

Объединенный институт ядерных исследований дубна

4816/2-81

28/9-81

P6-81-457

И.Адам, А.Будзяк, З.Гонс, М.Гонусек, К.Я.Громов, Т.А.Исламов, В.В.Кузнецов, Н.А.Лебедев, А.А.Тангабаев²

ИССЛЕДОВАНИЕ ВОЗБУЖДЕННЫХ УРОВНЕЙ Тт ПРИ РАСПАДЕ ¹⁶² Yb (Т_{1/2} = 18,9 мин.)

Направлено в "Acta Physica Polonica"

¹ Институт ядерной физики, Ржеж, ЧССР. ² Ташкентский государственный университет.

1. ВВЕДЕНИЕ

Первые сведения о распаде ¹⁶² Yb → ¹⁶² Tm были получены при исследовании спектра конверсионных электронов при помощи магнитного бета-спектрографа авторами работы^{/1/}. Исследования спектров у -лучей и ЭВК при распаде ¹⁶² Yb продолжены в работах /2-4/. Спин основного состояния ¹⁶²Тт измерен Экстремом и др. $^{/5/}$ и равен 1. Основное состояние $^{162}\,\mathrm{Tm}$ интерпретируется как нильссоновская конфигурация 1, $p1/2^+$ [411] $\rightarrow n3/2^-$ [521]. В работе 161 на основе исследований ЭВК, у-лучей, е-у- и у-усовпадений предложена схема возбужденных уровней ¹⁶²Tm. Уровень с энергией 44,64 кэВ является первым уровнем ротационной полосы основного состояния ¹⁶² Tm /4/. Состоянию с энергией 163,3 кэВ, принимая во внимание разрешенный незадержанный бета-переход при распаде ¹⁶² Yb на этот уровень, приписывают нильссоновскую конфигурацию 1+, р7/2 - [523] → n5/2 - [523]Автоизмерены времена жизни первых двух возбужрами работ ^{/7,8/} денных состояний ¹⁶² Tm с энергией 44,64 кэв - Т_{1/2} = = 1,40/15/·10⁻⁹с и 163,3 кэВ - Т₁₄ = 1,12/10/·10⁻⁹с. В настоящей работе продолжены исследования излучений, возникающих при распаде ¹⁶² Үb.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА И ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Нейтронодефицитные изотопы иттербия мы получали в реакциях глубокого расщепления при облучении мишеней из тантала и гафния протонами с энергией 660 МэВ на синхроциклотроне Объединенного института ядерных исследований. Использовались источники трех типов:

1. Для изучения спектров γ -лучей, е- γ - и γ - γ -совпадений применялись источники, полученные при облучении на выведенном пучке протонов / J $_{\rm p}$ \approx 0,1 мкА/ мишеней из тантала и гафния, приготовленных из фольги толщиной 50 мкм. Вес мишеней 0,5 г. Длительность облучения 20 мин. Облученные мишени с помощью пневмопочты доставлялись к ионному источнику масс-сепарато-ра/9/. Радиоактивные изотопы, образовавшиеся в мишени, разде-лялись по изобарам. Мишени из гафния давали большее отношение выходов изотопов иттербия и тулия 10 . Источники, полученные из

Рис.1. Спектр у –лучей изобары A = 162 в области малых энергий.

гафниевой мишени, использовались для изучения спектров γ -лучей. Для изучения спектров $e-\gamma$ и $\gamma-\gamma$ -совпадений применялись источники, полученные из танталовой мишени. Измерения во всех случаях начинались через 8-12 мин после конца облучения.

2. Для изучения спектров электронов внутренней конверсии /ЭВК/ с помощью Si(Li) -детектора использованы источники, полученные при облучении тантала /вес равен 4 г/ на внутреннем пучке протонов /J_p \approx 2-3 мкА/. Длительность облучения 15 мин. Проводилось быстрое радиохимическое выделение /в течение 40 мин/ Фракции изотопов иттербия и разделение их на электромагнитном масс-сепараторе. Измерения начинались через 50-60 мин после конца облучения.

