

2316/82

P6-82-88

М.Я.Кузнецова, В.Б.Бруданин, В.В.Кузнецов, М Миланов, Ю.В.Норсеев, Р.Р.Усманов, В.Г.Чумин, Ю.В.Юшкевич

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЙ ПРИ РАСПАДЕ ²⁰⁵ At. МУЛЬТИПОЛЬНОСТИ ПЕРЕХОДОВ В. ²⁰⁵ Ро

Направлено в Оргкомитет XXXII Совещания по ядерной спектроскопии и структуре атомного ядра, Киев, март 1982 года.

1982

1. ВВЕДЕНИЕ

Нуклид ²⁰⁵ At / T_{1/2} =26,2 мин/ распадается как в ²⁰⁵ Po/э.з.+ β^+ , 90%/, так и в ²⁰¹Bi / a, 10%/^{1/.} Впервые довольно детально распад ²⁰⁵ At был изучен Джонсоном и др.^{2//} в 1971 году. Авторы этой работы при помощи Ge(Li) - и Si(Li) -детекторов исследовали спектры у -лучей, электронов внутренней конверсии /3BK/ и уу -совпадений. При исследовании спектра 3BK в области низких энергий использовался также магнитный β -спектрометр. В качестве источника излучения применялся ²⁰⁵ At -продукт распада моноизотопа ²⁰⁵ Rn / T_{1/2} =2,83 мин/. Было обнаружено 62 у -перехода, из которых 32 уверенно отнесены к распаду ²⁰⁵ At, а остальные 30 у -переходов приписаны распаду ²⁰⁵ At предположительно; для 14 переходов определена мультипольность.

В настоящей работе проведено исследование спектров у-лучей, конверсионных электронов и е-у-совпадений с использованием моноизотопных источников ²⁰⁵ At.

Предварительные результаты о γ -лучах были опубликованы в 1980 году в $7^{3/2}$.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

В исследованиях использовался ²⁰⁵At, полученный при разделении на электромагнитном масс-сепараторе смеси изотопов астата.Радиоактивные изотопы астата образовывались в результате расщепления тория при облучении протонами с энергией 660 МэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Астат выделялся из облученной мишени тория по методу, описанному в ^{/4/}.

Измерения спектров у -лучей и ЭВК начинались через ~10 мин после разделения изотопов астата на масс-сепараторе и продолжались в течение ~30 мин. В исследуемых источниках ²⁰⁵ At примеси соседних изотопов ²⁰⁶At и ²⁰⁷ At составляли примерно по 1%, а примесь ²⁰⁸ At была около 0,3%.

Спектры У-лучей измерялись при помощи Ge(Li) -детекторов объемом 0,8; 38 и 50 см³ с энергетическим разрешением (Δ E) соответственно 0,60 кэВ /E_y =154 кэВ/, 1,9 и 2,8 кэВ / E_y=719 кэВ/. Экспериментальные результаты обрабатывались по методике, описанной в ^{/5/}.

1

Спектры ЭВК в энергетической области выше 100 кэВ изучались с помощью Se(Li) -детектора / ΔE =2,5 кэВ, E_{e} ~1 МэВ/, помещенного в магнитное поле ^{/6/}. При исследовании спектров конверсионных электронов с энергией ниже 250 кэВ использовался также безжелезный тороидальный β -спектрометр ^{/7/}, измерения на котором проводились при $\Delta H \rho/H \rho = 0.7\%$ и 1,2%.

Измерения спектров е – γ -совпадений проводились на установке $^{/8/}$, собранной на базе тороидального β -спектрометра и Ge(Li) -детектора объемом 41 см 8 с разрешением 3,5 кэВ для E_{γ} – 1,3 кэВ.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Экспериментальные результаты (Е $_{\gamma}$, I $_{\gamma}$, I $_{e}$ и мультипольности γ -переходов в ²⁰⁵ Ро), полученные на основе анализа изучаемых спектров γ -лучей и ЭВК, приведены в <u>табл.1</u>. Для большинства переходов даны средневзвешенные значения Е $_{\gamma}$ /для Е $_{\gamma} < 2300$ кэВ/ по 3÷ 5, а I_K и I $_{\gamma}$ - по 3÷ 4 сериям измерений. Значения Е $_{\gamma}$ выше 2300 кэВ и соответствующие величины I $_{\gamma}$ получены по 1÷ 2 измерениям. Ошибки Δ I $_{\gamma}$ включают погрешность в определении I $_{\gamma719}$, которая составляет 3%, а в ошибки Δ I_e включена погрешность в значении I_{K719}, составляющая также 3%. Кроме того, в погрешности Δ I_e включена ошибка, обусловленная неопределенностью в ходе кривой эффективности регистрации ЭВК, которая <u>пря Е $_{z} < 150$ кзВ составляет 8% и равна</u> 5% для более высоких энергий электронов.

