

объединенный ИНСТИТУТ ядерных исследований дубна

729/2-81

P6-81-565

23/41-81

М.Будзынски, Н.А.Лебедев, Г.И.Лизурей, Т.М.Муминов, Р.Г.Назмитдинов, Я.Саржински, Т.Хазратов, А.Б.Халикулов

СВОЙСТВА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ Ца

Направлено в журнал "Nukleonika"

1. ВВЕДЕНИЕ

Свойства возбужденных состояний ¹⁸⁵La относительно хорошо изучены как при радиоактивном распаде ¹³⁵Ce^{/1.9/}, так и в ядерных реакциях с тяжелыми ионами^{/10/} Спины основных состояний ¹³⁵Ce(1/2) и ¹³⁵La(5/2) измерены методом магнитного резонанса в атомных пучках^{/11/}. Абдул-Малеком и Нейманом ^{/7/} на основе исследования спектров у -лучей, возникающих при распаде моноизотопного источника ¹³⁵Ce, была предложена схема уровней ¹³⁵La. Позднее ^{/8,9/}, с применением безжелезного β спектрометра $\pi\sqrt{2}$ и полупроводниковых детекторов были изучены спектры электронов внутренней конверсии, у -лучей и γ - γ совпадений. Предложенная Хенри и Майером ^{/9/} схема уровней

¹³⁵ La включает в себя 24 возбужденных состояния. Характерной чертой этой схемы является то, что большинство возбужденных состояний ¹³⁵ La имеют малые значения спинов 3/2⁺ или 1/2⁺. Такое положение трудно объяснить как на основе оболочечной модели, так и на основе моделей, учитывающих взаимодействие одноквазичастичных состояний с квадрупольными колебаниями остова ядра, поэтому требуются дополнительные исследования структуры состояний с малыми значениями спина.

В работе^{/10/} в результате изучения реакции (HI, xmy) установлена "ираст" полоса с головным уровнем $h_{11/2}$ в /нечетных изотопах лантана. Уровень с энергией 1379 кэВ (I⁷ = 15/2⁻) в ¹³⁵La авторами ^{/10/} приписан к этой полосе. Появление данной полосы в нечетных изотопах La объясняется на основе предположения о том, что изотопы La имеют "вытянутую" деформацию в этих возбужденных состояниях.

Измерению времен жизни возбужденных состояний 119, 206, 265 и 300 кэВ посвящены работы $^{/12\cdot14/}$. Жуком и др. $^{/15/}$ изучались угловые корреляции у -лучей каскадов 576-206, 666-206, 607-265 и 571-300 кэВ. На основе этих результатов приписаны квантовые характеристики 5/2⁺, 3/2⁺ и 1/2⁺ уровням 206, 265 и 300 кэВ соответственно. Следует заметить, что спины ряда высоковозбужденных состояний до сих пор однозначно не установлены.

Нами измерялись угловые корреляции у-лучей для 10 каскадов в ¹⁸⁵La. Определены спины некоторых уровней и мультипольности ряда переходов.

OFERBALISES DE CHTY" Southur soutours БИБЛИСТЕСС

Рис.1. Спектры у-лучей и спектры совпадений ¹³⁵La /на вставке указаны энергетические окна, с которыми измерялись совпадения у-лучей/.

 УГЛОВЫЕ КОРРЕЛЯЦИИ ГАММА-ЛУЧЕЙ ПРИ РАСПАДЕ ¹³⁵ Се → ¹³⁵ La

Измерения выполнены на моноизотопном источнике ¹³⁵Се, полученном методом хроматографического разделения и последующей электромагнитной сепарацией продуктов расщепления гадолиния, облученного протонами с энергией 660 МэВ на синхроциклотроне ЛЯП ОИЯИ. Алюминиевая фольга с радиоактивным источником растворялась в 0,1N растворе соляной кислоты в воде и помещалась в ампулу размером 6 4х10 мм.