3. Для изучения ЭВК на бета-спектрографах с постоянным магнитным полем^{/11/} использовалась фракция изотопов иттербия, радиохимически выделенная^{/12/} из танталовой мишени, облученной на внутреннем пучке протонов /см. 2/. Источник готовился с применением быстрой /-3 мин/ методики электроосаждения^{/13/} на платиновую проволоку диаметром 100 мкм. Экспозиции на бетаспектрографах начинались через 45-50 мин после конца облучения.

При разделениях изотопов на масс-сепараторах источники наносились на алюминиевую фольгу толщиной 18 мкм.

Спектры у -лучей измерялись с помощью спектрометров с'Ge(Li)полупроводниковыми детекторами с чувствительными объемами:

1/ 0,5 см³ / разрешение $\Delta E_{\gamma} = 0,8$ кэВ при $E_{\gamma} = 122$ кэВ/; 2/ 41 см³ / $\Delta E_{\gamma} = 2,4$ кэВ при $E_{\gamma} = 1332$ кэВ/, 3/ 47 см³ / $\Delta E_{\gamma} = 2,5$ кэВ при $E_{\gamma} = 1332$ кэВ/ и 4/ 1 см³ / $\Delta E_{\gamma} = 0,55$ кэВ при $E_{\gamma} = 122$ кэВ/. Для регистрации спектров γ -лучей использовался многока-

Для регистрации спектров γ -лучей использовался многоканальный амплитудный анализатор АИ-4096. Обработка спектров проводилась на ЭВМ НР-2116С. На <u>рис.1 и 2</u> представлены спектры γ -лучей изобары с A=162. Наряду с γ -переходами, возникающими при распаде ¹⁶² Yb, наблюдаются γ -переходы дочернего ¹⁶² Tm. Идентификация γ -лучей ¹⁶² Yb проводилась по спаду их интенсивности в нескольких последовательных сериях измерений спектра. γ -лучи ¹⁶² Tm идентифицировались на основе данных работ ^{/4,14/}.

Энергетическая калибровка спектров проводилась с помощью источников $^{110 \text{ m}}\text{Ag}$, ^{183}Ba , ^{152}Eu , ^{182}Ta , ^{56}Co и ^{241}Am . Кривые эффективности регистрации γ -лучей использованными детекторами определялись при помощи калибровочных источников с точностью /3-8/%. Результаты анализа спектров γ -лучей приведены в табл.1. Наблюдено 45 γ -переходов 162 Yb, из низ 39 - впервые.

Для исследования спектров ЭВК использовались бета-спектрометры двух типов:

1. Бета-спектрометр с Si(Li) -детектором размерами 80 мм²х х 4 мм и разрешением $\Delta E = 880$ эВ при $E_e = 100$ кэВ. Детектор и источник помещены в однородное магнитное поле для селекции частиц по зарядам ^{/15/}. Регистрация ЭВК проводилась с помощью многоканального анализатора INTERTECHNIQUE. Обработка спектров осуществлялась на ЭВМ "Минск-2".

2. Бета-спектрографы с постоянным однородным магнитным полем с разрешающей способностью $\Delta H_{\rho}/H_{\rho} = 0.03-0.07\%$. Электроны регистрировались на фотопластинках типа P-50 производства НИИхимфото. Обработка спектров – определение энергий и интенсивностей ЭВК – проводилась при помощи автоматизированного микрофотометра^{/16/} и ЭВМ БЭСМ-6 и CDC-6500.