Особо остановимся на интенсивности у-лучей с энергией 628,88 кэВ. В этом случае необходимо было учесть вклад улучей с энергией 629 кэВ от распада дочернего ядра ²⁰¹ Ві. Из сравнения интенсивностей конверсионных электронов, возникающих при распаде дочерних ядер ²⁰¹ Ві /К629/ и ²⁰⁵ Ро/К849,8; К872,4 и К1001,2/ мы получили $I_{y629} = /18+6/\%$ распадов ²⁰¹ Ві. При проведении расчетов мы принимали:

а/ a -распад ²⁰⁵ At составляет 10/2/% распадов $^{/1/}$.

б/ Мультипольность перехода y 629 кэВ в 201 Pb M4 $^{/1/}$, $a_{\rm K}$ /M4/=0,55 $^{/9/}$.

в/ При распаде ²⁰⁵ Ро I $_{K849,8} = 0,48/6/\%$, I $_{K872,4} = 0,245/32/\%$ и I $_{K1001,2} = 0,345/45/\%$ распадов ^{/10/}. г/ $T_{\frac{1}{2}}$ (²⁰¹ Bi) =1,78 час ^{/1/}, $T_{\frac{1}{2}}$ (²⁰⁵ Po) =1,80 час ^{/1/}. д/ За начало накопления ²⁰⁵Ро в исследуемом источнике ²⁰⁵ At

При разделении астата по изотопам на масс-сепараторе происходит и разделение дочерних изотопов полония. Эффективность масс-сепаратора принята одинаковой для разделения астата и полония. e/ За момент начала накопления ²⁰¹ Ві в исследуемом источнике ²⁰⁵ At принята середина промежутка времени от начала до окончания процесса разделения изотопов астата на масс-сепараторе.

При введении поправки на вклад от распада дочернего 201 Bi в интенсивность $I_{\gamma 628,88}$ мы исходили из полученной нами величины $I_{\gamma 629}$ / 201 Bi $\rightarrow ^{201}$ Pb / =/18+6/%. Это значение не противоречит величине $I_{\gamma 629} \leq 26\%$ распадов 201 Bi, полученной по результатам работы /11/.

Заметим, что вклад интенсивности I_{y629} (²⁰¹ Bi \rightarrow ²⁰¹ Pb) в фотопик 628,88 кэВ в различных опытах составлял от 6 до 10%. Поэтому даже при низкой точности в определении I_{y629} (²⁰¹ Bi \rightarrow ²⁰¹ Pb) ошибка в $I_{y628,88}$ (²⁰⁵ At \rightarrow ²⁰⁵ Po), вносимая при вычете интенсивности от распада ²⁰¹ Bi, будет небольшой /0,5 \div 0,8 ед. табл.1/.

Выводы о мультипольности переходов с энергиями 143,66; 161,030 и 719,30 кэВ можно сделать на основе относительных интенсивностей конверсионных электронов с различных оболочек и подоболочек. Для перехода y143,166 кэВ отношение $I_{K}:I_{L1,2}:$ $I_{L3} = 1,00: 1,76/18/:1,13/13/ согласуется с теоретическим /9/$ $<math>I_{K}:I_{L1,2}:I_{L3} = 1,00:1,94:1,19$ для мультипольности E2.0тношение $I_{K}:I_{L1,2}:I_{L3} = 1,00:1,94:1,19$ для мультипольности E2.0тношение $I_{K}:I_{L1,2}:I_{L3} = 1,00:0,32/3/:0,044/4/:$:0,097/8/ для перехода y161,0,30 кэВ согласуется с теоретическим /9/ отношением $I_{K}:I_{L1,2}:I_{L3}:I_{M} = 1,00:0,29:0,042:$:0,088, если мультипольность перехода M2. Для перехода y 719,03 кэВ экспериментальное отношение $I_{K}:I_{L}:I_{M} = 1,00:$ 0,248/18/:0,060/7/ соответствует теоретическому отношению $I_{K}:I_{L}:I_{M} = 1,00:0,255:0,062$ для мультипольности E2.Выводы о мультипольности переходов с энергией 143,166;161,030 и 719,30 кэВ согласуются с результатами более ранних работ /1/.