Измерения проводились на корреляционном спектрометре, описанном в работе $^{/18}$ /с использованием Ge(Li) и двух сцинтилляционных детекторов для трех угловых позиций подвижных детекторов $/90^{\circ}-135^{\circ}-180^{\circ}$ /. Исследовались корреляции направлений для каскадов 577-206, 666-206, 518-265, 607-265, 718-265, 905-265, 572-/34,5/-265, 871-/34,5/-265 и 1149-/34,5/-265 кэВ.

Участки спектров у-лучей ¹³⁵La и спектры совпадений, полученные в одной из серий измерений, приведены на рис.1.

Значения коэффициентов функции угловых корреляций для исследованных каскадов приведены в табл.1. Там же приведены данные, полученные в работе^{/15/}.Рассмотрение табл.1 показывает хорошее согласие наших результатов с данными этой работы.

При дальнейшем анализе результатов измерений угловых корреляций у -лучей в ¹³⁵La мы использовали коэффициенты внутренней конверсии /КВК/ из работ ^{/8,9/} и принимали следующие значения параметров смеси: Q= 0,078/+19, -7/ и Q=/0,99/+12,-10/ для переходов 206 и 165 кэВ соответственно.

Фрагмент схемы уровней ¹³⁵ La приведен на рис.2.

1. <u>Каскад 518-265 кэВ</u> происходит между возбужденными уровнями с энергией 784, 265 и 0 кэВ в 135 La. Из анализа коэффициентов угловой корреляции методом Арнса-Виденбека /<u>рис.3</u>/ можно предположить следующие мультипольности для перехода 518 кэВ M1 + (16,5 $^{+2,5}_{-1,5}$)% Е2 или M1+(97 $^{+1,0}_{-15}$)% Е2 с δ (518) <0 при δ (265) >0 и M1+(1+ $^{+0,5}_{-1,5}$ % Е2 или M1+(89±3)% Е2 δ (518) >0 при δ (265) <0.

Принимая предложенное Крейном $^{/17/}$ значение δ /265/≈+0,33/2/, определяем мультипольность перехода 518 кэВ как M1=(16,5 $^{+2.5}_{-1.5})$ %E2.

2. <u>Каскад 607-265 кэВ</u> последовательно разряжает возбужденные состояния 872 и 265 кэВ на основное состояние. Уровню 872 кэВ на основе значений logfr можно приписать спины 1/2⁺ и 3/2⁺, Полученные нами значения коэффициентов угловой корреляции для этого каскада хорошо согласуются с ранее измеренными/15/

Таблица 1

KROKREH	Настоящая работа		Работа /15/		
(KB)	A22(AA22)	▲ ₄₄ (▲▲ ₄₄)	A ₂₂ (AA ₂₂)	▲ ₄₄ (△▲ ₄₄)	
518-265	0,122(16)	0,000(28)			
577-206	0,121(11)	-0,023(22)	0,126(12)	-0,014(22)	
607-265	-0,089(8)	-0,003(16)	-0,088(7)	-0,003(14)	
666-206	0,303(17)	0,015(35)	0,294(22)	0,041(46)	
718-265	-0,057(34)	-0,008(60)			
905-265	-0,215(12)	-0,028(28)			
1184-265	0,138(23)	-0,025(52)			
572-(34,5)-265	-0 <u>,</u> 007(15)	-0,028(29)			
871-(34 , 5)-265	-0,008(18)	-0,001(32)			
1149-(34,5)-265	0,006(24)	0,000(33)			

Коэффициенты функции угловой корреляции у-лучей в ¹³⁵La

Таблица 2

Мультипольности некоторых переходов в ¹³⁵La, полученные из анализа угловых корреляций

Энергия		Мультяпольность переходов		
переходов (кэВ)	Работа /9/	Работа /15/	Нали данные	പ്
518	M1+(E2)		1+(16,5+2,5)% E2	< 0
577	M1+(E2)	¥1+(12,0 <u>+</u> 0,8)% E2	M1+(7,5+0,6) % E2	> ₀
607	M1+(E2)	¥1+(15 <u>+</u> 6)≸ ≣2	11+(12,5+1) % E2	> 0
666	≌2+(₩ 1)	E2+(10 <u>+</u> 3)% ¥1	E2+(0,8+1.0) # H3	> 0
718	M1+E2		1+(10+2,5) % E2	> 0
905	¥1+(32)		M1+(0,5+0,5) % E2	> 0
1184	M1+(N2)		11+(1,5+0,5) % 12	< 0

Рис.2. Фрагмент схемы уровней ¹³⁵ La.