Рис.2. (Спектр энергий лучей изобары ⊳ il 162 μ области

÷

$\frac{E_{y}(\Delta E_{y})}{\kappa \ge B}$	Iy(AIy)	$I_{K}(\Delta I_{K}) = I_{K}(\Delta I_{K})$	L, ^{(AI} L,)	IL ^{(AI} L,)	I (AI L _m L _m) $\mathcal{L}_{\kappa}^{\text{эксп.}}$	Inour.	Мультицоль- ность			
I	2	3 4	5	6	7	8	9	10			
χ. (Tm)	2500(180)						·	_			
44,65(2)*	75,7(30)		280(30)	230(25)	245(30)	L 3,70(42)	1060(50)	MI+7,8(17)%E2			
II8,70(2) [*]	840(40)	150(15)	I6,O(I5)	3,6(4)	4,2(4)	0,180(20)	1020(45)	EI			
I25,58(3) [*]	19,7(21)	10(3)				0,51(15)	30(10)	E2(+MI)			
126.78(10) [*]	12,2(28)	I6(4)	•			I,3(4)	28 (10)	MI(+E2)			
163.35(3) ^X	1000(40)	77(10)	8,5(15)	1,6(2)	1,7(2)	0,077(10)	1090(50)	EI			
183.05(22)*	II.3(I3)	₩ 0,6		· ·		0,055(15)	12,0(15)	EI			
184.91(38)	7.7(21)	~ 0,5				0,065(25)	8,2(20)	EI			
194.64(9)	4.8(5)	-				· _	4,8(5)	-			
206.82(12)*	7.2(7)	0,40(10))			0,055(15)	7,6(8)	EI			
210.68(8)	IO.4(10)	₩ 0,5				0,050(15)	II,0(20)	EI			
217.52(7)	5.0(IO)	C.TOEH.				-	5,0(10)	-			
244.83(10)*	5.6(IO)	CJOXH.				-	5,6(10)	-			
290.35(4)*	9.6(10)	~0,3				0,03(10)	.9 .9 (10)	EI			
329.26(30)*	6.4(30)	-				-	6,4(30)				
335.02(8)	7.2(10)	0.40(10) 0.70(20))			0,10(3)	8,0(IO)	MI(+B2)			
349.44(7)	10.4(10)	0.20(5) сложн.	•			0,015(5)	10,6(10)	- RI			
353.57(17)	2.4(IO)					-	2,4(10)				

Таблица l Значения энергий и относительных интенсивностей у -лучей и ЭВК при распаде ¹⁶² Yb

¢n.

Таблица 1 /продолжение/

2		4	5	6	7	9	0	
357,14(13) 3,2(10)	0.095(T5)			ويريفية التكاليسي				
365,93(23) I.6(IO)	-,,	_	•			0,030(10)	3,3(IO)	E2
372.77(12) 4.8(10)		_				-	I,6(IO)	
384,85(24) [¥] 2,4(I0)		_				-	4,8(IO)	
399.86(I4) [*] 4.0(I0)	0.30(5)	_					2,4(IO)	
406.39(6)* 8.0(TO)	0,00(0)	01097				0,080(25)	4,3(IO)	MI
425,40(I0) 5,6(I0)		onomi.					8,0(IO)	
450.69(18) [×] 5.6(10)		-					5,6(10)	۰,
457.38(T9) [#] 7 2(T0)		-					5,6(IO)	
540.04(9) 5.6(TO)		-					7,2(10)	
$545 40(16)^{3} 3.2(10)$		-					5,6(IO)	
550 86(19) 3 2(10)	0.20(5)	-					3,2(10)	
576 TO(A) = 90 7(50)	0,30(5)					0,090(30)	3,5(15)	
584 07(7)* T6 0(20)	0,93(20)	1,3(3)	L -0,25(8)			0,0I5(5)	83(6)	MI(+E2)
59T 59(TD) T 2(20)	0,16(5)					0,0I0(5)	16,2(20)	B2
$607,68(5)^{3}$ 56 9(cm)	0,060(20)	-				0,0055(20)	II,2(20)	EI
676.94(70) = 30,0(00)	0,55(7)	0,50(10))			0,0090(35)	57,5(60)	E2
619 55(75) ± 00 4(40)	0.40(15)	-					17(3)	
$(10,00(10) \times (22,4(40)))$	-,	0,15(5)				0,0070(25)	22,6(40)	E2
627, 72(20) = 7, 2(10)		-					7.2(10)	
$(50, 10(40)^{-2}, 4(10))$		-					2.4(10)	
002,04(00) 5,0(20)		-					5.0(20)	
034,39(14)" IO,4(IO)	0,2(15)	-				0,035(15)	$I0.7(T_0)$	

