различные конструкции магнитных спектрометров ^{/1/}, предназначенных для исследования электронных спектров в области энергии, как правило, больше 50 кэВ. При энергиях ниже 50 кэВ возникают значительные трудности, связанные с изготовлением высококачественных радиоактивных источников, работой в области слабых магнитных полей /внешними полями, неоднородностями, краевыми эффектами и т.д./ и детектированием низкоэнергетических электронов. Перспективы развития спектрометрии низкоэнергетических электронов связаны в основном со следующими достижениями:

а/ разработаны методы изготовления высококачественных тонких радиоактивных источников, в частности, с помощью электромагнитных масс-сепараторов;

б/ разработаны простые и высокоэффективные детекторы низкоэнергетических бета-частиц: канальные электронные умножители /КЭУ/ и микроканальные пластинки /МКП/.

Кроме того, в связи с развитием электронной спектроскопии для химического анализа /3СХА/ в области 1 эВ - 2 кэВ были разработаны электростатические спектрометры, которые обладают рядом преимуществ перед магнитными, а именно: простотой формирования расчетного поля и экранировки магнитных полей, меньшими габаритами и весом, отсутствием энергетических затрат на питание.

Электростатические спектрометры позволили добиться больших успехов, главным образом в области энергий меньше 2 кэВ^{/2-4/}. При попытках расширить область анализа до 10÷50 кэВ^{/5-8/} возникают трудности, связанные с релятивистскими эффектами. Между тем именно область 1-100 кэВ существенна для некоторых проблем, представляющих значительный интерес для современной атомной и ядерной физики, к ним относятся, например:

а/ коэффициенты внутренней конверсии /КВК/ низкоэнергетических электромагнитных переходов;

б/ оже-процессы и процессы, связанные с перестройкой электронной оболочки атома;

в/ энергетические потери электронов в веществе и обусловленные ими возможности прецизионных исследований формы непрерывных бета-спектров.

В настоящей работе описан электростатический бета-спектрометр, предназначенный для прецизионного анализа электронных спектров в области энергий 0,5-50 кэВ. В этом приборе впервые для задач ядерной спектроскопии объединены два типа анализаторов /сферический и цилиндрический/, что позволяет исключить характерные

1

для спектрометра с одним анализатором релятивистские эффекты. Первые результаты работы такой системы в Центре ядерной спектроскопии и масс-спектроскопии в Орсэ /Франция/ опубликованы раньше ^{/9/}.

КОНСТРУКЦИЯ СПЕКТРОМЕТРА

Принципиальная схема спектрометра представлена на рис.1. Замедлитель состоит из двух концентрических сфер /1 и 2/, между которыми приложено замедляющее напряжение U. В центре внутренней сферы /1/, выполненной из тонкой сетки с большим коэффициентом пропускания /~95%/, находится радиоактивный источник. Можно также обойтись без сферы /1/, но форма подложки источника в этом случае должна быть сферической. Напряжение замедления приложено к источнику, а сфера /2/ заземлена.

Рис. 1. Принципиальная схема электростатического бета-спектрометра: S - радиоактивный источник; F₁ коническая диафрагма; 1 - внутренняя сфера замедлителя; 2 - внешняя сфера замедлителя; 3 - цилиндры зеркального анализатора; 4 - круговые диафрагмы; 5 - изоляторный экран с промежуточными цилиндрами.

Измерение энергии замедленных электронов проводится с помощью цилиндрического зеркала. Для уменьшения вклада рассеянных высокоэнергетических электронов и комптоновских электронов применено двойное цилиндрическое зеркало. К внешнему цилиндру приложено напряжение /для краткости будем называть его напряжением анализа/, а внутренний - заземлен. На внутреннем цилиндре расположены регулируемые круговые диафрагмы /4/, ограничивающие пучок электронов. От прямого попадания излучения из источника детектор защищен двумя свинцовыми поглотителями. Тщательно обработанные поверхности и высокий вакуум снижают вторичную электронную эмиссию. Спектрометр защищен тремя цилиндрическими магнитными экранами из μ -металла, которые размещены внутри вакуумной камеры и перекрывают все пространство сферы и цилиндрического анализатора. С этой же целью 6 цилиндров меньших размеров размещены вокруг источника и детектора. В результате величина остаточного магнитного поля в спектрометре меньше 1 мГс.

