1569/82

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

5/W-82

8-82

P6-82-8

Н.Б.Бадалов, Ц.Вылов, К.Касымов, Ким Зай Те, Ли Су Чен, Ш.Оманов

Свойства возбужденных состояний нечетно-протонного ядра 151 Eu исследовались в ядерных реакциях (d, d')^{'1'}, (p, t)^{'2'}, (p, 2n)^{'3'}, (p, p')^{'4,5'} и при распаде 151 Gd ^{/6-11'}. За исключением квантовых характеристик уровней 196,2 и 196,5 кэВ, результаты наиболее полных работ ^{'4,5,8'} согласуются между собой /см. <u>табл.1</u>/. Для уточнения уровней 196,2 и 196,5 кэВ, а также для исследования распада 151 Gd с применением более современной техники и методики ^{/12,13/} предприняты настоящие эксперименты.

ЭКСПЕРИМЕНТЫ

Исследования проводились с радиоактивными источниками ¹⁵¹Gd, полученными в реакции глубокого расщепления мишени тантала при облучении ее протонами с энергией 660 МэВ на синхроциклотроне ОИЯИ,и последующим радиохимическим выделением изотопов гадолиния и их разделением на электромагнитном масс-сепараторе ^{/12/}.

Спектры у-лучей исследовались с помощью полупроводниковых детекторов, характеристики которых приведены в табл.2. Мето-

Таблица l

Возбужденные состояния ¹⁵¹Eu и их квантовые характеристики

Lyp. rol	I [#]	Eyp. xaB	I #	Eyp. RoB	I, a
	4		/5/		/8/
0	5/2+	0	5/2+	0	5/2+
21,6	7/2+	21,54	7/2+	21,54	7/2+
195,6	I/2 ⁺	196,24	11/2	196,2 I	II/2 ⁻
196,5	II/2	196,45	3/2+	196,46	(I/2 ⁺)
243,0	(7/2)	243, I	7/2-	243,22	7/2
-	-	-	-	260,44	(3/2-9/2)+
306,8	3/2+	307,0	-	306,99	(3/2+)
_	-	307,45	<u> </u>	307,45	(3/2-7/2)+
-	-	-	-	349,76	9/2
-	-	-	-	353, 56	5/2-,7/2-

Galegand. Sta	PERMIT
ASPERA BATT	51. St. Lat.
BORATION	ICHA_

1

Таблица 2

Характеристики полупроводниковых детекторов

Tereston	Объем	Энергетическое разрешение				
Aprontop	детектора	6, 5кэВ	122 k 9B	I332 R 9B		
Si(Li)	80mm ² X4mm	290əB	600aB	_		
Ge	2500 ² X500	I 50 9B	50aB 500aB -			
Ge(Li)	200ma ² X5ma	240эВ 550эВ І,6кэВ				
Ge(Li)	I, 3см ³	– 600aB I,61		I, 6кэВ		

дика измерения и обработки результатов подробно изложена в /12,18/. Значения энергий и относительных интенсивностей γ -лучей в 16 сериях измерений приведены в <u>табл.3</u>. Нами впервые обнаружены три новых перехода с энергиями 109,74; 195,18 и 284,72 кэВ. Предложенные в работе ^{/8/} переходы 394,8 и 416,3 кэВ не наблюдались. Кроме того, значения энергий в работе ^{/7/} систематически завышены относительно наших данных.

Спектры ЭВК исследовались с помощью Si(Li)-детекторов'/12/, и результаты 15 серий измерений также приведены в табл.3. Коэффициент связи относительных интенсивностей у-лучей и ЭВК определен с помощью измеренных нами КВК для четырех переходов / $a_{\rm H}$ /153.6/=0.426/13/; $a_{\rm H}$ /174.7/=1.731/43/; $a_{\rm H}$ /243.3/= =0,0202/6/ и $a_{\rm K}$ /307,5/=0,0605/20// и равняется

 $K_{c} = 0,818 + 0,020.$

Измерения спектров еу-совпадений проводились на установке $^{\prime 13\prime}$, созданной на базе безжелезного бета-спектрометра с тороидальным магнитным полем и спектрометра с Ge(Li)-детектором. Разрешающее время быстрой схемы совпадений составляло $2r_0 = 50$ нс. Результаты исследований представлены в <u>табл.4</u>. Расчет интенсивностей совпадений основан на предложенной нами схеме распада. Полученные данные подтверждают и дополняют результаты работы $^{\prime 14\prime}$. Впервые исследованы совпадения L_I 21,5 кэВ с γ -переходом 195,18 кэВ.