I	2	3	4	5	6	7	8	9	IO
725,96(18) [*]	6,4(IO)		-					6 4(TO)	. ·
730,71(20)	4,8(IO)		-					4.8(TO)	
738,07(13)**	17,6(40)		<u>_</u>					17.6(40)	
774,31(10)	8,8(10)		-					8.8(IO)	
782,47(10)	7,6(10)		-					7.6(10)	
856,71(18)*	3,2(10)		-					3,2(10)	

Таблица 1 /продолжение/

<u>Примечение</u>: I. Данные о I_к, приводимие в колонке 3, получены на спектрометре с Si (Li)-детектором.

> 2. Данные о I_к, I_I, I_I, I_I, приводямие в колонках 4,5,6,7, получены на бета-спектрографах с постоянным магнитом.

 "сложн." - на месте расположения линии наблюдается несколько неразрешенных линий. Интенсивности этих линий не определялись.

4. Переходы, отмеченные (ж), размещены в схеме распада.

5. Переход, отмеченный (ны), размещается в схеме распада в двух местах.

-

....

Результаты анализа спектров ЭВК приведены в табл.1. Бетаспектрографы высокого разрешения позволили получить детальную информацию о мягкой части спектра ЭВК, с помощью полупроводникового бета-спектрометра получены данные об интенсивностях К-линий более жестких у-переходов. Сравнение экспериментальных и расчетных /17/ отношений интенсивностей К-, L_I-, L_{II}-иL_{III}линий ЭВК позволило установить мультипольности переходов с энергиями 44,64; 118,7 и 163,35 кэВ как M1+/7,8+1,7/% E2, E1 иE1, соответственно. Для связи шкал относительных интенсивностей у-лучей и ЭВК мы использовали значение коэффициента внутренней конверсии перехода 163,35 кэВ (E1): $a_{\rm K} = 0,077$. При сравнении экспериментальных и расчетных /17/ значений $a_{\rm K}$ определены мультипольности ряда у-переходов /см. табл.1/.

Спектры е-у -совпадений при распаде 162 Уb изучались на установке/18/созданной на базе безжелезного бета-спектрометра с тороидальным магнитным полем^{/19/} и гамма-спектрометра с'Ge(Li)детектором с чувствительным объемом 35 см³ / $\Delta E = 3,5$ кэВ при Е, =1332 кэВ/. Временное разрешение установки составляло 50.10⁻⁹ с. Изучались совпадения у -лучей с ЭВК L-44,65. Полученный спектр совпадений показан на рис.3. Анализ результатов изучения е-у -совпадений проводился по методике, описанной в /20/. Вычислялись отношения (a) -интенсивностей у -линий в одиночном у-спектре и спектре е-у-совпадений. Полученные значения отнормируются так, чтобы максимальные их значения ношений (а) были равны 1. Эти значения соответствуют прямым совпадениям. Меньшие величины отношений соответствуют совпадениям через промежуточные у -переходы, но всем переходам, идущим на один и тот же уровень, соответствует одно и то же значение отношения а. В табл.2 представлены результаты такого анализа.

Спектры $\gamma - \gamma$ -совпадений при распаде ¹⁶² Yb изучались на установке /21/ с использованием двух Ge(Li) -детекторов с чувствительными объемами 41 см³ и 47 см³ и разрешением $\Delta E =$ = 2,5 кэВ при $E_{\gamma} = 1332$ кэВ. Разрешающее время схемы совпадений составляло 30.10⁻⁹ с. Трехмерные спектры совпадений записывались на магнитную ленту и обрабатывались на ЭВМ НР-2116С.Ряд полученных спектров $\gamma - \gamma$ -совпадений показан на <u>рис.4</u>.