Регистрация электронов во втором фокусе D_2 осуществляется с помощью канального электронного умножителя типа Bendix CEM4503. Его конструкция удобна для углов детектирования $40^{\circ} \div 50^{\circ}$. Диаметр входного конуса детектора равен 12 мм. Конструкция детекторного блока позволяет изменять позицию детектора без нарушения вакуума в спектрометре.

Вакуумная система спектрометра обеспечивает безмасляный вакуум ~10⁻⁷ Тор, который достигается в течение 15-20 мин с помощью форвакуумного насоса 2HBP-5Д с азотной ловушкой и магнитного электроразрядного насоса H0PД-250. Для устранения помех от паразитных излучений, связанных с работой H0PД-250 /характеристическое излучение, вторичные электроны/ и приводящих к увеличению фона детектора, предприняты специальные меры. В вакуумном переходнике над насосом размещена экранирующая система, состоящая из трех концентрических дисков, которые перекрывают выходное отверстие насоса, а над ними - три концентрических цилиндра. Размеры экранов и расстояние между ними были выбраны на основе экспериментов так, что скорость откачки существенно не уменьшалась,

а регистрируемый детектором фон не зависел от работы насоса.

В основном спектрометр сделан из немагнитной нержавеющей стали. Сильное предварительное замедление электронов позволяет обойтись без требуемой для обычного цилиндрического анализатора точности изготовления и настройки деталей. Простота конструкции обеспечивает удобства демонтажа всех элементов спектрометра, что существенно при его загрязнении радиоактивными препаратами. Вся процедура полной разборки и сборки спектрометра занимает несколько часов.

ПРИНЦИП РАБОТЫ

Электроны вылетают из источника S /рис.1/ с энергией E_0 , проходя сферы /1 и 2/, замедляются до энергии E_a и через коническую щель попадают в цилиндрический анализатор. При обычных напряжениях анализа /u < 200 B/ релятивистскими эффектами можно пренебречь. Тогда

$$\mathbf{E}_{\mathbf{a}} = \mathbf{E}_{\mathbf{0}} - \mathbf{e}\mathbf{U} = \mu \mathbf{e}\mathbf{u} , \qquad (1)$$

где μ - приборная константа; е - заряд электрона. После прохождения первого фокуса D_1 электроны входят во второй анализатор и детектируются во втором фокусе D_2 . Расчет электронных траекторий в цилиндрическом анализаторе выполнен численно и проанализирован простым графическим методом. Здесь мы рассмотрим лишь простейший случай, когда электроны вылетают из источника под углом a_0 и входят в пространство цилиндрического анализатора с энергией E_a . Тогда в цилиндрических координатах можно записать:

$$r(\frac{d^{2}r}{dz^{2}}) + k_{0}^{2}(2\cos^{2}\alpha_{0})^{-1} = 0,$$

$$k_{0}^{2} = eu(E_{a}\ln R_{2}/R_{1})^{-1} > 0.$$
(2/

Уравнение /2/ справедливо в первом приближении - провисание поля у диафрагм не учитывается.

Расчет оптимизации аберраций для точечного источника приводит к выбору следующих приборных параметров:

$$a_0 = 42.3^\circ$$
, $k_0^2 = 0.763$, $2L = 12.3 R_1$. /3/

В нашем случае

$$R_1 = 50 \text{ MM}, R_2 = 105 \text{ MM}, 2L = 615 \text{ MM}, \mu = 1.96.$$

Тогда энергетическое разрешение цилиндрического анализатора равно

$$\frac{\Delta E_{a}}{E_{a}} \approx 0.09 \left[\frac{d}{2R_{1}} + 1.6 \cdot 10^{-4} |\delta a_{0}|^{3} \right], \qquad (4/4)$$

где d – диаметр детектора, $\delta \alpha_0$ – входной угол /апертура/ в градусах. С учетом высокой точности стабилизации U /~10⁻⁵/ разрешение спектрометра может быть представлено в виде

$$\frac{\Delta E_0}{E_0} \approx \frac{\Delta E_a}{E_0} \approx 0.02 \frac{u}{U} \begin{bmatrix} 1 + \mu \frac{u}{U} \end{bmatrix} \approx 0.02 \frac{u}{U}.$$
 (5/

Следовательно, для достижения высокого разрешения необходим режим анализа с малыми значениями u относительно U .