Методом задержанных ^{бу}-совпадений измерено время жизни состояния 21,5 кэВ в ¹⁵¹Qd. Эксперименты проводились на установке ^{/15/} с двумя сцинтилляционными детекторами с использованием ФЭУ XP-1020.В "стартовом" канале регистрировалось комптоновское распределение *у*-лучей с энергией $E_y>60$ кэВ, а в "стоп"канале – участок спектра ЭВК. Полученное значение

Т¼ =/9,75+0,10/ нс

в пределах погрешностей согласуется с данными работы /6/.

Таблица З

Характеристики электромагнитных переходов ¹⁵¹Gd

) 1

1

1

Ey(A Ey), ROB	Iy(AIy)	I _k (AI _k)	d _E (Ld _E)	6L	Eyp., saB	Eyp., zoB
21, 497(13)	58,8(14)	-	-	MI+0,0885.82	21,48	0
K d 2	412(9)	-	-	-	-	- 1
K «I	733(14)	-	-	-	-	- 1
K 🕴 I	227(5)	-	-	-	-	- 1
K¢2	58, I(15)	- 1	-	-	-	-
106,566(4)	1,42(4)	I,89(5)	1,09(12)	MI. B2	349.820	243.293
109,74(4)	0,046(23)	-	-	-	306, 226	196.494
II0,5I(7)	0,22(5)	-	-	- 1	353,639	243,293
153,605(4)	I00,0(I8)	51,3(7)	0,426(13)	MI	349,820	196.194
174,697(4)	47,3(IO)	100,0(14)	I.73I(43)	122	196.194	21.48
195,18(14)	0,014(5)	-	_	- 1	216.66	21.48
196, 494(22)	0,425(29)	0,II(3)	0.209(59)	MT. #2	196.494	0
221,82(9)	0,037(8)	-	-		243,293	21.48
239,0I(9)	I, 32(9)	0,133(8)	0.083(II)	E 2	260,460	21.48
243,293(14)	89,8(18)	2,196(28)	0.0202(6)	KI	243, 293	0
268, 46(8)	0,66(5)	0,076(5)	0,094(14)	MI.E2	260,460	0
284,721(23)	0,035(10)	-	-	-	306,226	21.48
286,098(14)	I,6I9(39)	0,142(9)	0.0719(88)	MI	307.521	21.48
298,968(26)	0,040(16)	-	-	-	_	-
307, 500(9)	17,42(34)	I,34I(39)	0.0605(20)	MI	307.521	n
328,310(10)	I,346(34)	0,029(6)	0.0177(41)	RI	349,820	21.48
332,097(27)	0,133(10)	0,004(1)	0,0240(63)	(R I)	353, 639	21.48
338, 50(9)	0,026(5)	-	-	-	-	
349,853(34)	0,053(3)	-	-	-	349.820	0
352,555(10)	2,00(5)	-	0.0172(8)	KI I	353,656	0
				_		

Таблица 4 Результаты еу-совпадений ¹⁵¹Gd

	L _I 2I,5		K243, 3		
Ey, RoB	^I еў эксп. ^I еў расч.		^I еў эксп.	^I еўрасч.	
106,57	-	I00(II)		100,0(28)	
IIO, 5I	-	-	7,1(48)	15,5(35)	
174,70	100(17)	100,0(21)	-	-	
239,0I	2,21(28)	2,79(19)	-	-	
2 8 6,IO	3,31(31)	3,42(8)	-	-	
328, 31	2,48(20)	2,85(7)	-	-	