Результаты обработки спектров у-у -совпадений приведены в табл.3. Сравниваются экспериментальные и рассчитанные по предлагаемой нами схеме распада ¹⁶² Yb интенсивности у-у -совпадений.

3. CXEMA PACHADA 162 Yb \rightarrow 162 Tm

На основе анализа спектров γ -лучей, ЭВК, γ - γ и е- γ -совпадений предлагается схема распада ¹⁶² Yb \rightarrow ¹⁶² Tm /pис.5/. Схема распада рассчитывалась по программе "HADAH"/²²⁷.

Таблица 2

Еу (кэВ)	а _{эксп.}	арасч.
406,39	I,I(5)	I,0
576,10	0,45(9)	0,50(3)
584,07	0,2(1)	0,50(3)
591,58	0,40(13)	0,50(3)
607,68	0,40(10)	0,50(3)
616,84 + 619,55	0,46(I3)	0,50(3)
628,47	0,30(13)	0,50(3)
6 94,39	0,6(3)	0,50(3)
725,96	0,7(4)	I,0
738,07	I,0(4)	I,0
856,5	0,7(4)	I.0

Анализ результатов е-у -совпадений с L-44,65 кэВ при распаде ¹⁶² Yb → ¹⁶² Tm

<u>Примечание</u>: I. а_{эксп.} = Sel/Sy, где S_еу - площадь фотопика в спектре е-Л-совпадений, Sy - площадь соответствующего фотопика в одиночном спектре У-дучей.

> а_{расч.} = I для прямых каскадов. Для совпадений через промежуточные У-переходы а < I и зависят от разветвлений на промежуточных уровнях, но для всех переходов, идущих на определенный уровень, значения а равны между собой.

 Малое значение а_{эксп.} для У-лучей с энергией 584.07 кэВ указывает на то, что этот переход сложный.

Экспериментальные данные об уровнях 162 Tm с энергией 0; 44,65 и 163,30 кэВ и их интерпретация, полученные в работах /2-4/, полностью подтверждаются результатами настоящей работы. Кроме этих уровней, мы вводим 16 новых, более высоковозбужденных состояний 162 Tm /см. <u>рис.5</u>/. Интенсивность у эпереходов, не размещенных в схеме распада, составляет менее 5% всех распадов 162 Yb и менее 2% суммарной интенсивности у-переходов при распаде 162 Yb. На основе экспериментальных данных рассчитаны интенсивности заселения уровней 162 Tm при распаде 162 Yb. На основе значений разности масс 162 Yb $\rightarrow ^{182}$ Tm, Q $_{\beta} \leq 2,2$ МэВ из /23, определены значения logft для β -распада на уровни 162 Tm.

Рис.4. Спектры у-у -совпадений.

Анализ результатов у-у -совпадений при распаде $^{162}\,{\rm Yb}$, $^{162}\,{\rm Tm}$

Еу (кәВ)	II8,7		125,6 + 126,8	125,6	126,8		163,4	183.I + 184,9	183,1
	Iyy(•Iyy) ^s	erc. I yy (AIyy)	^b ·I ^{λλ} (♥I ^{λλ}) ₃ .	Iyy(A)	(W) paca.	Iyy(≜Iyy)	³ •Iyy(▲Iyy)	^{p.} Iyy(▲Iyy) ⁵	^{3.} Iyy(4 Iyy)
II8,7 I63,4									4,0(8) 5,0(I0)
$\left\{\begin{smallmatrix} 125,6\\ 126,8 \end{smallmatrix}\right\}$	7(I)	2,4(7) 4,9(IO)	6,0(30)	6,0(20)	6,0(2 0)	4,5(25)	2,8(8) 5,8(15)	•	
244,8 384,9	2,0(10)	2,20(40) 0,30(10)		I.6(7)	0.50(20)	1,5(7)	2,7(5) 0,40(10)	• .	
399,9 457,4		0,40(10) 0.90(20)		2,5(8)	0,80(30)		0,50(20) T 0(3)		
576,I	32,0(70) 5.0(20)	32,0(20)			~,~(0)	32,0(45)	38,0(30)		
591,6	4,0(I0)	4,50(80)				3,5(I5)	5,5(10)	(5(05)	
6I6,8 6I9,6	20,0(40) 7,5(30) T2.0(60)	6,7(IO) 9.0(I5)	-		}	12,0(40)	27,0(30) 8,0(I5) T0.6(20)	4,5(2U <u>)</u>	10,0(20)
628,5	3,7(15)	3,0(4)		ы. Г.	•	3,0(15)	3,5(5)	7- 	
637,I 652.5	∼1,3 1,3(I0)	I,0(4) 2,0(8)	en andre en		• • • ;	~ 1.3 1.5(6)	I,0(5) 2.4(IO)	· · · · ·	
694,4 738,I	3,0(15) 1,3(8)	4,0(5) I,2(4)				3,5(15) 0,4(2)	5,0(5) I,5(5)	и. 1 2 ¹ 1	

<u>Рис.5.</u> Схема распада 162 Yb \rightarrow 162 Tm.

5

.

Мультипольности у-переходов и малая интенсивность β -распада на уровень 290,3 кэВ позволяют приписать этому уровню спин и четность – 2⁺.Имеющиеся данные о более высоких уровнях ¹⁶² Tm не позволяют пока высказать определенное суждение об их спинах.

ЛИТЕРАТУРА

- 1. Abdumalikov A.A. et al. Phys.Lett., 1963, 5, p.359.
- Громов К.Я. и др. Программы и тезисы докладов XXII совещания по ядерной спектроскопии и структуре ядра. "Наука", Л., 1972, с.132.
- 3. Goudsmit P.F.A. et al. Nucl. Phys., 1972, A196, p.362.

 Abdurazakov A.A. et al. JINR, E6-8008, Dubna, 1974; Czech.J.Phys., 1975, B25, p.626.

- Ekstrom G., Olsmats M., Wannberg B. Nucl. Phys., 1971, A170, p.649.
- Адам И. и др. Тезисы докладов XXX совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1980, с.118.
- 7. Аликов Б.А. и др. Программа и тезисы докладов XXV совещания по ядерной спектроскопии и структуре ядра. "Наука", Л., 1975, с.123.
- 8. Андрейчев В. и др. ОИЯИ, Рб-10577, Дубна, 1977.
- 9. Музиоль Г. и др. ОИЯИ, Р6-4487, Дубна, 1969.
- Beyer G.-J., Novgorodov A.F., Khalkin V.A. Radiokhimija, 1978, 20, p.589.
- 11. Абдуразаков А.А. и др. ОИЯИ, Р6-4363, Дубна, 1969.
- 12. Хан Хе Мо и др. Радиохимия , 1980, 6, с.851.
- Beyer G.-J., Herrmann E. Radiochem. Radioanal.Lett., 1974, 20, p.41.
- 14. De Boer F.W.N. et al. Nucl.Phys., 1974, A236, p.349.
- 15. Вылов Ц., Осипенко Б.П., Чумин В.Г. ЭЧАЯ, 1978, 9, с.1350.
- 16. Исламов Т.А. и др. ОИЯИ, Р10-12794, Дубна, 1979.
- 17. Rosel F. et al. Atomic Data and Nuclear Data Tables, 1978, 21.
- Кузнецов В.В. и др. ОИЯИ, Р13-12810, Дубна, 1979; В кн.: Прикладная ядерная спектроскопия. Атомиздат, М., 1980, 10, с.269.
- Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977; В кн.: Прикладная ядерная спектроскопия. Атомиздат, М., 1978, 8, с.59.
- 20. Будзяк А.В. и др. ОИЯИ, Р6-80-668, Дубна, 1980.
- 21. Гонусек М. и др. ОИЯИ, Р13-12422, Дубна, 1979.
- 22. Гонс З. ОИЯИ, 10-11973, Дубна, 1978.
- 23. Lederer C.M. et al. Table of Isotopes. New York, 1978. Рукопись поступила в издательский отдел 14 июля 1981 года.