СООбЩЕНИЯ Объединенного института ядерных исследований дубна

2857/82

P6-82-127

31/1-82

И.Адам, А.В.Будзяк, З.Гонс, К.Я.Громов, Т.А.Исламов, В.В.Кузнецов, Г.А.Кононенко, Н.А.Лебедев, А.А.Тангабаев

СХЕМА РАСПАДА ¹⁶⁴ Yb (T _{1/2} = 75,8 мин)

1. ВВЕДЕНИЕ

Радиоактивный изотоп ¹⁶⁴Yb был обнаружен в 1959 году ^{/1/}. Излучение, возникающее при распаде ¹⁶⁴Yb, изучалось в работах ^{/1-3/}. Было установлено, что распад четно-четного ядра ¹⁶⁴Yb идет более чем в 90% случаев в основное состояние ¹⁶⁴Tm. Разрешенный незадержанный характер β -перехода (lgft = 4.8) позволил авторам работы ^{/1/}интерпретировать его как переход, связанный с превращением р7/2 [523] \rightarrow n5/2 [523]и приписать основному состоянию ¹⁶⁴Tm спин и четность 1⁺. Позднее Экстрем и др.^{/4/} подтвердили этот вывод в непосредственных измерениях спина основного состояния ¹⁶⁴Tm. Уже в первых работах ^{/1-3/} было установлено, что при распаде ¹⁶⁴Yb возбуждается уровень 2⁺ с энергией 37,5 кэВ. Был обнаружен также ряд *у*-переходов, сопровождающих распад ¹⁶⁴Yb, однако построение схемы уровней ¹⁶⁴Tm затруднялось малой интенсивностью этих переходов и отсутствием экспериментов по совпадениям.

С целью получения более надежных данных о возбужденных состояниях ¹⁶⁴Tm при распаде ¹⁶⁴Yb мы продолжали исследования спектров электронов внутренней конверсии /ЭВК/ и у-лучей и провели исследования у-у и е- у-совпадений. Предварительные результаты этих исследований опубликованы в ^{/5/}.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Источники иттербия-164 мы получали в реакции глубокого расщепления тантала протонами с энергией 660 МэВ на синхроциклотроне Объединенного института ядерных исследований. После облучения танталовой мишени на внутреннем протонном пучке из мишени радиохимически ^{/6/} выделялась фракция иттербия, которая разделялась по изотопам на электромагнитном масс-сепараторе Ионы ¹⁶⁴ҰЪ внедрялись в алюминиевую фольгу толщиной 4,85 мг/см². Эти источники использовались для изучения спектров ЭВК при помощи спектрометра с Si(Li) -детектором и для исследований спектров γ -лучей, γ - γ - и е- γ -совпадений $^{/8,9/}$. Для изучения спектров ЭВК на β -спектрографах с постоянным однородным магнитным полем/10/ использовалась иттербиевая фракция, радиохимически выделенная из облученной танталовой мишени. Источник приготавливался методом электроосаждения/11/ на платиновую проволоку диаметром 0,1 мм. 10 r

Спектры у - лучей изучались при помощи спектрометров с $G_{e}(L_{i})$ -детекторами с чувствительными объемами V = 1,3 см³ $/\Delta E_{\nu} = 0,6$ кэВ при $E_{\nu} = 100$ кэВ/ и V = 43 см³ / $\Delta E_{\nu} = 2,4$ кэВ при Е, = 1332 кэВ/. Информация о спектрах накапливалась в памяти многоканальных амплитудных анализаторов TRIDAC и АИ-4096. Обработка спектров проводилась на ЭВМ ЕС-1010 и HP-2116C. На рис.1 показан один из спектров у-лучей, полученных в настоящей работе. Энергии у-лучей определялись при обработке одновременно измеренных спектров исследуемого источника и калибровочных источников $^{133}{\rm Ba}$, $^{152}{\rm Eu}$, $^{56}{\rm Co}\,,$ $^{75}{\rm Se}$ и $^{182}{\rm Ta}.$ Кривые эффективности регистрации у-лучей, полученные с применением стандартных источников 56 Со , 75 Se , 110 Ag , 133 Ba , 152 Eu , ¹⁶⁰Ть и ¹⁸² Та обеспечивали определение интенсивностей у -лучей с точностью до 5%. В измеренных спектрах изобары с А = 164 кроме у -лучей 164 Yb / $T_{1/2}$ = 75,8 мин/ наблюдались также у -лучи дочернего изотопа 164 Tm / $T_{1/2}$ = 2,0 мин/. При идентификации излучения 164 Yb использованы результаты изучения у-спектров при распаде 164 Tm /2/ и в (n,n'y)-реакции на ¹⁶⁴Ег^{/12/}. Как видно из табл.1, к распаду ¹⁶⁴ Yb отнесено 28 у-переходов, из них 12 у-переходов наблюдались впервые.