Однако коэффициенты A_{KK} в работе^{/15/} анализировались на основе предположения, что переход 265 кэв чистый, М1. После учета параметра смеси перехода 265 кэв получим /<u>рис.3</u>/ следующие значения мультипольности для перехода 607 кэВ: M1+(12,5±1)% E2 или M1+(97±1)% E2 с $\delta(607) > 0$ /при последовательности спинов 1/2, 3/2, 5/2/ M1+(1,5±0,5)% E2 или M1+(99±1)% E2 с $\delta(607) > 0$ /при спинах 3/2, 3/2, 5/2/.При этом первое значение мультипольности является более вероятным, так как лучше соответствует экспериментально определенному значению КВК для этого перехода. Таким образом, состояние с энергией 872 кэв имеет спин 1/2⁺,

что согласуется с выводами работы^{/9/}. С этого уровня идут слабые переходы на уровни с $I^{\pi} = 5/2^{+}$ и интенсивные переходы на уровни с $I^{\pi} = 3/2^{+}$ и $1/2^{+}$,что также служит аргументом в пользу приписания спина $1/2^{+}$ данному состоянию.

3. <u>Каскад 577-206 кэВ</u> связывает возбужденные уровни 784 и 206 кэВ и основное состояние ¹³⁵ La. На основе значений logfr уровню с энергией 784 кэВ можно приписать спины 1/2 или 3/2. Мультипольность перехода 784 кэВ - типа M1+E2, поэтому спин уровня 784 кэВ 3/2⁺.

Анализ каскада 577-206 кэВ /рис.4/ приводит к следующим значениям мультипольности перехода 577 кэВ: $M1 + (7,5 \pm 0,6)\% E2$ или E2 + <1% M1 с $\delta(577) > 0$. Последнее значение мультипольности исключается согласно данным о значении КВК для этого перехода.

206 кэВ.

4. <u>Каскад 666-206 кэВ</u> происходит между уровнями 872,206 кэВ и основным состоянием ¹³⁵ Ls. Анализ коэффициентов УК /рис.4/ этого каскада приводит к смеси мультипольностей E2+ $(0.8^{+1.0}_{-0.8})$ жМЗ с $\delta(666) > 0$ при последовательности спинов 1/2,5/2,5/2.

5. Каскад 718-265 кэВ связывает возбужденные состояния 984, 265 кэВ и основное состояние ¹³⁵La. Уровню с энергией 984 кэВ на основе значений logfr можно приписать спины 1/2⁺или 3/2⁺. Из анализа коэффициентов УК каскада 718-265 кэВ получаем следующие значения для смеси мультипольностей перехода 718 кэВ: или M1+(96^{+1,8})%E2 с δ(718)>0 /при после-M1+(10 ±2,5) % E2 довательности спинов 1/2⁺, 3/2⁺, 5/2⁺, M1+ (3±2) %E2 или /при спинах 3/2+, 3/2+, 5/2+/. Значение мульти-M1+(99±1)%E2 польности этого перехода M1 + (10±2,5) % E2 является более вероятным, поскольку лучше соответствует экспериментально определенному КВК. Переход 777 кэВ происходит между уровнями 984 (I[#]=1/2⁺) и 206 (I[#]=5/2⁺) и имеет мультипольность E2^{/8,9/}. Из приведенного выше однозначно вытекает, что спин уровня 984 кэВ 1/2+.