СХЕМА РАСПАДА

На основании анализа спектров у-лучей, ЭВК и еу-совпадений предлагается схема распада ¹⁵¹Gd /<u>табл.5</u>/, в которой размещены 18 переходов из 20 наблюдаемых. Спины и четности уровней ¹⁵¹Eu приняты на основе мультипольностей электромагнитных переходов, размещенных в схеме распада, и с учетом данных по $\gamma\gamma(\theta)$ -угловым корреляциям ^{/5/}. В расчетах принимали, что $Q_{\epsilon} = /482 + 7/$ кэВ^{/17/} и выход флуоресценции на К-оболочке европия $\omega_{\rm K}$ =0,93^{/18/}. Интенсивность бета-распада в основное состояние ¹⁵¹Eu определена с помощью К_х-лучей. За 100% распадов 1⁶¹Gd принята сумма интенсивностей электромагнитных переходов и бета-распада в основное состояние ¹⁵¹Eu.Соотношения вероятностей электронного захвата на разных оболочках атома взяты из работы ^{/19/}.

Основные выводы:

а/ на основании анализа еу-совпадений впервые введен уровень 216,66 кэВ. Ввиду слабой интенсивности определить мультипольность перехода 195,18 кэВ трудно, следовательно, спин состояния также;

<u>Таблица 5</u> Схема распада ¹⁵¹Gd → ¹⁵¹Eu

EVD. (ARVD.)	·I ^π	E (AE)	1	РАЗРЯДКА			
кэВ	-	🖇 расл.	1810	Ву, ков	^I пол.	6L	Еур., кэВ
0	5/2+	25(8)	7,8	-	-	-	-
21.48(5)	7/2+	60(8)	7.4	21,497	1209(136)	MI+0,088%E2	0
196,194(14)	II/2 ⁻	0,24	9,3	174,697	I50(6)	M2	21,48
196, 494(22)	$(1/2^+, 3/2^+)$	0,023(6)	10,3	196,494	0,50(5)	MI+E2	0
216,66(14)	-	0,001	II,O	195,18	0,014(5)	-	21,48
243,293(15)	7/2-	5,0(2)	7,8	243,293	92(2)	EI	0
• • • •				221,817	0,037(8)	- '	2 I,4 8
260,460(II)	5/2+	0,122(10)	9,3	260,459	U,72(6)	MI,E2	U
				239,013	I,43(II)	B2	21,48
306,226(31)	(7/2+)	0,05(2)	9,5	109,74	0,05(2)	-	196,494
				284,72I	0,035(10)	-	21,48
307,521(37)	5/2+,9/2+	I,I5(5)	8,I	307,500	I8,6(4)	II د	0
		_		286,098	I,74(5)	MI	21,48
349,820(28)	9/2-	8,94(35)	6,8	349,853	0,035(3)	-	0
		-		328,310	I,34(4)	EI	21,48
	1			153,605	I54(4)	MI	196,194
				106,566	2,97(22)	MI, E 2	243,293
353,639(29)	5/2-,7/2-	0,126(6)	8,7	353,656	2,09(5)	EI	0
				332,097	0, I4(I)	(EI)	2 1,48
				110,514	0,22(6)	-	243,293

б/ на основании анализа еу-совпадений подтверждаем ранее введенные уровни: 260,5; 307,5; 349,8; 353,6 и 416,3 кэВ;

в/ переход 110,5 кэВ размещен между уровнями 353,6 /5/2⁻⁻, 7/2⁻⁻/ кэВ и 243,3/7/2⁻⁻/ кэВ. Ранее ^{/6/} его размещали между уровнями 307,0 и 196,5 кэВ.

ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

В последнее время появился ряд работ ^{/20,21/}, в которых свойства возбужденных состояний нечетно-протонных ядер с N =88 исследовались в ядерных реакциях. Результаты этих исследований показали, что низколежащие одночастичные состояния являются деформированными.