Выводы о мультипольности других переходов сделаны на основе сравнения экспериментальных значений КВК с теоретическими /9/. При этом связь шкал интенсивностей γ -лучей и ЭВК осуществлена по переходу γ 719,30 кэВ, для которого принято $a_{\rm K}$ (E2) =0,0109^{/9/}, а интенсивность конверсионных электронов приведена к $I_{\rm K719}$ = =1,09 ед. табл.1.

Нащи выводы о мультипольности переходов и выводы, полученные в $^{/2/}$, согласуются между собой кроме одного случая: в работе $^{/2/}$ переходу $_{y}$ 516,04 кзВ приписана мультипольность M1, согласно нашим данным, мультипольность этого перехода - E2.

Результаты, полученные при изучении спектров еу -совпадений, представлены в табл.2. Интенсивности совпадений I $_{K154-\gamma}$ получены из 2 ÷ 3 измерений и являются средними арифметическими величинами, а ошибки $\Delta I_{K154-\gamma}$ - средними ошибками отдельного измерения. Измерение спектра K311- у -совпадений проведено лишь в одном опыте, и погрешности полученных результатов в ос-

Таблица 1 /продолжение/

таолица і	Τa	блица	1
-----------	----	-------	---

Сведения	0	у-переходах при распаде	²⁰⁵ At	→	²⁰⁵ Po
/ I _{v719.30}	=	100; $I_{K719} = 1,09/$			

.

Еу(∆ Еу) кәВ	Iу(ΔIу) отн. ед.	I _e (ΔI _e) отн. ед.	Мультипольность	I _{пол.} (АІ _{пол.}) отн. ед.
I	2	3	4	5
76,8 K _{X2}	86(6)			
79,29 Kay	I 4 6(8)			
39,6 K g	52(3)			
2,4 K	I6,5(IO)			
05,15(10)	0,207(3I)	L:≼0,25	(MI)	-
13,3(5)	~ 0,I	-	-	-
23,35(4)	0,281(25)	K:I,58(I8)	MI(\$6%E2)	2,23(25)
27,928(35)	0,54(4)	K:2,32(24)	MI(≤20%E2)	3,3(4)
		L,2:0,30(I3)	MI	
43,166(17)	2,69(19)	K:0,92(II)	E2(≼2%M I) ^{Ó)}	7,3(7)
		L,:1,62(17)	R2(< 92111)	
		L ₃ :I,04(I2)		
2,38(7)	0,48(6)	-	-	-
4,198(12)	8,4(6)	K:22,6(24)	MI(≤17%E2) ⁰⁾	36,2(35)
		M:0,85(12)	MI (≤ 6%E2)	
1,030(17)	3,39(21)	K:38,5(35)	M2(≤I2%EI) ⁰⁾	6I(6)
		L _{1,2} :12,2(13)	M2(< 6%EI)	
		∠_;:I,69(I7)	M2(< 9%EI)	
		M:3,7(4)	M2(≤ 5%EI)	
		N:I,03(II)		
2,60(20)	1,07(13)	K:I,44(I6)	MI(≼I2%E2)	2,86(34)
		L ₁₂ :0,256(33)	MI(≤ 22%E2)	
0,12(7)	I,0I(9)	K:~I	(MI)	~2,2
32,54(20)	0,53(15)	-	_	-

I	2	3	4	5
311,090(25)	13,5(7)	K:4,9(5)	$MI(\leq 14\%E2)^{6}$	19,5(13)
		L _{ig} :0,83(II)	MI(< 27%E2)	
		M:0,227(25)	MI(≤ 18%E2)	
312,50(20)	2,10(14)	K:0,77(8)	MI(≼I3%E2)	3,05(24)
317,0(10)	0,60(7)	K:0,2I2(27)	MI (< 22%E2)	0,87(10)
360,91(7)	3,80(25)	K:0,58(5)	MI+(39 + 56)%E2 ⁰⁾	4,53(3I)
		L:0,II4(II)	MI+(49+82)%E2	
364,60(9)	2,75(22)	K:0,68(5)	MI(≰ I3%E2)	3,58(30)
		L:0,100(II)	MI+(8+55)%E2	
		M:0,040(IO)	MI	
~ 369	0,60(7)	K:0,063(I2)	E2+(20+45)%MI	0,70(9)
384,61(14)	3,98(20)	K:0,54(4)	MI+(36+5I)%E2	4,75(30)
395,70(8)	I,40(I6)	K:0,242(19)	MI (< 29%E2)	I,70(I9)
		L:0,046(6)	MI(≤ 40%E2)	
4I4,65(20) ^{a)}	0,96(II)	K:0,154(13)	MI(< 24%E2)	1,15(13)
448,6I(7)	5,5I(29)	K:0,64(5)	MI+(II+3I)%E2 ⁰⁾	6,30(36)
		L:0,108(10)	MI+(17+50)%E2	
455,14(18)	I,58(8)	K:0,190(18)	MI (≤ 25%E2)	I,8I(IO)
		L:0,0298(33)	MI+(14+51)%E2	
484,00(26)	0,65(9)	K:0,034(4)	E2+(2I+42)%MI	0,70(IO)
487,86(II)	I,80(9)	K:0,035(7)	E2;EI+(2,I+4,5)%M2	I,85(IO)
511	14,3(9)	-	-	. –
516,04(12)	4,24(30)	K:0,082(7)	E2(≤I%MI) ⁰⁾	4,4(4)
		L:~0,02		
520,44(6)	14,4(6)	K:0,268(22)	E2;EI+(3,7+5,I)% M2 ⁰)	14,8(7)
		L:0,088(8)	E2	
528,90(13)	2,33(14)	K:0,035(7)	E2;EI+(1,8+4,6)%M2	2,37(15)
553,94(7)	2,01(14)	K:0,II8(I2)	MI+(19+44)%E2	2,16(16)

Таблица 1 /продолжение/

			Таблица 1 /продолжение/			
I	2	3	4	5		
566,2(7)	I,39(25)	K:0,I30(I4)	MI	I,55(27)		
568,5(7)	I,75(30)	K:0,070(8)	E2+(26+57) % MI	I,85(32)		
577,IO(9)	I,80(I3)	K:0,077(7)	MI+(41+60)%E2	I,90(I4)		
587,04(8)	I,6I(I7)	K:0,0259(27)	E2(≤5%2MI)	I,65(I8)		
595,43(IO)	I,72(II)	K:0,071(7)	MI+(36+57)%E2	1,81(12)		
617 ,8 0(7)	7,16(32)	K:0,059(6)	EI+(I,I+2,3)%M2 ⁰⁾	7,23(33)		
628 ,88 (7)	18,3(13)	K:0,320(25)	E2+(3,5+I3)%MI ^{Ø)}	I8,7(I4)		
636,85(15)	0,82(10)	-	-	0,85(12)		
644,86(20)	I,02(8)	K:0,044(4)	MI+(9+36)%E2	I,08(9)		
649,5(7)	I,IO(I5)	K:0,040(5)	MI+(21 + 56)%E2	1,15(16)		
652,5(7)	I,50(38)	K:0,042(6)	E2+(18+61)%MI	I,55(39)		
659 ,63 (6)	7,46(33)	K:0,102(9)	E2(< 7%MI)	7,60(34)		
669,4I0(37)	28,1(12)	K:0,382(29)	E2(≤?%M I) ^{Ø)}	28,6(12)		
		M:0,0235(2I)	E2(≤ 6%MI)			
672,85(5)	IO,5(5)	K:0,218(18)	E2+(I9 + 3I) %MI^{O)}	10,8(5)		
691,4(6)	I,I5(I4)	K:0,053(7)	MI(≤19%E2)	1,22(15)		
693,5(7)	0,7I(II)	K:0,0396(39)	MI	0,76(II)		
719,30(4)	100	K:I,09	_{Е2} б)	101,46		
		L:0,270(20)	E2(≤2,5%)MI			
		M:0,066(7)	E2(≤ 5%) MI			
		N :0,02I6(30)				
725,5I(30)	I,92(IO)	K:0,0333(3I)	E2+(I7 + 3I)%MI	I,96(II)		
744,26(30)	0,94(8)	K:~0,0II	(E2)	0 ,95(8)		
748,45(30)	0,95(12)	K: <i>≰</i> 0,0I	(E2,EI)	0,96(12)		
756,82(18)	2,06(13)	K:0,016(5)	E2;EI+(I,5+8)%M2	2,08(14)		
760,5(5)	0,49(7)	-	-	0 ,50(8)		
782,80(12)	6,41(28)	K:0,075(6)	E2+(6+17%)MI	6,51(29)		
789,20(16)	4,16(22)	K:0,043(4)	E2(≤ I2%MI)	4,22(23)		

I	2	3	4	5			
792,53(30)	I,69(I8)	K:~0,035	(MI+E2)	I,73(I9)			
802,0(8)	0,78(II)	K:~0,0I5	(MI+E2)	0 ,80(I2)			
806,44(8)	1,72(12)	K:0,046(5)	MI(< 27%E2)	I,78(I3)			
819,49(10)	2,14(17)	K:0,0278(26)	E2+(15+32)%MI	2,18(18)			
845,2(8)	1,13(10)	K:0,036(4)	MI	I,I7(II)			
859,2(4)	0,95(20)	K:0,0I03(3I)	E2(≤42%MI)	0,96(20)			
872,4(5)	10,2(15)	K:0,199(18)	MI+(6 + 48)%E2	10,5(15)			
890,0(I 0)	0,50(9)	K:~0,0I3	(MI)	0,5I(9)			
902,22(10)	I,42(7)	K:0,0I32(3I)	E2(≤31%MI)	I,43(7)			
~9I3,5	0,44(6)	-	-	0,44(6)			
929,61(14)	I,75(I4)	K:~0,008	(E2,EI)	I,76(I4)			
932,0(10)	0,57(8)		(E2)	0,58(8)			
93 6,03(15)	1,26(17)	[K:~0,012	(E2)	I,27(I7)			
94I,94(20) ^{a)}	1,37(15)	-	-	I,37(I5)			
947,45(20)	0 ,6 6(12)	K:0,017(5)	MI(<19%E2)	0,68(12)			
955,3(5)	0,69(18)	K:0,0085(30)	E2+MI	0,70(18)			
961,05(20)	I,06(9)	K:~0,0035	(EI)	I,06(9)			
971,87(35)	0,78(6)	K:~0,007	(E2,MI)	0,79(6)			
976,00(12)	2,97(12)	K:0,037(4)	MI+(35+59)%E2	3,02(13)			
993,30(30)	I,IO(20)	K:0,0I0 0(25)	E2+(4+53)%MI	I,II(20)			
I0I3,70(I4)	2,05(9)	K:0,007I(25)	EI (≤ 7%M2)	2,06(9)			
IO3I,69(8)	6,5(6)	K:0,0428(35)	E2(≤19%MI) ^{Ø)}	6,6(7)			
I038,0(IO)	0,50(IO)	K:0,0070(IO)	MI (< 50%E2)	0,51(10)			
I064,0(IO)	0,47(5)	K:0,0065(II)	MI (≤ 39%E2)	0,48(5)			
1071,82(32)	0,52(5)	K:~0,0075	(MI)	0,53(5)			
1082,72(22)	I,85(I2)	K:∼0,006	(EI,E2)	I,86(I3)			
109 I,84(25)	0,66(7)	-	-	0,66(7)			
IIOI,8(4)	0,62(IO)	-	-	0,62(10)			

Таблица l	/продолжение/

Таблица I /продолжение/

I	2	3	4	5
1160,5(10)	0,42(6)	-	-	0,42(6)
1167,40(22)	0,69(7)	-	-	0,70(7)
II7I,04(8)	2,28(12)	K:0,009I(I2)	E2;EI+(6+II)%M2	2,29(12)
~ II74,5	~ 0,35	-	-	~ 0,35
II87 , 6(5)	0,460(23)	-	-	0,465(27)
II94,0(IO)	0,43(8)	-	-	0,43(8)
1242,2(5)	0,98(I3)	K:~0,007	(E2,MI)	0,99(13)
1246,2(5)	I,I8(8)	K:0,0I33(20)	MI (< 23%E2)	I,20(8)
1252,02(II)	I,80(IO)	K:0,0I25(22)	E2+(25 + 62)%MI	I,82(IO)
1262,5(10)	0,53(8)	K:~0,004	(E2,MI)	0,53(8)
1307,60(8)	3,48(22)	K:0,0278(26)	MI+(19 + 47)%E2	3,5I(22)
1324,95(8)	4,14(24)	K:0,0I24(I5)	E2;EI+(6,5 + II)%M2	4,15(24)
1342,3(10)	0,44(4)	-		0,44(4)
1358,2(5)	0,66(6)	-	-	0,66(6)
I374.0(IO)	0.45(5)	-	-	0,45(5)
1377,5(10)	0,64(8)	K:0,007I(IO)	MI(≤5%E2)	0,65(8)
I389,0(IO)	0,73(7)	K:∼0,0035	(E2,MI)	0,73(7)
1398,3(3)	I,23(9)	K:0,0II2(9)	MI(≤ 16%E2)	I,24(9)
I4I0,0(IO)	0,36(6)	-	-	0 ,36(6)
1413,43(20)	I,I7(9)	K:0,0096(I0)	MI(≤ 30%E2)	I,I8(9)
1429,24(36)	0,48(5)	K:~0,004	(MI)	0,48(5)
I 43 7,0(5)	0,56(8)	-	-	0,56(8)
1442,89(20)	I,II(8)	K:0,0040(6)	E2(< 23%MI)	I,I2(8)
1455,84(40)	0,72(8)	-	-	0,72(8)
I 475,36(9)	2,75(I3)	K:0,0083(I4)	E2(≤ I4%MI)	2,76(I3)
I479,I6(IO)	2,89(19)	K:0,0065(I4)	E2;EI+(4 + I2) <i>%</i> M2	2,90(19)
1484,43(37)	0,78(5)	K:0,0043(7)	MI+(29 + 67)%E2	0,78(5)
I488,5(IO)	~0,45	-	-	~ 0,45

I /продолжение/		
5		
50(7)		
64(5)		
56(8)		
46(6)		
56(12)		
6 7(I2)		
56(II)		
58(I3)		
77(6)		
38(8)		
36(7)		
12(6)		
)I (6)		
)9(6)		
14(5)		
16(5)		
17(5)		
37(4)		
8(5)		
92(6)		
0(4)		
9(4)		
3(6)		
25(4)		
3(5)		
8(12)		
3(4)		
6(6)		
9(6)		

.

			<u>Таблица 1</u> /продолжение/		
I	2	3	4	5	
2147,0(10)	0,35(6)	-	-	0,35(6)	
2160,8(6)	0,53(6)	-	-	0,53(6)	
2180,7(6)	0,36(5)	-	-	0,36(5)	
2268,0(10)	~0,4	-	-	~ 0,4	
2363,3(7)	0,31(6)	-	-	0,31(6)	
2709,0(15)	~0,3	-	-	~0,3	
2865,0(15)	~0,17	-	-	~ 0,17	
3033,5(10)	0,33(4)	-	-	0,33(4)	
3045,5(10)	~ 0,I6	-	-	~0,16	
3052,0(10)	~0,20	-	-	~0,20	
3172,0(15)	~0,18	-	-	~0,I8	

а/ Возможно, дублет.

б/ Мультипольности этих переходов определены также в работе 2/.

Инте /1 К1	Интенсивности еу -совпадений при распаде ²⁰⁵ At / ¹ К154у629 =! UU; ¹ К311у719 =! UU/							
Еу кэВ	I _е у(<u>а</u> I _е у) отн. ед.	^Е у кэВ	^I еў(4 І _е ў) отн. ед.					
	K-154,198	1082,72	+					
511	7,3(30)	II7I,04	II,0(27)					
516,04	9,0(13)	1479,16	20(5)					
617,80	24,5(2I)	1754,7	3,0(12)					
628,88	100	K-311	,090					
644,86	8,4(13)	364,60	9,1					
649 ,5	~2,5	395,70	6					
652,5	10,2(12)	719,30	100					
69I , 4	4,7(5)	I324,95	15					
748,45	5,9(8)	1768,79	4 ,I					
792,53	6,7(15)							

Таблица 2

новном обусловлены статистическим разбросом точек в исследуемом спектре и ошибками при введении поправки на фоновые совпадения. По-видимому, ошибки $\Delta I_{K311-\gamma}$ могут достигать $30 \div 40\%$. Знак "+" указывает на наличие совпадений. Вклад от случайных совпадений с интенсивными *у*-лучами учитывался, он составлял не более 5%.

В результате проведенного исследования распада 205 At $\rightarrow ^{205}$ Po нами было обнаружено 148 у-переходов, из них 94 наблюдались впервые. 8 у-переходов /165,7; 178,6; 275,6; 336,9; 462,5; 506,2; 583,7 и 1026,2 кэВ/, отнесенных в'2' к распаду 205 At предположительно, нами не наблюдались.

В настоящей работе определена мультипольность 70 γ -переходов, из них мультипольность 54 переходов определена впервые. Кроме того, для 20 переходов дана оценка величины КВК, и, соответственно, вероятная мультипольность.

Сведения о свойствах излучений при распаде²⁰⁵ At, полученные в настоящей работе, существенно дополняют результаты работы ^{/2/}.

В заключение мы благодарим С.Бацева, В.М.Вахтеля, Л.Вашароша, Ц.Вылова, Н.А.Головкова, И.И.Громову, В.Г.Егорова и М.И.Фоминых за помощь в проведении экспериментов.

ЛИТЕРАТУРА

- Table of Isotopes, Ed. Lederer C.M., Shirley V.S.; J.Wiley and Sons Inc., New York, 1978.
- 2. Jonson B. et al. Nucl. Phys., 1971, A174, p. 225.
- Вылов Ц. и др. Спектры излучений радиоактивных нуклидов Изд-во "ФАН", Ташкент, 1980, с. 296.
- 4. Чумин В.Г. и др. ОИЯИ, Р6-12615, Дубна, 1979.
- 5. Вылов Ц., Осипенко Б.П., Чумин В.Г. ЭЧАЯ, 1978, 9, с.1350.
- 6. Вылов Ц. и др. ОИЯИ, Р6-9071, Дубна, 1975.
- 7. Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977.
- 8. Кузнецов В.В. и др. Тезисы докладов XXVIII совещания по ядерной спектроскопии и структуре атомного ядра, Алма-Ата, "Наука", Л., 1978, с. 508.
- 9. Банд И.М., Тржасковская М.Б. Таблицы коэффициентов внутренней конверсии у -лучей на К-, L- и М-оболочках, 10 ≤ Z ≤ 104, ЛИЯФ АН СССР, Л., 1978.
- 10. Alpsten M., Astner G. Phys.Scr., 1972, 5, p. 41.
- 11. Richel H. et al. Nucl.Phys., 1978, A303, p. 483.

Рукопись поступила в издательский отдел 4 февраля 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	р.	60	к.
	Д~9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3	р.	50	к.
	д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	р.	50	к.
	Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	р.	50	к.
	Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
	Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
	д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
	д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
	Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
		Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
	Д1,2-12036	Труды V Международного семинара по проблемам физики весовла опертий. Дубна, 1970	ō	μ.	ôû	٩.
	Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
		Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
	Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	P .	50	к.
	Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
	д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	ĸ.
9	2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
	10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79

Издательский отдел Объединенного института ядерных исследований

Кузнецова М.Я. и др. Исследование излучений при распаде ²⁰⁵Аt. Рб-82-88 Мультипольности переходов в ²⁰⁵Ро

При помощи полупроводниковых детекторов и безжелезного тороидального β -спектрометра проведено исследование излучений при распаде 205 At / T_{1/2} = 26,2 мин/. В измерениях использовались моноизотопные источники 205 At. 0бнаружено 148 у -переходов, из них 94 наблюдались впервые. Определена мультипольность 70 у -переходов, причем для 54 переходов мультипольность определена впервые. Проведены измерения е-у -совпадений.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Пренрипт อิริสิธศุภาคทางเป็น ภาคาทางเล กลุยหาสุก กระเทศสุบริสิทภทัล ผู้บูบิกล 1902

Kuznetsova M.Ya. et al. The ²⁰⁵At Decay. Radiation Study. P6-82-88 Transition Multipolities in ²⁰⁵Po

Spectra of radiations at the ²⁰⁵At decay ($T_{\frac{1}{24}}$ =26.2 min) are studied by means of semiconductor detectors and iron-free toroidal β -spectrometer. 148 γ -transitions have been discovered which accompany the ²⁰⁵At decay, information about 94 transition has been derived for the first time. The total 70 transition multipolity has been determined, for 54 of them - for the first time. The measurements with e_{γ} -coincidences were performed.

The investigation has been performed at the Laboratory of the Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.