6. <u>Каскад 905-265 кэВ</u>. На основе значения logfr уровню 1171 кэВ можно приписать спины 1/2 или 3/2. Переход с энергией 1052 кэВ имеет мультипольность Е2 и заселяет уровень с энергией 119 кэВ ($I^{\pi}=7/2^+$).Поэтому спин уровня 1171 кэВ 3/2⁺. Из анализа коэффициентов A_{22} угловой корреляции /<u>рис.5</u>/ каскада вытекает, что мультипольность перехода 905 кэВ M1+($0.5^{+0.5}_{-1.5}$)%Е2 или M1+($91^{+1.0}_{-1.5}$)%Е2 с δ (905)>0. На основе данных о КВК последняя возможность исключается.

7. Каскад 1184-265 кэВ. Уровень с энергией 1149 кэВ разряжается каскадными переходами 1184 и 265 ков на основное состояние ^{135}La . Согласно значению $\log r \approx 7.0$. этому уровню можно приписать квантовые характеристики $1/2^+$ или $3/2^+$. Из графика Арнса-Виденбека /рис.5/ при последовательности спинов 1/2+, 3/2+, 5/2+ определяем мультипольность перехода 1184 кэВ как M1+(1,5±0,5)%Е2 или M1+(83⁺²)%Е2, а при последовательности спинов $3/2^+$, $3/2^+$, $5/2^+$ - как $M_{1+}(22^{+2}_{-1})$ % E2 или $M_{1+}(96^{+3}_{-1})$ % E2. Смеси мультипольностей M1+(83⁺²)%E2 и M1+(96⁺³)%E2исключаются при учете КВК ^{/8,9/}. Уровни с энергией 300, 872, 984 и 1449 кэВ сильно заселяются при B⁺-распаде ¹³⁵ Се. При разрядке уровней 872, 984 и 1449 кав возбужденные состояния со спинами 1/2+ и $3/2^+$ заселяются сильно, а состояния с $I^{\pi} = 5/2^+$ - слабо. Следовательно, можно предположить, что уровни 300, 872, 984 и 1449 кэВ по своим свойствам схожи. Вероятнее всего предположить, что спин уровня 1449 кэВ 1/2⁺, а сультипольность перехода 1184 K3B M1+(1,5 ±0,5) %E2 c δ (1184) < 0.

8. <u>Каскады 572-/34,5/-265, 871-/34,5/-265 и 1150-/34,5/-265кэВ</u> Переходы 572, 871 и 1150 кэВ заселяют уровень с энергией 300 кэВ, который разряжается переходом 34,5 кэВ на состояние 265 кэВ. Изотропность /в пределах экспериментальных ошибок А_{КК}= 0/ угловой корреляции этих каскадов подтверждает, что характеристики уровня 300 кэВ 1/2⁺.

В табл.2 приведены мультипольности некоторых переходов в 135 La, определенные из измерений угловых корреляций. Отметим, что несмотря на хорошее согласие коэффициентов угловых корреляций, мультипольный состав переходов 577, 607, 666 кэ8, определенный нами и в работе^{/15/} различается. В работе^{/15/} при обработке экспериментальных результатов угловой корреляции принято, что переходы 206 и 265 кэ8 чистые М1. Авторы работы^{/8/} на основе изучения спектров Э6К определили мультипольный состав переходов 206 и 265 кэ8 как M1 + (7,8^{+1,0}) % E2 и M1+(9,9^{+1,0}) % E2

соответственно. Как ранее упоминалось, проведенный нами анализ

коэффициентов угловой корреляции основан на этих значениях мультипольностей переходов 206 и 265 кэВ. Для перехода 666 кэВ мультипольный состав, найденный нами и в работе^{/15/}, сильно различается. Это связано с тем, что в работе^{/15/} принят спин уров~ ня 872 кэВ как 3/2⁺, а впоследствии выяснилось в ^{/9/}, что спин этого уровня 1/2⁺.Нами принято последнее значение спина для этого уровня.