Исследования распада ¹⁵³Dy проводились в работе ^{/22/}, авторы которой, основываясь на экспериментальных результатах [/]уу(θ), T_{1/2} и др./, а также привлекая данные ^{/20,21,23/}, провели интерпретацию свойств ядра ¹⁵³Tb /изотон ¹⁵¹Eu / в рамках неадиабатической модели, учитывающей взаимодействие Кориолиса ^{/24/}. Используя метод оболочечной поправки Струтинского ^{/25/}, они провели расчеты равновесной статистической деформации основных состояний ядер Eu, Tb, Ho /см. рисунок/. Как видно, ядро ¹⁵¹Eu с N=88 в основном состоянии имеет величину квадрупольной деформации $\epsilon_{9} \sim 0, 2$.

Сравнение хара́ктеристик уровней ¹⁵¹Ец и ¹⁵³Тb, способов их разрядки, мультипольностей переходов показало, что состояния 0 кэб /5/2⁺/ и 306,2 кэб /7/2⁺/ ⁹¹/ в ¹⁵¹Ец можно интерпре тировать как вращательную полосу 5/2⁺ [402] основного состояния,а уровни 21,5 кэВ /7/2⁺/ и 307,5 кэВ /9/2⁺/ являются ротационной полосой деформированного состояния 7/2⁺ [404]. Причем они испытывают сильное кориолисовое смешивание, которое приводит к искажению их энергетики. Непосредственно расчеты ⁷/²²/ деформации состояний 5/2⁺ [402] и 7/2⁺[404] показали, что квадрупольная деформация основного и первого возбужденного состояний равна $\epsilon_9 \sim 0, 17$.

Анализ свойств возбужденных состояний ^{151}Eu показывает, что состояния 196,49 кэВ /3/2 ⁺/, 307,5 кэВ /5/2 ⁺/ по своей природе / 1^{*π*}, разрядка/ соответствуют состояниям 147,6 кэВ /3/2⁺/, 240,5 кэВ /5/2⁺/ ¹⁵³Tb, которые интерпретируются как состояния полосы 3/2⁺[411].

Наши данные, относящиеся к заселению и разрядке состояния 196,20 кэВ, подтверждают его изомерный характер. В распаде ¹⁵¹Gd мы также наблюдали другие состояния отрицательной четности: 243,29 кэВ /7/2/; 349,82 кэВ /9/2/ и 353,64 кэВ /5/2, 7/2/. Сравнение с аналогичными состояниями отрицательной четности в ¹⁵³Tb показывает, что они относятся к сильно смешанным кориолисовым взаимодействиям серии состояний, исходящих из подоболочки h_{11/2}.

Статистические деформации основных состояний ядер Eu, Tb, Ho.

ЛИТЕРАТУРА

- 1. Bernstein E.M. et al. Phys.Lett., 1970, 33B, p. 465.
- 2. Dracoulis G.D., Leigh J.R. Nucl. Phys., 1976, 2, p. 287.
- 3. Taketani H., Adachi M. Phys.Lett., 1976, 63B, p. 157.
- 4. Lewis T., Graetzer R.G. Nucl. Phys., 1971, A162, p. 145.
- 5. Thun J.E., Miller T.R. Nucl. Phys., 1972, A193, p. 337.
- 6. Hoglund A., Malsmkog S.G. Nucl. Phys., 1969, A138, p. 470.
- 7. Григорьев Е.П. и др. Изв. АН СССР, сер.физ., 1968, 32, с. 787.
- 8. Ford J.W. et al. Nucl. Phys., 1970, A146, p. 397.
- · 9. Harmatz B., Handley T. Nucl. Phys., 1966, 81, p. 481.
- .10. Antman S. et al. Z.Phys., 1970, 237, p. 285.
- 11. Genz H. et al. Z.Phys., 1973, 260, p. 47.
- Вылов Ц., Горожанкин В.М. В кн.: Спектры излучений радиоактивных нуклидов. "ФАН", Ташкент, 1980.
- 13. Кузнецов В.В. и др. ОИЯИ, Р13-12810, Дубна, 1979.
- 14. Вылов Ц. и др. В кн.: Спектры излучений радиоактивных нуклидов, измеренные с помощью полупроводниковых детекторов. ZfK-399, Rossendorf-Dresden, 1980.