Эксперимент показал /описание его см. ниже/, что упрощенная картина, в которой предполагаются линейные траектории электронов, вылетающих из источника и входящих в щель цилиндрического анализатора, дает правильную оценку энергетического разрешения и параметров спектрометра. Значительно более сложной проблемой является расчет светосилы прибора. Главные трудности возникают из-за невозможности определения эквипотенциальных поверхностей сложной механической конструкции сферического замедлителя с большой входной щелью.

ЭЛЕКТРОНИКА И АВТОМАТИЗАЦИЯ

)

В спектрометрах с предварительным замедлением возможны два режима развертки спектра: по замедляющему напряжению U или по анализирующему напряжению u. Первый режим позволяет анализировать весь энергетический диапазон спектра /в нашем случае - до 50 кэB/, второй - лишь узкий, зависящий от конструкции цилиндрических зеркал диапазон /в пределах 5 кэB/. Характерные особенности этих режимов:

а/ при развертке по U электроны попадают в КЭУ с постоянной энергией, и нет необходимости учитывать зависимость эффективности детектора от энергии электронов, влияние же U следует изучить;

б/ при развертке по и нет необходимости учитывать влияние U на эффективность спектрометра, однако зависимость эффективности КЭУ от энергии электронов следует изучить.

Возможен и режим работы, когда u/U = const. Есть предположение, что при таком режиме эффективность спектрометра не будет меняться при развертке спектра. В дальнейшем мы планируем провести такие исследования. На данном же этапе нами выбран режим развертки по U при постоянном напряжении анализа u.

Блок-схема электроники электростатического бета-спектрометра представлена на рис. 2. Система управления спектрометра полностью автоматизирована на основе блоков и микро-ЭВМ в стандарте КАМАК. Она обеспечивает:

а/ управление режимами работы;

б/ управление напряжением замедления U;

в/ формирование и счет импульсов от КЭУ;

г/ визуализацию и предварительную обработку данных;

д/ связь с базовой ЭВМ для прецизионной обработки экспериментальных данных.

В дальнейшем предполагается ввести управление вакуумной системой спектрометра.

Основные параметры спектрометра зависят от системы управления напряжением замедления U, для которой разработан специальный блок в стандарте КАМАК. С его помощью можно задавать U в пределах 0-50 кВ с шагом в $\Delta U = 1$ В, осуществлять стабилизацию на уровне -10^{-5} и оптимизировать время установления U. Блок может работать как под управлением ЭВМ, так и в автономном режиме, когда значение U можно задавать с помощью десятичного переклю-чателя.

Рассмотрим коротко принцип работы блока управления /рис.3/. Источником высокого напряжения U управляет цифро-аналоговый

Рис. 2. Блок-схема электроники электростатического бета-спектрометра.

Рис. 3. Принципиальная схема управления и стабилизации напряжения замедления U.

преобразователь /ЦАП/, входной код которого можно получить либо из микро-ЭВМ /в автоматическом режиме/, либо от специального переключателя /в автономном режиме/. Специальная система стабилизации непрерывно сравнивает код напряжения U /точнее, малой его доли/ и код заданного на ЦАП напряжения; если наблюдается отличие, компаратор вырабатывает разностный сигнал и происходит корректировка управляющего напряжения на входе источника высокого напряжения. Для оптимизации времени установления U создан специальный фильтр из фотосопротивления и фотодиода, постоянная времени r которого зависит от величины ΔU. Если ΔU велико, r мало и наоборот.

РЕЗУЛЬТАТЫ

Как уже отмечалось, одним из преимуществ электростатических систем перед магнитными является простота формирования расчетного поля. В этом мы убедились, когда при запуске спектрометра были выставлены расчетные параметры и сразу получены хорошие аппаратурные спектры электронов ¹⁶⁹ Yb. В дальнейшем была выполнена процедура юстировки источника и детектора, при которой добивались максимума счета линии M_1 8,4 / E_e = 6105 эВ/. Как и ожидалось, наиболее критическим параметром юстировки оказалась позиция источника в сферическом анализаторе.