Таким образом, результаты исследования угловых корреляций в ¹³⁵La показали непротиворечивость данных, полученных при изучении схемы распада ¹³⁵Се и КВК рассматриваемых переходов.

- 3. ОПИСАНИЕ СВОЙСТВ ¹³⁵ La
 - В РАМКАХ КВАЗИЧАСТИЧНО-ФОНОННОЙ МОДЕЛИ
 - С УЧЕТОМ ПРИНЦИПА ПАУЛИ

Экспериментальное исследование в области A=185 обусловлено попытками теоретической интерпретации как низколежащих, так и высоколежащих состояний ядер этой области в рамках различных моделей^{/18-20/}. Как правило, эти модели неплохо описывают энергетику низколежащих уровней, вероятности электромагнитных переходов. Очевидно, что сравнение экспериментальных и теоретических данных позволяет выявить недостатки теоретических представлений, заложенных в модели.

Развитая В.Г.Соловьевым и сотрудниками квазичастично-фононная модель /КФМ/, учитывающая принцип Паули, успешно описывает высоковозбужденные состояния сферических ядер^{/21/}.В последнее время она применяется также для описания низколежащих состояний ядер с числом нуклонов, близким к магическому. Мы попытались в рамках КФМ описать энергию уровней и вероятности электромагнитных переходов ¹³⁵La. Был использован вариант гамильтониана модели, который включает среднее поле, спаривательное взаимодействие и дальнодействующие силы квадрупольного типа. В волновой функции возбужденного состояния нечетного ядра учитывалась лишь компонента "квазичастица + фонон". Подробное описание теоретических основ модели, использованной при расчете, дано в работах ^{/22,23/}.

Результаты расчета энергии уровней, их структура, а также вероятности электромагнитных переходов с этих уровней приведены в <u>табл.3</u> и <u>4</u>. Основное и первое возбужденное состояния ¹³⁵ La имеют квазичастичную структуру и определяются состояниями 2d_{5/2} и 1g_{7/2}, соответственно. Состояние уровня 5/2⁺ определено почти полностью компонентой, обусловленной взаимодействием "квазичастица + фонон". Учет принципа Паули привел к сильному возрастанию рассчитанных энергий уровней 3/2⁺ и 1/2⁺ до значе-

Таблица З

Значения рассчитанных энергий возбужденных состояний ядра ¹³⁵ La и соответствующая им структура волновых функций

I	^В эксп. (кэВ)	Е _{теор.} (кэВ)	Структура		
5 / 2*	0	0	89% 2d5/2+ +3% [2d5/2+ • 21] 5/2+ +3% [1b1/2+• 31] 5/2+		
7/2*	119	130	99% 1 _{87/2} ↑		
5/2*	206	277	2% 2d _{5/2} + +98% [187 /2 ⁺ ● 2 ⁺ ₁] _{5/2} +		
3/2*	265	1031	7% 20 ;; 2+ +91% [205/2+ ● 21 5/2+		
1/2+	300	1193	55% $3S_{1/2^{+}} +40\% [2d_{5/2^{\circ}} \cdot 2^{+}_{1}]_{5/2^{+}} +4\% [2d_{3/2^{+}} \cdot 2^{+}_{1}]_{5/2^{+}}$		

Таблица 4

Экспериментальные и рассчитанные значения приведенных вероятностей B(M1) и B(E2) для некоторых переходов ¹³⁵La

Переход	B(MI) (я.м.) ²		B(MI) aKCH B(F2) (e ² 0 ²)	В(E2)	
$I_1 \longrightarrow I_r$	эксп.	теор.	B(MI) reop.	эксп.	теор.	B(E2) _{reop} .	
7/2+-> 5/2+	0,33-2	0,000	0	0,14-1	0,48-2	3	
5/2⁺-⇒ 5/2⁺	0,64-2	0,64+0	0,10-1	0,19-2			
3∕2⁺→5/ 2 ⁺	0,22-1	0,12+0	0,18+0	0,49-2	0,43-3	10	
1/2⁺ 5/2 ⁺			0,64-1	0 , 64-1	0,30-4	210	

* Запись 0,33-2 озкачает 0,0033.