- 15. Аликов Б.А. и др. ОИЯИ, Р13-10911, Дубна, 1977.
- 16. Гаджоков В. Приборы техники эксперимента, 1970, 5, с.82.
- 17. Steichele E., Kienle D. Z.Phys., 1963, 175, p. 405.
- Гусев Н.Г., Дмитриев П.П. В кн.: Квантовое излучение радиоактивных нуклидов. Атомиздат М., 1977.
- 19. Джелепов Б.С., Зырянова Л.Н., Суслов Ю.П. В кн.: Бетапроцессы. "Наука", Л., 1972
- 20. Devous M.D. Investigation of the energy levels of 88-neutron, odd-proton Nuclei. ORO-4322-20, Texac, 1976.
- 21. Winter G. et al. Annual Report Research Institute of Physics, 1971.
- 22. Аликов Б.А. и др. Изв. АН СССР, сер.физ., 1978, 42, с.704.
- 23. Зубер К. и др. ОИЯИ, Р6-8669, Дубна, 1975.
- 24. Базнат М.И., Пятов Н.И., Черней М.И. ЭЧАЯ, 1973, вып.4, с. 941.
- 25. May F.R., Pashkevich V.V., Frauendorf S. JINR, P4-10173, Dubna, 1976.

Рукопись поступила в издательский отдел 8 января 1982 года.

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

A1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	D.	60	к.
A-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3	p.	50	к.
д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	D	50	к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	p.	50	к.
A13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варма, 1977.	5	p.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пий и теории ядра. Дубна, 1978.	2	p.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	D .	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
A1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	K.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	P.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3		00	
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
12-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2		50	
10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Бадалов Н.Б. и др. Изучение распада ¹⁵¹ Gd → ¹⁵¹ Eu P6-82-8
С помощью полупроводниковых детекторов и спектрометра совпадений на базе безжелезного магнитного бета-спектрометра типа "Апельсин" и Oq(Li) -детекто- ра исследованы спектры гамма-лучей, ЭВК и бу -совпадений при распаде ¹⁵¹ Gd. Использован моноизотопный препарат ¹⁵¹ Gd. Обнаружены три новых перехода с энергиями 109,74; 195,18 и 284,72 кэВ. Впервые с высокой точностью изме- рены КВК для четырех электромагнитных переходов. На основе анализа совокуп- ности экспериментальных данных построена схема распада ¹⁵¹ Gd - ¹⁵¹ Eu. Введен
новый уровень 216,66 кэВ и подтверждены ранее введенные уровни: 260,5; 307,5; 349,8; 358,6 и 416,3 кэВ. Проведен физический анализ полученных результатов.
Работа выполнена в Лаборатории ядерных проблем ОИЯИ.
Сообщение объединенного института ядерных исследовании. Дуона 1962
Badalov N.B. et al. The $^{151}Gd \rightarrow ^{151}Eu$ Decay Study P6-82-8
By means of semiconductor detectors and a coincidence spectrometer on
the base of iron-free magnetic beta-spectrometer of "Orange" type and a
¹⁵¹ Gd decay are studied. A monoisotopic ¹⁵¹ Gd specimen is used. Three new
transitions with 109.74; 195.18 and 284.72 keV energies have been discover-
ed. For the first time with a high accuracy Ell nave been measured for four electromagnetic transitions. On the basis of analysing an assembly of ex-
perimental data a scheme of $^{161}\text{Od} \rightarrow ^{151}\text{Eudecay}$ is constructed. A new level
216.66 keV is introduced, and previously introduced 260.5; 307.5; 349.8; 358.6 and 416.3 keV levels are confirmed. Physical analysis of obtained results is performed.
The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

Ξ