Исследования характеристик спектрометра проводились с помощью изготовленного на электромагнитном масс-сепараторе источника ¹⁶⁹Yb. Чтобы уменьшить энергию внедрения ионов в бериллиевую подложку до ~500 В, использовалось тормозящее электрическое поле. Активность источника составляла ~ 5.10⁶ расп./с, его диаметр ~3,5 мм. Измерения проводились без внутренней сетки в сферическом анализаторе и при полностью открытых диафрагмах /геометрический входной телесный угол ~6% от $4\pi/.$

Общий вид спектра электронов из распада ¹⁶⁹ Yb в области энергии 0-11,2 кэВ показан на рис.4 и 5. Там же указаны и условия измерений. Приняты следующие обозначения: T(EXP)- время измерения; T(DEAD) - время установления U; ΔU - шаг изменения напряжения замедления; u - напряжение анализа в двойном цилиндрическом зеркале. Заметим, что линии М-оже-электронов и K63,121 заметно уширены, что в значительной мере связано с качеством радиоактивного источника. Действительно, в последовательных экспозициях в течение трех месяцев ширина линии K63,121 / E_{e} -3,7 кэВ/ непрерывно возрастала.

Для оценки возможностей спектрометра были проведены детальные исследования различных участков спектра электронов ¹⁶⁹ Yb. При анализе экспериментальных данных полезно иметь в виду, что полные ширины атомных уровней для Z = 69/10/ составляют: $\Gamma(K) \sim 31$ эB; $\Gamma(L) \sim 5$ эB; $\Gamma(M_1) \sim 14$ эB; $\Gamma(M_p) \sim 5$ эB; $\Gamma(M_3) \sim 8$ эB.

Рис. 4. Спектр электронов при распаде ¹⁶⁹ Yb /область 0-6 кэВ/.

Рис. 5. Спектр электронов при распаде ¹⁶⁹ Yb /область 6-12 кэВ/.

На рис. 6 показан фрагмент спектра рис.5 в области М 8,410. Заметим, что в этой области энергии имеется ряд малоинтенсивных линий, принадлежащих L-оже-электронам. В частности, на высокоэнергетическом участке линии M_8 8,410 находится $L_2 M_{4,5} M_5$ -линия. Характерной же особенностью низкоэнергетических участков спектральных линий является наличие длинных "хвостов" и хорошо выраженных "полок", что объясняется непрерывными и дискретными потерями энергии при прохождении электронов из глубины источника. Приводимые на рис.6 значения энергетического разрешения получены путем аппроксимации лишь высокоэнергетической части линии симметричным гауссианом и потому обозначены лишь одной стрелкой. Аналогичные замечания можно сделать и о фрагментах на рис.7-10.

распаде ¹⁶⁹ Уb.

Для многих задач, в особенности для задач атомной физики, существенным является требование сравнимости естественной ширины линии с энергетическим разрешением спектрометра. Для определения предельного энергетического разрешения измерялась форма линии L $_{1}$ 20,750 / E $_{e}$ = 10634 кэВ/ - рис. 11. В соответствии с формилой /5/ с уменьшением напряжения анализа энергетическое разрешение улучшается, и при u = -25 В получаем ΔE = 8,5 эВ. Эффективное уменьшение диаметра источника от 3,5 до 1,5 мм /с помощью тефлонового коллиматора/ привело к незначительному улучшению энергетического разрешения до ΔE = 8,1 эВ /рис.12/. Если

Рис. 9. Фрагмент спектра электронов /L20,750/ при распаде ¹⁶⁹ Yb.

Рис. 10. Фрагмент спектра элек-

тронов /M20,750/ при распаде

Рис. 11. Зависимость формы аппаратурной линии L₁ 20,750 от напряжения анализа на цилиндрическом зеркале (u).

11

169Yb.

Рис. 12. Фрагмент спектра электронов /L₁20,750/ при распаде 189уь.