ний ≥ 1 МэВ. Из <u>табл.4</u> видно, что рассчитанные приведенные вероятности E2-переходов занижены относительно экспериментальных значений. Это обусловлено тем, что основной вклад в рассчитанную вероятность переходов дают малые компоненты волновой функции. По-видимому, для описания вероятности E2-переходов в волновой функции модели необходимо учитывать другие компоненты, например, типа квазичастица + два фонома и т.д.²⁸⁴. Приведенная

вероятность B(M1) ℓ -запрещенного $1g_{7/2^+} \rightarrow 2d_{5/2^+}$ перехода очень мала, а в других случаях - завышена /см. <u>табл.4</u>/. Следовательно, снятие ℓ -запрета перехода $1g_{7/2} \rightarrow 2d_{5/2}$ невозможно объяснить в рамках используемой нами модели. Снятие ℓ запрета можно связать либо с влиянием спин-квадрупольных сил^{25/} на структуру 1⁺-фононов, либо с поляризационным членом в операторе M1-перехода^{24/}. Описание как энергетики уровней, так и вероятности электромагнитных переходов в данном варианте модели указывает на необходимость усложнения волновой функции путем учета более высших конфигураций^{/24/},а также включения в рассмотрение эффектов ангармоничности колебаний четно-четного остова.

ЛИТЕРАТУРА

- 1. Takahashi K. et al. J.Phys.Soc.Jap., 1964, 19, p.2014.
- 2. Балалаев В.А. и др. Изв. АН СССР, сер.физ., 1965, 29, с.2264.
- 3. Rezanko I. et al. Czech.J.Phys., 1967, 17B, p.1050.
- 4. Гритенко З.Г. и др. яФ, 1969, 10, с.928.
- 5. Абдумаликов А.А. и др. ЯФ, 1966, 3, с.602.
- 6. Abdul-Malek A., Naumann R.A. Phys.Rev., 1968, 166, p.1194.
- 8. Nagai Y., Hisatake K. J.Phys.Soc.Jap., 1974, 36, p.1501.
- 9. Henry E.A., Meyer R.A. Phys. Rev., 1975, 12C, p.1321.
- 10. Leigh J.R. et al. Nucl. Phys., 1973, A213, p.1.
- Ingelman S. et al. Phys.Scripta, 1973, 7, p.24.
- 12. Nagai Y. et al. J.Phys.Soc.Jap., 1970, 29, p.790.
- 13. Афанасьев В.П. и др. ОИЯИ, Р6-6426, Дубна, 1972.
- 14. Akiba M. et al. J.Phys.Soc.Jap., 1972, 32, p.367.
- 15. Жук В. и др. Изв.АН СССР, сер.физ., 1972, 36, с.753.
- 16. Аликов Б.А. и др. В сб.: Прикладная ядерная спектроскопия. Атомиздат, М., 1977, с.86.
- 17. Krane K.S. Atomic Data and Nucl.Data Tabl., 1977,19,p.415.
- 18. Kisslinger L.S., Sorenson R.A. Rev.Mod.Phys.,1963,35,p.853.
- 19. Paar V. Nucl.Phys., 1973, A211, p.29.
- 20. Kurijama A. Suppl.Prog.Theor.Phys., 1975, p.58.
- 21. Соловьев В.Г. ЭЧАЯ, 1978, т.9, вып.4, с.580.
- 22. Вдовин А.И., Соловьев В.Г., Стоянов Ч. ОИЯИ, Р4-12992, Дубна, 1980.
- 23. Chan Zuy Khuong et al. J.Phys.G: Nucl.Phys., 1981, 7, p. 151.
- 24. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 1980, A342, p.261.
- 25. Бор А., Моттельсон В. Структура атомного ядра. /Пер. с англ./, "Мир", М., 1971, т.1.

Рукопись поступила в издательский отдел 19 августа 1981 года.