Спектры электронов внутренней конверсии /ЭВК/ изучались с помощью *β*-спектрометров двух типов.

а/ <u>β-спектрометр с Si(Li)-детектором</u>. Размеры детектора -80 мм² x4 мм; разрешение $\Delta E_{e} \approx 880$ эВ при $E_{e} = 100$ кэВ. Детектор и источник спектрометра расположены в однородном магнитном поле для селекции частиц по зарядам ^{/9/}.

б/ β -спектрографы с постоянным однородным магнитным полем/10/. Разрешающая способность $\Delta H_{\rho}/H_{\rho} \simeq 0.03 \div 0.07\%$. Электроны регистрировались на фотопластинки типа P-50. Обработка полученных спектров - определение энергий и относительных интенсивностей линий ЭВК - проводилась при помощи автоматизированного микрофотометра/18/ и ЭВМ СDС-6500. При анализе спектров /см. табл.1/ идентифицированы линии ЭВК 36 у-переходов. Линии ЭВК 16 переходов наблюдались впервые. Показано, что у-переходы с энергией 75,15; 78,30; 80,07 и 118,74 кэВ, приписанные в /3/ распаду 164Yb, сопровождают распад 167 Lu /14/, 165 Yb /15/ и 162 Yb/16/. Анализ спектров ЭВК и е-у -совпадений показал, что у-переходы 695,24 и 928,70 кэВ, приписанные в /2/ распаду 164 Tm, возникают при распаде 164 Yb.

Сравнение экспериментальных и расчетных 177 , для разных мультипольностей, отношений $L_1 - , L_2 - и L_3 - линий ЭВК по$ $зволило установить для переходов с энергиями 37,57 кэВ и 40,93 кэВ мультипольности <math>M1 + /0,35 \pm 0,10\%$ Е2 и Е1 соответственно /см. <u>рис.2</u>/. Из анализа отношений интенсивностей K: $L_1:L_2$ -линий ЭВК определены мультипольности переходов

I (AI) HOJH, MYJETHIOJEHOCTE MI+0,35(I0)%E2 MI+EC 뎚 IW 430(30) 630(I5) <25^{#)} 66(I0) <I6^{#)} 35(7) у -лучей, ЭВК 164Yb ş de(ade)" 6,4(IO) 0,24(3)3,3(7) 0,7(3) о мультипольностях переходов при распаде относительных интенсивностей Ie(aIe) 247(30 I7(4) 90(I0) ^{L1} 6(2) ^{L2} 0,5 ^K 8(2) ^K 14(3) ^{L1} 2,0(5) ^{L2} 0,3(1) 34(4) 47(5) 64(7) 6(2) 44(8) 446444 (۵I_e) 011 1 1 1 1 Г° Iy(AIy) [70I0(70) 5720(80) 1500(50) 9725(60) 38,6(42) 370(5) -13(3) -(2)6I z Значения энергий I35,0(I)^H I54,I78(39) 37,573(I3) 97,339(28) 40,928(4) 50,836(3) 57,485(5) 59,I50(9) 94,05(IO) Ey(aEy) RaB 19,880(4) выводы 2

Таблица

Таблица 1 /продолжение/

1	3	, 3	4	5.	9	4
I64,45(3)	39,7(5I)	1	K I8(5)	0,45(8)	58(6)	E2+MI
•			L CJOX.			
I87,8(4)	29(I5)		K 9(3)	0,3(2)	40(I5)	MI+E2
			L ₁ I,0(3)			
			L ₂ ~0,I			
I90,8(4)	32(I5)	I	K 4(I)	0,13(7)	36(I5)	(E3)
I99,I3(39) ^H	I2,5(46)	1	К 2	<0,15	< 14 .	EL, E2
324,26(15)	J	ı	K I,0(2)	I	< 10 *)	1
327,43(I5)	1	ı	K 0,9(2)	ı	< I0 [#])	J
358,03(36) ^{a)}	I2(3)	I	K <2,5	<0,2	< 14	
362,84(I9)	67,9(65)	K 4,4(3)	K 5,2(6)	0,076(25)	74(7)	IM
			ь, 0,7(I)			
			1,~0,05			
390,60(21) ⁰	(6)00I	K 5,2(3)	к⁶,3(8)	0,063(I0)	(0I)0II	(IM)
			L, 0,9(I)			
			ъ <u>~</u> 0,06			
402,06(27)	30(5)	I	к [¯] 0,20(5)	0,007(2)	30,5(50)	13
4I5,79(25) ^a	35,3(43)	1	K 0,25(5)	0,008(2)	35,5(50)	EI
$419,54(35)^{\rm H}$	I3(3)	1	K 0,7(2)	0,054(I6)	I3,7(35)	IM
444,57(27) ^{a,1}	¹ 62,2(75))		K 0,40(I0)	0,0064(20)	63,0(75)	EI
	~	K 2,8(3)	1 ,∼0,06			
$446,74(26)^{\rm H}$	90,0(93) کا		К І,6(2)	0,018(3)	92,0(95)	2 5

Таблица 1 /продолжение/

金

.

•

.

4	-				1			MI+E2		NT . TO	217 + TM	MI +E2	122 122		ŗ	13		MI+E2		IM		MT		(EI)
9				v a v	(* * *	24	< 5 *)	29(5)		27 7(AE)		I3,6(37)	IO.0(35)	< 5¥)		00°0°	~ 3#C	77(8)		I25(II)		26(5)	< 6 *)	I7,3(40)
ى ك				20 74	11.0	1	ł	0,025(6)		0.018(6)		(G)/.TO'O	0,01(3)			(T)#00°0		0,013(3)		0,0I5(3)		0,016(5)	ı	€0,005
4	L_1 0,20(3)	L2 0,IO(3)	$^{L_3} \sim 0,05$	K I.0(2)	K ~.0 07		K 0,I3(4)	K 0,7(I)	г, 0,09(2)	K ⁻ 0.50(20)		n U, 63(4)	K 0,IO(3)	K 0.IO(4)	K D T3(A)		I O'I	K I,0(2)	L 0,I5(5)	K I,9(3)	L 0,3(I)	K 0,40(IO)	K 0,08(3)	K ≰ 0,08
m				1	ı		I	К 0,86(9)		K 0,59(8)	K 0 27(0)	1011260 11	ı	ı	ı		1	K I,22(I6)		K 2,20(I0)		ı	I	I
5				€7,4	ı		ı	28,I(46)		ⁿ 27,2(43)	T3 5(37)		9,7(35)	1	33.4(43)			75,3(76)		I23(II)		25,7(51)	F	I7,2(40)
н			:	475,9(4) ^{a, H}	491.3(2)	EDA OLANH	0.4/0.40	543,58(26)		546,86(27)	549.84(40) ^H	HATATATATA	(),Q)QQ,T/.C	581,6(3) ⁴⁴	589, I2(20)	60T_8(3)	000 -000 H	638,12(23)		675,41(22)	:	695,24(27) ^H	732,7(3)**	887,34(29)

6

-

,

Таблица 1 /продолжение/

F	8	e e	4	5	9	7
928,70(40) ^H	24(I0)	K I,26(II)	K 0,9(3)	0,04(2)	25(II)	20+E2
IOI9,24(35) ^H	I2,8(34)	1	1	ı	I2,8(34)	ı

Переходы не размещены в схеме распада.

a/

- ^{0/} Переход размещается в двух местах схемы распада. ^{H/} Новые гамма-переходы.
 - ×/
- основе оценок верхних Оценки полных интенсивностей переходов проведены на ۲ пределов

18

ų,

÷

ų,

Рис.3. Один из полученных спектров совпадений γ -лучей ¹⁶⁴ Yb с линией конверсионных электронов L₁-37,6 кэВ /внизу/. Вверху - спектр γ -лучей изобары с A =164, измеренный одновременно, в тех же условиях.

люнке 4, получены на β -спектрографах расположения линий наблюдается Интенсив -де-Si(Li) электронов других изотопов. υ спектрометре Нa получены колонке "-на месте несколько примесных линий конверсионных щ приведенные колонке определялись. "Слож. щ приведенные e , с постоянным магнитом. ности этих линий не 0 Данные I_e 0 тектором Данные Примечания:

Таблица 3

Результаты	обработки спектров с L ₁ -37,57	совпадений _У -лучей ¹⁶⁴ Yb
Еу кәВ	s _е у/ sу эксп.	a X) pacy.
199,13 ^{a)}	да	and and a second se
324,26 ^{a)}	да	
327 ,4 3 ^{a)}	да	
355,03	0,35(15)	≼0,8
390,60 ^{d)}	0,15(6)	I,0
419,54	0,45(25)	0,65(20)
444,57	0,30(10)	0,65(20)
49I,3 ^{в)}	0,20(10)	0,65(20)
534,0	0,65(25)	I,0
543,58	0,8(3)	I,0
638,12	I,I(4)	I,0
695,24	I,2(4)	I,0

Примечания:

^арасч. - схемный коэффициент, значение которого пронормировано к средневзвешенному значению S_{ev}/S_v для переходов с энергиями 534,0; 543,58; 638,12 и 695,24 кэВ.

а/ Совпадения наблюдены при измерениях спектров с использованием фильтра 0,5 мм Cd+0,5 мм Cu. б/

Двойной переход. На основе величины S_{ev}/S_v оцениваются его составляющие как 95 и 15 ед. /ед. табл.1/.

Не исключается, что этот переход сложный.

97,3 кэВ - М1, 362,8 кэВ - М1, 390,6 кэВ - М1 и 446,7 кэВ --Е2. Для связи шкал относительных интенсивностей у -лучей и ЭВК в табл.1 мы использовали расчетное /17/ значение коэффициента внутренней конверсии (а,) для перехода 362,84 кэВ типа M1: $a_{\kappa} = 0,076$. Сравнение экспериментальных значений a_{κ} с расчетными позволило определить мультипольности 25 ν - neреходов /табл.1/.

Спектры у - у - совпадений изучались на установке с двумя Ge(Li) -детекторами^{/18/}. Чувствительные объемы детекторов равнялись $V_1 = 41$ см³ и $V_2 = 43$ см³. Энергетическое разрешение ΔE_ν составляло 2,6 кэВ при E_ν=1332 кэВ. Разрешающее время схемы совпадений было равно 30 нс. Спектры совпадений записывались на магнитную ленту и обрабатывались на ЭВМ HP-2116C.Peзультаты изучения y - y -совпадений представлены в табл.2, где сравниваются экспериментальные и рассчитанные по предлагаемой ниже /рис.4/ схеме распада ¹⁶⁴ Yb интенсивности у-у-совпадений.

Спектры е-у-совпадений изучались на установке /19/, созданной на базе безжелезного *β*-спектрометра с тороидальным магнитным полем $^{/8/}$ и γ -спектрометра с Ge(Li) -детектором / V = = 35 см³, ∆Е_у=3,5 кэВ при Е_у=1332 кэВ/. Разрешающее время схемы совпадений было равно 50 нс. Использовались два типа фильтров перед у-детектором: a/ /0,5 мм Cd+0,5 мм Cu / для поглощения рентгеновского излучения и б/ /1,5 мм Pb+ 0,5 мм Cd + +0,5 мм Cu / для поглощения у-лучей малой энергии. Изучены совпадения линии ЭВК - L₁37,57 с у-лучами. Один из полученных спектров представлен на рис. 3. Обработка спектров е-усовпадений проводилась способом, предложенным в/20/. Определялись отношения площадей пиков S_{еу} и S_у, соответствующих у-лучам одной и той же энергии в спектре совпадений и в одиночном спектре. Величина отношения S $_{e
u}/S_{
u}$ определяется взаимным расположением рассматриваемых переходов / е и у / в схеме распада. Результаты анализа спектров е---у-совпадений приведены в табл.3.

3. ОБСУЖДЕНИЕ

На основе анализа спектров у-лучей, ЭВК, е-у-и у-у-совпадений мы предлагаем схему распада ¹⁶⁴ Yb → ¹⁶⁴ Tm /рис.4/. При построении схемы распада использована программа "HADAH" /21/

При построении схемы распада прежде всего следовало решить вопрос о расположении в ней наиболее интенсивных у переходов с энергией 40,93 кэВ и 37,57 кэВ. Ясно, что переход 40,93 кэВ, как наиболее интенсивный, должен идти в основное состояние $164 \,\mathrm{Tm}$ и определять положение уровня 40,93 кэВ. К сожалению, нам не удалось получить экспериментальных данных об отсутствии совпадений между переходами 40,93 кэВ и 37,57 кэВ, что являлось бы доказательством существования уровня 37,57 кэВ. Введение уровня 37,57 кэВ и интерпретацию его как ротационного уровня с $JK^{\pi} = 21^+$ основного состояния мы обосновываем мультипольностью перехода M1+E2 и значением вычисленного параметра инерции 9,39 кэВ, близкого к соответствующим значениям /9,58 и 9,32 кэВ/ в ядрах ¹⁶²Но и ¹⁶⁴Но.

Рис.4. Схема распада ¹⁶⁴ ув,предлагаемая в настоящей работе. Цифрами указаны: у у -переходов их энергии в кэВ и интенсивности в единицах табл.! /более мелкий шрифт/, у уровней - их энергии и ошибки определения энергии.

<u>Puc.5.</u> К интерпретации нижних уровней ядра ¹⁶⁴ Tm.

Переход 362,84 кэВ направлен в основное состояние в связи с отсутствием совпадений этого перехода с переходом 37,57 кэВ. Нельзя, однако, исключить, что переход 362,84 кэВ заселяет уровень 40,93 кэВ. В этом случае уровни 362,76 кэВ, 550,20 кэВ и 952,00 кэВ должны быть подняты на 40 кэВ. Уровень 928,42 кэВ установлен только на основе энергетических сумм. Все остальные уровни введены на основе баланса энергий и интенсивностей у-переходов, данных о $e-\gamma-u$ $\gamma-\gamma$ совпадениях, сведений о мультипольностях у-переходов. Заселение основного состояния ¹⁶⁴ Tm электронным захватом мы определили, используя данные об интенсивностях КХ-рентгеновского излучения тулия, ЭВК и *у*-излучения. Она составляет 96,5% распадов ¹⁶⁴ Yb. При определении значений lgft принято расчетное значение разности масс ¹⁶⁴ Yb-¹⁶⁴ Tm, равное Q_β = \approx 1,1 MэB^{/22/}. Заселенность уровней /рис.4/ определялась на основе баланса интенсивностей *у*-переходов. Суммарная интенсивность *у*-переходов, не размещенных в схеме распада, составляет менее 1% распадов ¹⁶⁴Yb /или <7% интенсивности всех наблюдаемых у-переходов/.

блюдаемых у -переходов/. Основное состояние ¹⁶⁴Tm однозначно интерпретировано как 1⁺ {p7/2[523]-n 5/2[523]{1.5,что подтверждается полученным значением lgft=4,8. Как было указано выше, уровень 37,57 кэВ мы считаем ротационным уровнем основного состояния с JK^π=21⁺. Отметим здесь, что ни в одном случае заселения уровней 0 и 37,57 кэВ у-переходами с уровней 134,9; 571,66; 675,55 и 732,77 кэВ не выполняются правила Алаги. Это указывает, повидимому, на сильное кориолисово взаимодействие этих состояний.

Мультипольности γ-переходов с уровней 40,93 кэВ и 134,92 кэВ и значения Igft для β-переходов на них лучше всего согласуются с приписанием этим уровням следующих спинов и четностей: 40,93 кэВ - 1⁻ и 134,92 кэВ - 2⁺.0ценки энергии протоннейтронных состояний в нечетно-нечетном ядре по данным об энергиях соответствующих одночастичных состояний в соседних нечетных ядрах по полуэмпирическим формулам²⁸⁷ позволяют приписать уровням 40,93 кэВ и 134,92 кэВ конфигурации, указанные на рис.5. Указанные на рис.4 заключения о спинах и четностях более

зказанные на рис. 4 заключения о спинах и четностях облее высоких уровней ¹⁶⁴Tm вытекают из полученных данных о мультипольностях у-переходов.

Авторы приносят искреннюю благодарность М.Яхиму и В.Бруданину за помощь на отдельных этапах выполнения данной работы.

ЛИТЕРАТУРА

17

- 1. Абдуразаков А.А. и др. Изв. АН СССР, сер.физ., 1960, 24, с.278.
- 2. De Boer F.W.N. et al. Nucl. Phys., 1971, A169, p.577.
- Громов К.Я., Исламов Т.А., Штрусный Х. Программа и тезисы докл. XXII Совещания по ядерн. спектр. и структ. атомного ядра, Киев. "Наука", Л., 1972, ч.1, с.133.
- 4. Ekström C., Olmats M., Wannberg B. Nucl.Phys., 1971, A170, p.649.
- Адам И. и др. Тезисы докладов XXXI Совещ. по яд. спектр. и структ. ат. ядра, Самарканд. "Наука", Л., 1981, с.127.

13 I

- 6. Молнар Ф., Халкин В.А., Херрманн Э. ЭЧАЯ, 1973, вып.4, с.1077.
- 7. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.
- 8. Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977. В кн.: Прикладная ядерная спектроскопия. Атомиздат, М., 1978, с.59.
- 9. а/ Вылов Ц., Осипенко Б.П., Чумин В.Г. ЭЧАЯ, 1978, 9, с.1350; б/ Вылов Ц. и др. 8 кн.: Прикладная ядерная спектроскопия. Атомиздат, М., 1978, 8, с.43.
- 10. Абдуразаков А.А. и др. ОИЯИ, Р6-4393, Дубна, 1969.
- 11. Beyer G., Herrmann E. Radiochem.Radioanal.Lett., 1971, 20 (1), p.41.
- 12. Бондаренко В.А., Григорьев Е.П., Прокофьев П.Т. Тезисы докл. XXXI Совещания по ядерн.спектр. и структ.ат.ядра. Самарканд, "Наука", Л., 1981, с.129.
- 13. Исламов Т.А. и др. ОИЯИ, Р10-12794, Дубна, 1979.
- 14. Вылов Ц. и др. Z.Phys., 1976, 277, 4 (395). 15. Адам И. и др. Программа и тезисы докл. XXV Совещ. по ядерн.
- спектр. и структ. ат.ядра. Ленинград, 1975, с.125.
- 16. Адам И. и др. ОИЯИ, Р6-81-457, Дубна, 1981.
- 17. Rösel F., Fries H.M., Alder K. Atomic Data and Nucl.Data Tables, 1978, 21, p.290.
- 18. Гонусек М. и др. ОИЯИ, Р13-12422, Дубна, 1979.
- 19. Кузнецов В.В. и др. ОИЯИ, Р13-12810, Дубна, 1979. В кн.: Прикладная ядерная спектроскопия. Атомиздат, М., 1980, 10, с.269.
- 20. Будзяк А.В. и др. ОИЯИ, Р6-80-668, Дубна, 1980.
- 21. Гонс З. ОИЯИ, 10-11973, Дубна, 1978.
- 22. Lederer C.M., Shirley V.S. Table of Isotopes. New York, 1978, p.974.
- 23. Burson S.B. et al. Nucl.Phys., 1973, A204, p.337.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 р. 50 к.
д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2 р. 50 к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
д13-11182)	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5 р. 00 к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6 р. 00 к.
Д6- 11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 р. 50 к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 р. 00 к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. ОО к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
Д4 - 80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 p. 50 ĸ.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Инде	кс Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Адам И. и др. Схема распада 164 Yb / $T_{\frac{1}{2}}$ = 75,8 мин/

P6-82-127

Проведены исследования спектров у-лучей, электронов внутренней конверсии /3BK/, у-у-и е-у-совпадений при распаде ¹⁶⁴ Yb. В экспериментах использовались гамма-спектрометры с Ge(Li)-и Si(Li) -детекторами, бетаспектрограф и установка, созданная на базе безжелезного бета-спектрометра с тороидальным магнитным полем. Обнаружено 37 у-переходов при распаде ¹⁶⁴ Yb, для 25 из них определены мультипольности. Предлагается схема распада ¹⁶⁴ Yb - ¹⁶⁴ Tm, включающая в себя 17 возбужденных уровней ¹⁶⁴ Tm, 16 из которых введены в настоящей работе.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982.

Adam i. et al. The Decay of 164 Yb/T $_{\frac{1}{2}}$ = 75.8 min/

The decay of 164 Yb (T $_{\frac{1}{2}}$ = 75.8 min) has been investigated with Ge(Li) and Si(Li) detectors, beta-spectrograph and beta-spectrometer with a toroidal magnetic field. The single gamma-ray spectrum, the conversion electron spectrum, gamma-gamma and electron-gamma-coincidence spectra have been measured. In all 37 gamma-ray transitions has been observed. The decay scheme for 164 Yb, 164 Tm is proposed involving 17 excited states in 164 Tm, 16 of which previously unknown.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.