учесть естественную ширину линии, то полученное аппаратурное энергетическое разрешение равно $\Delta E/E \sim 0.06\%$ /то есть $\Delta P/P \sim$ ~0.03%/. Ввиду того, что в выбранном режиме /U=const/ работы спектрометра величина ΔE является постоянной во всем рабочем диапазоне прибора /с точностью стабилизации U, которая равна ~10⁻⁵/, энергетическое разрешение в области $E_e \sim 50$ кзВ достигнет величины $\Delta E/E \sim 0.012\%$ /то есть $\Delta P/P \sim 0.006\%$ /.

Как видно из рис. 11, с уменьшением напряжения анализа интенсивность электронных линий падает, что можно объяснить не только особенностями электронной оптики, но и существенным уменьшением эффективности регистрации КЗУ. Для исследования этого эффекта мы предполагаем использовать систему ускоряющих электроны сеток, которая будет размещена перед детектором. Возможно также использование шевронной сборки микроканальных пластинок, хотя существуют указания на высокий собственный фон таких детекторов.

Оценка абсолютной эффективности спектрометра при u = -100 В оказалась ~ 0,1%, что более чем на порядок меньше ожидаемой из геометрических соображений. На данном этапе этот факт мы связываем с особенностями работы сферического замедлителя и, как отмечалось, с эффективностью регистрации электронов КЗУ. Таким образом, вопросы эффективности спектрометра требуют дальнейших исследований.

В заключение авторы выражают свою признательность дирекции ОИЯИ и Национального института физики ядра и физики элементарных частиц /Франция/ за предоставленную возможность совместных исследований. Мы благодарны чл.-кор. АН СССР профессору В.П.Джелепову, профессору Ю.Ц.Оганесяну и доктору технических наук А.Н.Синаеву за интерес и поддержку настоящей работы. Авторы очень признательны Д.Варгу, О.Драгоуну и В.Н.Покровскому за полезные обсуждения, которые привели к выяснению многих вопросов физики и техники спектрометрии низкоэнергетических электронов, а также Р.Мюние за содействие в изготовлении источника ¹⁶⁹ Yb на электромагнитном масс-сепараторе. В создании спектрометра нам помогали сотрудники Отдела автоматизации, физического эксперимента ЛЯП ОИЯИ Н.И.Журавлев, А.Н.Саламатин, отдела электроники Центра ядерной спектроскопии и масс-спектрометрии в Орсэ М.Дюдье, К.Фукр, отдела Опытного производства ЛЯП ОИЯИ В.Г.Сазонов, А.В.Богомолов, механических мастерских ЛЯП ОИЯИ М.М.Федоров, В.Н.Кобозев, В.С.Горбачев. Мы хотим воспользоваться предоставившейся возможностью, чтобы выразить им глубокую благодарность.

ЛИТЕРАТУРА

- Mladenovic M. Development of Magnetic Beta-Ray Spectroscopy, Springer-Verlag, Berlin and New York, 1976; Mladenovic M. Nucl.Instr. and Meth., 1979, 162, p.193.
- 2. Афанасьев В.П. Явор С.Я. Электростатические энергоанализаторы для пучков заряженных частиц. "Наука", М., 1978.
- 3. Козлов И.Г. Современные проблемы электронной спектроскопии. Атомиздат, М., 1978.
- 4. Sevier K.D. Low Energy Electron Spectrometry. Wilay-Interscience. New York - London - Sydney - Toronto.
- 5. Varga D. et al. Nucl. Instr. and Meth., 1978, 154, p.477; Varga D. et al. Nucl. Instr. and Meth., 1982, 192, p.277.
- 6. Baverstam U. et al. Nucl.Instr. and Meth., 1978, 154, p.401.
- 7. Parellada J. et al. Nucl.Instr. and Meth., 1981, 179, p.113.
- 8. Yang T.S. et al. Nucl.Instr. and Meth., 1982, 197, p.545.
- 9. Legrand B. et al. Rapport d'activite CSNSM. 1977-1978,p.54; Бриансон Ш. и др. Прикладная ядерная спектроскопия, 1979, вып.9, с.41.
- Keski-Rahkonen O., Krause N.O. Atomic Data and Nuclear Data Tables, 1974, 14, p.139.

Рукопись поступила в издательский отдел 29 декабря 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным . явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика