

Объединенный институт ядерных исследований дубна

4652 2-81

(4/9-81 P6-81-454

Ц.Вылов, В.М.Горожанкин, К.Я.Громов, В.В.Кузнецов, Т.Крецу, Н.А.Лебедев, Ю.В.Юшкевич

РАДИОАКТИВНЫЙ РАСПАД

 $\begin{array}{ccc} 163 & 163 \\ Tm \rightarrow & Er \end{array}$

1981

1. Экспериментальные результаты исследований

Направлено в "Известия АН СССР" /сер. физ./

ВВЕДЕНИЕ

Исследованию свойств распада ¹⁸³Тл посвящено большое количество работ. Вместе с тем свойства возбужденных состояний ¹⁶⁸Ег изучались также в ядерных реакциях. В обзорах^{/1/} и^{/2/}, которые имеют полную библиографию и охватывают совокупность результатов практически всех работ, касающихся изучения свойств возбужденных состояний ¹⁶³Ег, предпринята попытка обобщения всех данных.

При наличии обширнейшей информации тем не менее следует отметить, что имеющиеся сведения в ряде случаев неполны и противоречивы. Это, в основном, послужило поводом к продолжению исследований распада ¹⁶³Тл, опубликованных частично в работах^{/3-5/}

В настоящей работе дано полное описание проведенных исследозваний спектров излучения ¹⁸³Тт.

УСЛОВИЯ ЭКСПЕРИМЕНТОВ

Исходная активность ¹⁶³Tm получалась при облучении танталовой мишени пучком протонов с энергией 660 МэВ / J_p= 2,3 мкА/ на синхроциклотроне Объединенного института ядерных исследований. Разделение изотопов производилось на электромагнитном масс-сепараторе^{48.7} после химической обработки мишени и хроматографического выделения тулия из группы редкоземельных элементов ⁷⁷. В измерениях использованы источники, внедренные в алюминиевые или алюминизированные майларовые фольги толщиной 4,85 мг/см² и 0,68 мг/см² соответственно. Необходимо подчеркнуть, что такие параметры, как ускоряющее напряжение при масс-сепарировании, толщина подложки источников, геометрия измерений и т.п., выбирались из условий наибольшего подавления факторов, искажающих аппаратурные спектры^{78,97}.

Измерения спектров дискретных излучений /КХ-, у -лучей, электронов внутренней конверсии /ЭВК// выполнены с использованием спектрометров с Ge(Li) – и Si(Li) -детекторами^{/8/}. Исследования позитронного излучения проведены при помощи безжелезного бета-спектрометра с тороидальным магнитным полем^{/9/}. В работах^{/8,9/} изложены также методические основы проведения измерений. На установке^{(10/}, созданной на базе бета-спектрометра с тороидальным магнитным полем и у -спектрометра с Ge(Li)-детектором, измерены спектры совпадений у -лучей с ЭВК при распаде ¹⁶³ Tm.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Период полураспада ${}^{163}T_m$ определен нами в результате анализа изменения интенсивности его у -лучей по отношению к у -излучению ${}^{133}Ba / T_{1/2} = 10,5$ лет/ в серии последовательных измерений у -спектров источника, содержащего оба изотопа, на спектрометре с 0,8 см³ Ge(Li)-детектором. Полученное значение периода полураспада ${}^{163}Tm$

T_{1/2} = /1,810+0,005/ ч

является наиболее точным из известных /2 и согласуется с ними.

Результаты Ферми-Кори анализа спектра позитронов при распаде $^{163}\mathrm{Tm}$ /рисунок/ представлены в табл.1. Для сравнения в последних двух колонках приводятся сведения о позитронах $^{163}\mathrm{Tm}$, известные ранее. Отметим, что полученное нами значение полной интенсивности позитронов $^{163}\mathrm{Tm}$ в 1,8 раза больше, чем в 1', что в целом объясняется неточностью определения отношения $\beta^{+}/\mathrm{K}_{655,6+665,8}$ в'11', а величина энергии распада $^{163}\mathrm{Tm}$ хорошо согласуется с данными '12'.

Результаты исследований спектров γ -лучей и ЭВК при распаде ¹⁶³ Tm /наиболее характерные из аппаратурных спектров приводятся нами в ^{/13/} / собраны в табл.2. Энергии переходов /колонка 1/ и относительные интенсивности γ -лучей /колонка 2/ получены в

График Ферми-Кюри и аппаратурный спектр позитронов при распаде ¹⁶³Tm.

2

Таблица 1

Сведения о позитронном излучении 163Tm $(1/2^{+}1/2/411/)$

	HACTORNAR PABOTA										
				149_2							
NORMAL STREET	بر2 سا	т _р . 5 нь роних	بر ج	$\mathbf{I}_{\mathcal{L}}^{\sigma} \mathbf{I}_{\mathcal{L}}^{[\mathbf{Im}_{\mathcal{L}}^{\wedge}]}$	•,• ===	•م• هم	*** 5 36 30000				
1	1245 1 22	0,059 ± 0,011	104,5	3/2"3/2 [521]	2971 1 22						
. 2	1069 ± 2	0,182 2 0,009	343,6	1/2-1/2 [521]	2437 1 2	1050 ± 50	0,18 ± 0,06				
,	884 2 3	0,137 ± 0,009	540,6	1/2*1/2 [400]	2446 1 3	210 * 40	0.055 + 0.017				
•	671 1 7	0,052 1 0,004	795,4	3/2*	2436 1 7	,					
5	453 ± 9	0,0148 ± 0,0014	963,2	3/2+,5/2+	2458 1 9						
C.JMINA		0,434 ± 0,016					0,24 ± 0,06				
					2439 1 3	· _					
E104,3 / #*		16,9 ± 3,3									
A* / \$635,6+465,8		13,0 ± 0,6				4,7 ± 1,3					

измерениях у -спектров, обработка которых проведена согласно⁸⁷. Относительные интенсивности К-электронов внутренней конверсии /колонка 3/ приведены в единицах $I_{K104,3} = 10000$, при этом в вычислениях коэффициентов внутренней конверсии /КВК/ /колонка 4/ использована величина, согласующая относительные единицы интенсивностей ЭВК и у -лучей - 0,0218±0,0004. Полные сведения об интенсивностях ЭВК у -переходов с энергиями ≤ 400 кэВ при распаде ¹⁶³Tm опубликованы ранее в работе ^{/14/}.

Мультипольности у-переходов /колонка 5/ установлены вследствие сравнения экспериментальных значений КВК с расчетными ^{/15/} С использованием интенсивностей у-лучей и расчетных величин КВК^{/15/} соответствующих установленным мультипольностям переходов, вычислены их полные интенсивности /колонка 6/. Для удобства пользования данными о у-переходах в последней колонке табл.2 приведены энергии начального и конечного состояния, между которыми размещен этот переход в схеме распада.

В нижней строке табл.2 в соответствующих колонках приведены коэффициенты перевода относительных интенсивностей излучений / у -лучей, ЗВК/ в % на распад. Полное число распадов $^{163}{\rm Tm}$, необходимое для определения этих коэффициентов, получено с использованием измеренных интенсивностей КХ -лучей в распаде. Определение интенсивностей характеристических К-линий рентгеновского излучения при β -распаде $^{163}{\rm Tm}$ связано с трудностями, обусловленными накоплением в источнике дочернего изотопа $^{163}{\rm Er}$ / $T_{V_{\rm H}}$ = 75 мин/ и, соответственно, необходимостью разделения КХ-лучей эрбия и гольмия в аппаратурных спектрах. В этой процедуре использованы сведения об относительных интенсивностях КХ-линий рентгеновского излучения при распаде $^{165}{\rm Er}$ и $^{168}{\rm Tm}^{-4}$

3

Таблица 2

Сведения о у-переходах при распаде ¹⁶³Tm

.

E _j (& E _j)	Ij(AIj)	$I_{K}(\nabla I_{K})$	× _K (o × _K)	6L	$I_{\Pi}(\Delta I_{\Pi})$	E _i E _f
22,358(10)			-	N1+5-5(7)582	2.85(15)	91 - 69
28,835(12)	- 1	-	- 1	#1+0-B(2)5E2	0.24(5)	120 - 91
35,56(3)	-	-	-	11+0.8(2)5E2	0.10(2)	#39 #0#
48,221(E ₄₁₈ Er)	218(4)		(}	41,1(21)	
49,128(#,,Kr)	377(7))	1	71, 1(36)	
55,6 (I _# Er)	114,9(36)				21,7(12)	(
57,1 (K _{p2} Er)	30,0(7)		1		5,66(30)	ļ
58,35(2)	-	-	-	#1+35(11)%E2	0,25(4)	404 345
60,105(3)	7,76(14)	-	[-	M1+4,4(5)%P2	20,8(10)	164 104
69,229(3)	62,4(14)	2514(189)	0,88(7)	. E1	22,0(11)	69~~ 0
72,875(8)	0,79(3)	-	-		0,263(16)	164 91
78,041(24)	0,42(6)	96(8)	5,0(9)	2 21	0,55(9)	540 462
80,460(7)	2,80(8)	618(45)	4,81(20)	N 1	3,41(19)	164 84
83,968(4)	4,03(9)	457(34)	2,47(9)	E2+13,7(9)##1	4,69(24)	B4 0
85,118(4)	5*08(6)	356(27)	3,7(3)	16 1	2,22(12)	249 164
91,550(8)	1,26(7)	19(5)	0,35(8)	हा	0,335(24)	91 0
104,320(3)	100,0(19)	10000(221)	2,18(14)	i iri	67,8(34)	104 0
106,05(4)	0,17(5)	34(4)	4,4(14)	(111)	0,11(3)	190 84
129,212(26)	0,48(8)	-	-	-	0,107(18)	249 120
145,213(11)	0,67(3)	15,3(17)	0,50(6)	12	0,223(15)	249 104
161,31(3)	0 ,86(6)	-	-	-	0,176(15)	735 574
164,419(8)	4,86(17)	133(4)	0,59(3)	1 11	1,56(9)	164 0
165,60(6)	0,38(8)		-	-	0,122(27)	249 84
190,006(6)	7,68(16)	138(4)	0,393(15)	1 1	2,14(11)	439 - 249 *
259,585(5)	23,7(9)	3706(21)		31 1	5,58(34)	404 164
241, 305(5)	58,4(15)	Jrobien	0,188(7)	311	13,7(7)	345 104
219,498(6)	0,47(3)	2,0(4)	0,092(21)	11,12	0,099(8)	249 0
2/5,125(8)	14,4(4)	81,4(26)	0,124(5)	M1+26(6)%52	5,17(17)	439 164
297,07(5)	2,57(9)	3 136(4)		(151)	0,49(3)	462 164
299,007(0)	24,5(5)]	0,110(4)		5,26(27)	404 104
\$00,067(18)	0,56(4)	-	-	-	0,071(8)	1872 1569
320,037(107	0.20(3)				0,052(5)	1 K7k 2k9
111 356/10)	1 25(4)	1 68(18)	0.033(3)	-	0,052(5)	735 - 404
5777755(17) B16 240(12)	3,18(8)	12.4(5)	0.085(4)	er .	0.66(4)	A10 104
338.28(8)	0.72(5)	1.9(2)	0.059(9)		0.188(13)	683 345
345.608(9)	5.89(13)	9,9(9)	0.036(3)	12	1.16(6)	345 - 0
355-629(13)	2.57(7)	9.7(4)	(4)580.0	in l	0.53(3)	419 84
558,174(1D)	3,92(9)	1.80(19)	0.0100(11)	51	0.75(4)	462 104
361,97(4)	0,42(4)	0,12(4)	0,006(2)	61	0,081(8)	526 164
371.07(9)	0,24(3)	0,25(5)	0,023(4)	52	0,046(5)	462 91
375.87(5)	0,83(7)	1,66(8)	0,043(4)	#1+55(12)%E2	0,165(15)	1059 688
380.57(17)	0,19(4)	0,32(5)	0,036(9)	(22)	0,038(8)	1917 - 1538
589,59(3)	1,65(11)	2,18(15)	0,029(3)	81	0,321(26)	735 345
395,261(11)	7,37(15)	16,7(7)	0,050(2)	111	1,46(8)	462 69
400,74(17)	0,35(6)	-	-	-	0,066(12)	2122 1722
403,989(10)	5,66(14)	6,9(4)	0,0266(15)	F2	1,10(6)	404 0
406,06(15)	0,28(6)	0,28(4)	0,022(6)	52	0,054(11)	1369 963
409,77(5)	0,82(6)	-	-	-	0,165(14)	574 164
411,66(7)	0,53(4)	-	-	-	0,106(10)	985 574
415,15(6)	0,47(4)	0,14(3)	0,0064(13)	.	0,090(9)	664 249
417,69(9)	0,51(5)	-	-	-	0,063(11)	I
421,92(3)	0,90(6)	0,72(5)	0,018(2)	(21)	0,174(14)	526 104

4

Таблица 2 /продолжение/

Z j(▲ Z _j)	1 ₃ (A 1 ₃)	$I_{\underline{K}}(\Delta I_{\underline{K}})$	ط ^E (۳۹ ^E)	er.	I ₁ (▲I ₀)	Ei - Er
453,2(3)	0,48(10)	0,67(10)	0,030(8)	1 1	0.096(20)	1801 1369
434,72(3)	2,82(9)	4,8(5)	0,037(3)	f un	0.56(3)	526 91
436,24(6)	0,85(5)	-	- 1	- 1	0,169(13)	540 104
439,575(17)	1,99(1?)		- 1	- 1	0,39(4)	439 0
447,90(16)	0,41(10)	· -	-	- 1	0,077(20)	2040 1593
454,954(17)	1,71(6)	1 -	-	- 1	0,32(2)	619 164
457,07(5)	0,74(7)	0,9(4)	0,027(12)	in,12	0,145(16)	1826 1369
461,845(12)	3,34(14)	4,23(22)	0,0276(18)	H1+44(9)#82	0,65(4)	531 69
469 ,6 5(4)	2,39(10)	-	-	- 1	0,45(3)	574 104
471,330(17)	21,8(5)	14,4(6)	0,0130(6)	12	4,18(22)	540 69
473,76(5)	1,00(10)	1,24(23)	0,025(5)	m, 12	0,21(2)	
478,49(14)	0,26(8)		- 1	- 1	0,049(14)	1538 1059
484,03(4)	1,41(14)	1,80(15)	0,028(4)	j m	0,28(3)	1855 - 1369
491,64(5)	0,43(3)	0,41(2)	0,021(2)	m,12	0,063(7)	
493,83(4)	0,74(4)	0,61(3)	0,0180(14)	12	0,142(11)	
500,51(12)	0,76(12)	0,74(8)	0,021(4)	11,12	0,15(2)	664 164
504,878(14)	6,3(3)	6,6(3)	0,023(2)	111	1,23(9)	574 69
511,0	4,7(6)				0,88(12)	
515,012(16)	4,50(22)	1,46(8)	0,0071(5)		0,85(6)	619 104
520,1(2)	0,28(6)	0,16(3)	0,012(4)		0,055(12)	683 164
528,18(14)	0,82(11)	1,14(12)	0,090(5)	(12)	0,16(2)	619 91
529,75(7)	1,78(19)	1,65(18)	0,020(3)		0,35(4)	779 249
540,98(12)	0,25(5)	0,39(10)	0,037(12)		0,045(9)	
547,96(14)	0, 17(7)		-	1 -	0,000(15)	1917 1969
550,154(18)	0,20(21)	9,1(4)	0,0202(15)		1,60(9)	619 69
772,9940(27)	5,09(12)	4,00(25)	0,0272(17)		0,72(4)	/1/ 104
563 80(5)	0,66(16)	0,20(43)			0,15(5)	004 104
503,00(3)	4 54(6)	1 7(2)	0,022(0)		0,19(3)	ALA 01
575 13(26)	0.25(7)				0.048(13)	1538 - 063
570 510(13)	8.53(19)	7.6(4)	0.0196(12)		1.65(8)	683 - 104
584.86(9)	0.49(4)	1			0.095(9)	1569 986
589,13(11)	0.37(6)	_	_	_	0.053(11)	1569 779
595, 35(5)	1.20(9)	0.91(4)	0.0075(5)	12	0.24(2)	664 69
598,12(3)	1.36(7)	-		-	0.257(18)	1280 - 683
606.4(2)	0.65(4)	0.63(5)	0.0285(24)	(111)	0.122(10)	856 - 249
613.054(18)	3.60(9)	2.74(13)	0.0166(9)	in in	0.69(4)	717 104
615, 182(26)	1,78(12)	1,26(7)	0,0154(13)	un I	0,342(27)	779 164
619,44(10)	0,35(5)	0,069(11)	0,0045(9)	311	0,067(10)	619 0
633,77(9)	0,78(7)	0,75(6)	0,0203(24)	(122)	0,131(14)	717 - 84
640,4(2)	0,40(6)	-		_	0,076(12)	966 345
655,760(20)	4,25(10)	2,94(18)	0,0151(10)	21	0,82(4)	1059 404
662,67(11)	1,42(16)	-	-		0,27(3)	1722 1059
666,178(19)	11,04(25)	3,72(16)	0,0074(4)	12	2,10(11)	735 - 69
675,20(11)	0,91(8)	0,47(7)	0,0112(19)	3 11	0,17+(17)	779 104
643,87(3)	2,66(17)	1,00(5)	0,0082(7)	12	0,506(28)	663 0
688,12(11)	1,09(11)	-	-	-	0,208(25)	779 91
691,736(22)	3,23(12)	2,02(9)	0,0137(8)	lin (0,62(4)	856 164
695,81(12)	0,70(8)	0,34(4)	0,0107(18)	, m)	0,135(17)	779 - 🛤
710 ,81(11)	0,51(5)	-	-	- 1	0,098(10)	779 69
714,04(10)	0,41(4)	0,342(25)	0,020(2)	in j	0,078(8)	1059 545
717,42(3)	0,92(8)	0,322(21)	0,0077(8)	E	0,174(17)	717 - 0
733,6(2)	0,35(3)	-		:	0,005(7)	775
755,97(10)	0,61(6)	0,151(15)	9 10394(0)	₽ (0,115(15)	
749,0(3)	0,92(9)	- ·	-	-	0,000(17)	1707 - CUY

•

Таблица 2 /продолжение/

Ej(& Ej)	Ij(AIj)	IK(WIK)	× K(QYK)	øL.	1 _π (Δ1 _π)	$B_1 - E_f$
752,04(5)	(9)10,5	1,18(6)	0,0129(9)	111	0.585(25)	856 10+
756,17(7)	1,17(9)	0,65(4)	0,0121(12)	1 10	0.225(20)	
759,41(9)	1,25(7)	0,54(4)	0,0060(7)	(11)	0.238(17)	1558 779
779,93(5)	3,54(13)	1,85(8)	0,0116(7)	l in	0.68(4)	
781,86(9)	2,03(9)	0,27(6)	0,0029(7)	81,82	0,385(24)	
785,72(14)	0,46(6)	0,095(18)	0,0045(10)	12	0.087(12)	
790,12(6)	1,65(11)	0,17(5)	0,0022(5)	5	0.313(25)	1569 779
796,2(2)	0,35(6)	-	- 1	-	0,066(12)	1655 856
798,7+(9)	0,92(5)	- 1	- 1	- 1	0.176(15)	963 164
803,469(22)	1,44(5)	0,65(4)	0,0098(7)	, w.	0,275(16)	1538 ~ 755
813,32(10)	0,81(13)	0,072(11)	0,0020(4)	61	0,152(25)	1593 779
821,3(2)	0,36(10)	- 1	- 1	[-	0,068(19)	+86 164
858*8(2)	0,31(5)	0,16(3)	0,0116(28)	2 1	0,058(9)	1369 540
635,96(4)	2,75(10)	0,53(4)	0,0058(4)	N1+61(10)%E2	0,52(3)	1569 735
837,94(15)	0,32(11)	0,133(17)	0,009(3)	(11)	0,061(21)	1601 165
844,69(13)	0,45(10)	-	[-	- 1	0,084(19)	110-1 526
846,57(12)	0,83(12)	0,175(15)	0,0050(5)	12	0,156(27)	j i
852,9(3)	D_29(8)	- 1	- 1	- 1	0,054(15)	1569 717
858,72(6)	1,92(13)	0,234(18)	0,0026(3)	(11)	0,363(29)	163 104
B63,2(3)	0,29(10)	0,084(13)	0,0064(25)	(#1)	0,055(20)	1826 965
875,88(17)	0,47(7)	0,060(24)	0,0028(12)	£1,52	0,088(14)	1538 664
881,4(5)	0,25(6)	0,155(28)	0,014(4)	(1111)	0,047(12)	J86 104
466 ,06(3)	2,00(10)	0,168(18)	0,00185(21)	(m	0,577(24)	1569 683
832,8(2)	0,45(13)	-	- 1	- 1	0,122(26)	
894,26(11)	2,10(10)	0,50(3)	0,0040(4)	1 12	0,397(26)	965 69 *
0.00 40(0.)					[786 91
902,10(14)	0,39(15)	0,195(9)	0,0054(1)		0,104(25)	986 - 84
	1, 10(10)	0,40(6)			0,22(4)	1569 664
700,700(10)	4 10(21)	0,170(16)	0,0034(7)		0,21(4)	1672 963
710,01(9)	1,00(11)	0,076(9)		67	0,20/(25)	900 - 61
925,1(5)	0,99(12)	0,009(10)	0,0052(10)	62	0,085(25)	400
920,00(11)	2,22(0)	0,199(15)	0,0036(10)		0,140(22)	1595 664
90,02(3)	21/2(3)	0 112(24)	0,0020(2)	52 10	0,010(29)	1914 574
747647(7)	1.01(2)	0,312(44)	0,00148(12)	MILLE CONVERS	0,00(5)	1001 076
061 61(12)	0.65(12)	0 11/3)	0,0012(4)	M	0,133(3)	1309 019
075 10(h)	2.00(10)	0,000	0.0058(\$)	57	0,122(24)	2247 1200
007 74(10)	1, 82(91)	0,245(20)	0.0000(5)	H1.56(19)(F2	0.251(2+)	1712 246
907 (107	0.31(9)	0,24)(207			0.059(12)	1059 - 61
005 8(2)	1.08(12)	0.288(21)	0.0058(8)	in in	0.205/241	1669 524
907.67(19)	0.42(9)	0.081(10)	0.0018(8)	12	0.089(17)	1538
1005 01(9)	1.01/15)	0.051(11)	0,0015(3)	m	0.194(40)	17.22 - 212
1029.18(6)	0.81(10)	0.082(11)	0.0022(4)	12	0.152(19)	1569 540
1013.95(11)	0.70(12)	-	-		0.132(21)	1655 619
1037,1(4)	0.67(6)		-	-	0.126(15)	1722 681
1042.66(9)	0.74(12)	0.149(15)	0,0044(9)	in Í	0.140(24)	1569 - 526
1046-9(2)	0.69(8)	0.077(14)	0,002+(5)	(51)	0.150(17)	1626 - 729
1052, 37(15)	0,56(8)	0,585(20)	0,0149(22)	in I	0,107(16)	1595 540
1066.49(8)	1,06(9)	0,170(12)	0,0035(4)	#1+52(18)#82	0,200(19)	1801 735
1025, 130(30)	+,28(20)	0,242(25)	0,00125(17)	ET I	0.80(5)	1514 459
1091.01(*)	1,78(18)	0,275(18)	0,0054(4)	#1+50(20)#82	0, 54(4)	1826 - 735
1099, 582(53)	2.82(17)	0,135(15)	0,00104(12)	51	9,53(4)	1558 459
1150,221(25)	12,5(4)	0,544(29)	0,00096(6)	51	2,35(13)	1569 - +19
1155.28(9)	1,81(17)	0,095(15)	0,0013(2)	61	0,34(4)	1510 - 404
1137, 10(10)	2.01(11)	0,405(35)	0,0039(4)	an I	0,380(28)	1872 - 755
1142.51(5)	4.35(15)	0,142(13)	0,00072(7)	en	0.82(5)	1826 685

5 3(▲83)	Ij(aIj)	Ig(&Ig)	م ² (۳۳ ^E)	6L	I (AI)	$\mathbf{z}_1 - \mathbf{z}_f$
1147,36(15)	0,39(10)		-	-	0.074(18)	
1153,453(31)	5,64(16)	0,199(13)	0.00077(5)	21	1.06(6)	1593 439
1156,0(2)	0,29(16)	0,058(7)	0,0028(16)	(12)	0,06(3)	
1165,6(2)	0,76(12)	-	-	-	0,143(24)	1569 404
1168,97(5)	2,31(33)	0,093(6)	0.00086(14)	1 11	0 44(6)	1514 345
1176,090(32)	2,40(16)	0,105(20)	0,00087(18)	1 11	0,491(38)	1280 104
1181,94(16)	0,81(11)	0,089(18)	0,0024(6)	(122)	0,154(22)	1722 540
1109,00(13)	0,85(11)	0,050(19)	0,0013(5)	1 11	0,160(22)	1593 404
1192,34(19)	0,86(8)	0,027(13)	0,0007(3)	(111)	0,163(16)	1538 - 345
1205,019(24)	13,13(27)	0,500(29)	0,00085(5)	51	2,48(13)	1369 164
1213,52(15)	0,72(10)	-	- 1	ſ -	0,136(20)	1653 439
1218,89(19)	0,47(7)	-	- 1	- 1	0,089(14)	
1224,152(24)	11,23(30)	0,369(19)	0,00072(4)	E	2,12(11)	1569 345
1240,27(12)	0,74(5)	0,059(8)	0,00174(26)	12	0,139(11)	
1247,441(27)	4,67(13)	0,148(11)	0,00066(5)) m '	0,92(5)	1593 345
1251,90(10)	1,08(5)	0,093(13)	0,00188(27)	12	0,205(14)	1872 - 619
1261,20(8)	1,30(14)	0,295(19)	0,0049(6)	111	0,246(29)	1801 540
1265,116(25)	27,8(5)	0,91(5)	0,00071(4)	F 1	5,25(27)	1369 104
1275,17(14)	0,97(18)	0,148(12)	0,0035(7)		0,183(35)	2052 279
1285,82(5)	1,80(14)	0,208(14)	0,0025(3)		0,340(31)	1826 540
1300,41(6)	2,78(17)	0,266(20)	0,00224(21)	n n l	0,53(4)	1569 69
1503,80(12)	1,06(7)	-	-	- 1	0,199(16)	
1307,26(11)	0,94(7)	-	-		0,178(16)	1653 345
1318,541(26)	8,27(17)	0,448(30)	0,00118(8)	m, 62	1,96(8)	1722 404
1525,04(18)	0,49(12)	-	-	-	0,092(25)	2040 - 717
1332,15(7)	0,70(12)	0,085(11)	0,0058(#)	•	0,131(24)	1872 - 540
1336,62(14)	0,49(12)	-	-		0,095(25)	1801 462
1345.82(19)	0,90(7)	0,066(50)	0,0040(20)	m, 12	0,068(14)	1672 525
1350,149(52)	2,29(9)	-	-	1	0,451(27)	1914 104
1707,0(7)	0,94(11)	0,049(15)	0,0052(14)		0,004(22)	1820 462
1374,333(27)	1 63/16	(+)(+)	0,000-00		0.344(32)	1722
19/09/9(10)	5 83(14)	0 160(11)	0.00068(5)		1.10(6)	1826 - 439
4107 520(22)	27.8(4)	4 49(4)	0,00065(8)	1	7.12(34)	1801 - 404
1297(1240(47)	A 11(1a)	0.128(15)	0.00068(6)		0-78(5)	1569 - 164
4407,545(55)	2.42(4)	0,050(10)	0.00020(9)	m	0.866(28)	1516 - 108
4422.64(12)	0.58(2)	0,000(.0)			0.108(13)	1826
14.74.454(20)	42.4(10)	1.22(8)	0.00062(4)	215	8-08(45)	1538 104
1446.88(13)	0.49(6)	-	-		0.098(13)	1536 91
4455.001(33)	19.5(6)	0.508(31)	0.00097(4)	21	3.68(21)	1801 545
4445.730(35)	10.27(32)	0.370(23)	0.00078(6)	21	1.99(11)	1569 - 104
1469.426(31)	15.62(35)	1.35(7)	0.00189(10)	111	2.95(13)	1538 69
1680.945(33)	3,33(22)	0,070(20)	G,00006(14)	21	0,63(5)	1826 345
1489.04(10)	0,41(7)			-	0,076(14)	1595 104
1500,61(4)	2,00(12)	0,155(10)	0,00169(15)	in in	0,378(28)	1569 69
1314,3(4)	0,54(5)	- 1	•	- 1	0,063(10)	1514 0
1525,949(30)	4,04(20)	0,100(16)	0 ₀ 00054(9)		0,76(5)	333二 333
1531.90(13)	0,39(5)	0,029(6)	0,00164(37)	m,m	0,073(10)	-
1541.40(5)	1,11(7)	0,072(6)	0,00141(15)	=	0,209(17)	1653 91
1969.65(10)	0,43(6)	-		-	0,082(11)	1969 0
1977.44(15)	0,28(3)	- }	-	- 1	0,053(4)	2010 - 462
1563.953(36)	2,13(7)	0,154(10)	0,00150011)	121	0,408(25)	1653 69
1593,05(11)	0,22(6)		-	-	0,041(11)	1595 0

E

•

	Г	T	r		T	
Ej(AEj)	IJ(AIJ)	$I_{K}(\nabla I_{K})$	d K (a of K)	61,	(_π t Δ) _π t	E _i E _f
1618,20(19)	0,19(7)	- 1	- 1	-	0.035(14)	1722 104
1626,58(16)	0,26(5)	-	1 -	1 -	0.049(9)	
1631,4(4)	0,16(5)	- 1	-	- 1	0.030(9)	1722 - 91
1637,46(12)	0,45(10)	-	-	- 1	0.085(18)	1801 164
1649,3(3)	0,29(11)	-	- 1	- 1	0.054(21)	2052 404
1654,47(8)	0,58(7)	0,030(4)	0,00113(19)	52	0.110(14)	1
1662,12(5)	5,35(20)	0,156(9)	0,00063(4)	: প	1,01(6)	1826 164
1673,48(12)	U,61(5)	0,016(2)	0+00055(10)	2	0,116(11)	
1689,154(38)	1,98(12)	0,042(6)	0,00046(7)	~	0, 574(29)	1853 164
1697,221(38)	2,60(12)	0,059(8)	0,00050(7)	~1	0,490(32)	1801 104
1709,03(6)	U ₄ 73(4)	0,003(4)	0,0034(15)	(11)	0,140(10)	1872 164
1722,37(5)	2,80(10)	0,040(4)	v,UU037(4)	1 71	0,529(31)	1826 104
1729,7(3)	0,18(4)	[-]	· -	- 1	U, 335(8)	
1752,92(15)	0,87(4)	- 1	_	-	1,164(11)	
1741,75(9)	0,452(33)	-	-	- 1	0,085(7)	1826 B4
1749,224(35)	5,53(19)	0,076(5)	0,000361(23)	িশ	1,04(6)	1853 104
1753,45(B)	0,79(7)	-	-		0,149(15)	1917 164
1757,25(14)	0,348(35)	- 1	-	-	0,064(7)	1826 69
1767,65(10)	0,99(5)		-	-	0,187(13)	1872 104
1754,286(38)	2,03(9)	0,084(7)	0,00109(8)	F2	0,382(25)	1853 69
1790, 12(5)	0,83(7)	- I	-	-	0,157(15)	
1793, 38(7)	1,005(34)	-	-	-	0,189(11)	
1803,55(5)	6,96(19)	0,306(16)	0,00096(6)	F2	1,31(7)	1872 69
1813,60(7)	0,249(21)	· -	-	_	0,047(4)	1917 104
1825,23(7)	1,05(4)	0,050(5)	0,00103(10)	82	0,199(11)	1917 91
1835,69(20)	0,125(19)	·	-	-	0,024(4)	1917 B4
1848,22(9)	0,20(6)	0,014(7)	0,0015(8)	(111)	0,039(11)	1917 64
1853,33(12)	0,149(31)	- 1	-	- 1	0,028(6)	1853 U
1876,23(6)	1,20(11)	0,023(4)	0,00041(8)	E 1	0,226(23)	2040 164
1879,6(2)	0,146(18)	-	-	-	0,028(4)	
1889,1(3)	0,11(6)	-	-	-	0,021(10)	2052 164
1913, 88(14)	0,090(14)	- 1	-	-	0,017(5)	
1936,38(6)	1,96(5)	0,026(3)	0,00029(3)	B1	0,369(19)	2040 104
1948,40(5)	0,563(27)	-	-	-	0,068(6)	2052 104
1957,57(7)	0,29(4)	-	-	-	0,054(8)	2122 164
1971,2(2)	0,050(13)	-	-	-	0,009(5)	2040 69
1983,24(8)	0,355(35)	-	- (-	0,067(7)	2052 62
2017,96(9)	0,249(16)	-	- 1	-	0,047(4)	2122 104
2040,76(16)	0,174(26)	-	-	- 1	0,022(5)	2040 0
2052,8(2)	0 ,085(8)	-	-	-	0,0162(15)	2052 0
2079,0(+)	0 ,07 7(10)	-	-	-	U,J145(20)	2245 164
2159,98(16)	0,083(12)	-	- 1	- [0,0156(24)	2243 84
2274,5(5)	0,042(18)	•	-	-	0,0073(34)	2274 U
	0,188(9)	0,00411(21)			1,000	

Переход размещен в схеме распада дважды.

Таблица З

Относительные коэффициенты ослабления интенсивностей у -лучей в совпадениях с ЭВК К69,23; К83,97; К104,32; К80,46 и К85,12 кэВ при распаде ¹⁶³ Tm

	K 69,2	E 69,23		97	K 10	,32	К 80,	46	X 85.	12	
*)	энсперен.	PROVET	эксперии.	pacver	эксперша.	расчет	эксперии.	DECTOT	эжсперим.	расчет	E 1 - E 2
190,01							3, -6(27)	ა,800	0,99(14)	1,000	439 249
239.58			J.23(3)	0,133	J_84(6)	0,804	1,13(11)	1,000	-		404 164
241,50	1 1				1,04(9)	1,000					345 104
275,12))		0,19(2)	0,133	0,79(4)	0,804	1,19(8)	1,000			439 164
237,86	1 1		0,31(8)	0,133	0,75(3)	0,804	1,08(6)	1,000			462 164
299,67	()		1		0,,3(3)	1,000					404 104
;20,06			1,01(13)	1,000							404 84
324,49			l -	0,150	-	0,724	- 1	0,800	1,33(42)	1,000	574 249
335,22	{		{		1,04(10)	1,000					439 104
155.62			0,99(7)	1,000							439 64
358,17			ļ	ļ	1,01(8)	1,000			1		462 104
389,59	í	1	({	0,67(19)	0,922			1		735 345
393,26	7,23(13)	1,000	1]							462 69
409,77	1	1	0,47(16)	0,133	0,87(17)	0,80+	1,36(63)	1,000	[574 764
415,14	1 .	1	1 -	0,150	- 1	0,724	-	J#800	0,83(21)	1,000	664 249
+21,92	1	ļ	1	1	1,27(10)	1,000					526 104
+5+,72	1,16(26)	0,740	1			1			1 1		526 91
+5+s95	1		-	0,133	0,79(26)	0,80*	0,41(23)	1,000	}		619 164
461,84	1,04(23)	1,000	ļ								531 69
469,65	1	}	1	ł	0,70(9)	1,000					574 104
471,33	1,03(6)	1,000	í	ł	1						540 69
504,88	1,27(16)	1,000	1	}	j –	1)				574 69
515,01	1		1		0,78(7)	1,000			1	(619 104
550,15	1,09(12)	1,000	ſ	1	{		ł				619 69
552,95	1	1	0,25(7)	0,133	0,84(10)	0,804	0,99(15)	1,000			717 164
560,51	1				1,04(45)	1,000	1		1	1	664 104
575,23	1,95(+3)	0,740	[1	{	1	1	ł			664 91
579.51	1		1		0,90(4)	1,000	1	ļ]		683 104
584,86] -	0,512	0,32(18)	0,118	- 1	0,259	-	0,153	0,25(9)	0,105	1569 985
613.05	1			í i	0,88(7)	1,000	ł		1	ł	717 104
615,18	{	ł	0,31(6)	0,133	0,71(8)	0,804	1,16(21)	1,000	Į –		779 164
625.77	1	1	0,67(16)	1,000		1				1	717 84
655,70	-	0,005	-	0,088	0,82(8)	0,792	0,40(14)	0,459	{ .		1059 404
1002,07		0,055	0,19(7)	0,064	0,67(18)	0,751	- 1	0,337			1722 - 1059
18	0*38(9)	1,000		1	1		1		l	1	735 69
6971,974	1	l	0,20(4)	0,133	0,69(8)	0,804	1,10(22)	1,000	t	ł	856 164
1,000	L	L	0,76(21)	1,000	I	1	1	L	1		779 8+

¢

	I 69,	29	1 83.	97	I 10	4,32	K BO	,46	1 85	,12			
5	secuepes.	pacter	эксперия.	pecter	эксперам.	pacter	эксперии.	pacter	эксперим.	расчет	-1	-	*1
71+,0+					2,2(7)	0,922					1059		345
735.97					1,2(5)	0,724		0,500	0,96(21)	1,000	985		249
752,0+	i . 1		i 1		1,30(24)	1,000			1		856	-	104
759.41	1.0(4)		1 1							1			
779,93	30,86(22)		Į į		0,60(10)	ļ	0,56(16)		ļ	ļ			
781,88	P 2 -		1		7		7		1				
790,12	-	0,135	0,20(6)	0,117	0,76(32)	0,354	1,3(4)	0,313	0,21(6)	0,175	1569		779
796,24	1 -	0,005	-	0,061	0,75(41)	0,861	{ -	0,433	-	0,074	1653		855
798,74			-	0,133	0,68(38)	0,80+	-	1,000	i		963		164
603,47	1,9(5)	0,671	1 -	0,007	1	0,15B	1 -	0,038	1	1	1538		735
63:.96	1,05(24)	0,549	0,12(6)	0,024	0,56(14)	0,413	0,54(25)	0,178	[(· ·)	1296		462
558,72			1		0,65(8)	1,000				1	963		104
666,06	1		- 1	0,003	0,90(18)	0.734	- 1	0,022	1	1	1569		683
872,77	1) - '	0,088	1,1(5)	0,792	- 1	0,459	1	1 '	1296		404
894,26	0,90(34)		Į		1			1			1		
9-0,62	[-	0,648	0,15(6)	0,016	0,30(9)	0,329	- 1	0,109	1		1514		574
945,27	1	0,005	0,08(3)	0,061	0,59(7)	0,881	0,79(18)	0,433	-	0,074	1801		656
775,19	}	})	ļ	1,33(40))	0,5(4)		0,20(8)) .)		
1075,13	-	0,014	0,18(3)	0,184	0,68(22)	0,689	0,51(19)	0,709	0,23(4)	0,310	1514		439
1091.01	1,0(5)	0,671	-	0,007	-	0,158	- 1	0,004	D,29(9)	- 1	1826		735
1039,38	0,62(28)	0,014	0,24(12)	0,184	0,48(17)	0,689	0,82(29)	3,709	0,27(6)	0,310	1538		439
1130,22	1	1	0,29(3)	0,184	0,66(5)	0,689	0,90(10)	J.709	0,28(2)	0,310	1569		459
1135,27	1 -	0,003	0,40(10)	0,088	0,78(45)	0,792	1,0(5)	J,459			1538		404
1137,10	1,39(51)	0,671	- ·	0,007	-	0,158	-	0,038	1	[1872		735
11-2,51	1	l I	0,22(4)	0,003	0, 35(40)	0.73+	0,39(16)	0,022	0,11(3)	-	1826		6 83
1153,45	1	1	0,26(9)	0,184	0,57(12)	0,687	0,46(13)	3.7.9	3, 55(4)	0,310	1573		~ 79
1165,65	-	0,003	-	0,088	1,14(25)	0,792	- 1	J,459			15 6 9		404
1168,97			1		1,33(27)	0, j 22			1	1	1514	_	245
1176,09	1	1	1	[1,06(23)	1,000	l	(1	1	1280		10.
1189,00	-	0,003	-	0,088	0,80(25)	0,792	- 1	0,459	1		1593	-	ч Эн-
3192,3+		}	1	1	1,0(3)	0,922	1)	1538		5 - 5
1205,02			0,17(2)	0,133	0,76(4)	•رة,0	0,79(8)	1,000	1	1	1.69		10~
1213,52	1	1	0,52(24)	0,184	1,3(6)	0,689	2,4(10)	0,709	0,39(16)	0,310	1-53		4.59
122-,15	1	1	1	í	0,99(6)	0,922	1	1	1	1	1569		~~ș
1247,44	1	1		1	0,86(11)	0,922	1			1	15-3		245
1251,90	1	1	1	ļ	0,47(7)		1	J	0,21(11)	-			
1261,20	1,9(6)	0,877	0,31(11)	0,007	- 1	0,104	- 1	3,352	1	{	18:1		543
1265,12	1		1		1,07(4)	1,000					1/9/		• 34
1273,17	1 -	0,135	0,37(14)	0,117	1 -	0,354	1,7(6)	3, 313	1	1	2052	-	772
1285,82	1,2(5)	0,877	-	0,007	0,46(1)	0,134	I -	2وں د	1	1	1626		5-0

Таблица З /продолжение/

	K 49,3	5	X 83.97		K 104.32		X 80,4	-6	- E 85,	12		
1)	-	PACHET	эксперен.	расчет	элсперви.	pacvet	элсперты.	pacter	эксперим.	pacver	r ₁ -	- 4
1300,+1	1,14(32)	1,000									1369	69
1503,80			0,20(10)		1,15(28)		1,7(5)		0,86(15)			- 1
1318,3+	- 1	0,003	0,096(15)	0,000	0,80(6)	0,792	0,37(8)	0,+59			1722	+0+
1350,15			C,25(8)	0,133	0,78(15)	0,804	1,05(25)	1,000			1514	164
1574,3+			0,16(2)	0,735	0,84(5)	0,80+	1,05(6)	1,000			1538	164
1376,79	ł	i i			0,96(11)	0,922					1722	345
1356,99	-	0,014	0,+1(7)	0,184	0,59(6)	0,689	0,77(12)	0,709	0,2+(3)	0,310	1826	+39
1397.52	-	0,003	0,12(1)	C,088	0,80(3)	0,792	0,50(5)	0,459			1801	+0+ (
1405,36		0,007	0,31(1+)	0,133	0,89(7)	0,804	0,78(14)	1,000			1569	16+
1+10,19	1	Į	1 1		0,93(10)	1,000	[]			. 1	1514	10+ (
1-34,45	{			ł	1,0+(5)	1,000]		1		1538	10%
1+55.3*	ļ	1		1	0,92(*)	0,922					1801	345
1+65,75	1	1	1		1,35(6)	1,000					1569	10-
7489,4Z	0,90(9)	1,000					l i		[1	1538	69
1480,94	1	1	1		0,35(11)	0,322]				1626	345
1500,61	0,99(29)	1,000							[1	1569	69
1525,97	0,26(10)	0,362	0,15(3)	0,027	0,82(?)	0,600	0,33(1+)	0,202			2052	526
1561,60	7,5(5)	0,740	0,21(0)	- 1	0,5+(19)	-	0,93(28)	-			1653	- 91
7585,95	1,14(29)	1,000					0,53(15)	-	1		1653	69
1657,-6		l I	0,35(19)	0,135	0,47(38)	0,804	1,5(6)	1,000	1		1801	154
1049,52]	2,7(+)	0,008	1,5(8)	⊃ ,79 ₹	-	3,459			2052	+7+
1332,12	1		0,18(3)	0,133	0,82(6)	0,804	0,65(11)	1,000	, i		1826	16+
10/3,40	1	}	1		0,36(22)	1	1,1(5)		:	1		i
4600.00	ł		0,2(6)	0,135	0,76(10)	0,804	0,50(20)	1,000	1		1853	164
1097,422	1				0,98(13)	1,000			3		1801	104
1707,00			0,27(12)	0,199	0,60(22)	0,804	1,2(4)	1,000			1672 -	164
1766,37	1				0,97(8)	1,000				1	1826	104
1748 22			1,05(20)	1,000	1	1	1 1		1 1		1826	84
1753	1		0.22/81	0.433	1,02(7)	1,000					1853	104
1767.65	1		0,22(0)	20,000	0,09(10)	0,804	2,0(5)	1,000			1917	104
1264.29	0.80(20)	1.000			1,10(10)	1,000					10/2	104
1790.12		,,	{		1	1	1				1075	209
1795.38						1	1				2040	249
1805.55	0.21(10)	1.000	f	1	J	ł	1				4050	
1813.60	1	1.1	1	l I	1 0(6)	1 000	(I				10/2	10
1876.23	1	1	0.16(2)	0.153	1 23(42)	0.800	0.72(40)	1			2040	
1936.38	1	1			1,20(4)	1,000	01/2(19)	1,000	1		2040	104
19-80	1	1	1	i	1,12(25)	1.000		}			2040	10-
1957 57	1		0.30(11)	0.153	1,1(3)	0.80	2(2)	1	!		2422	
2017,95	1	1	1	1	1.06(33)	1.000					2122	10+

Таблица 3 /продолжение/

Измеренное ранее отношение $\gamma_{104,3}$ /КХ=0.08^{/16/н}е позволяло сбалансировать интенсивности переходов в схеме распада 163 Tm $^{1/}$. Это противоречие снимается результатами настоящей работы, в которой это отношение равно 0,135+0,003.

В табл.3 приведены коэффициенты относительного ослабления интенсивностей у -переходов в совпадениях с ЗВК К69,23; К83,97; К 104,32; К80,46 и К85,12 кзВ при распаде 163 Tm. Справа от экспериментальных значений этих коэффициентов в табл.3 приведены расчетные, полученные на основании предложенной схемы распада. Результаты в основном согласуются с выводами ^{/17/} о схеме распада 163 Tm, сделанными на основании сведений о у-у совпадениях переходов, однако информация о e_y совпадениях в настоящей работе более общирна и позволяет с большей достоверностью обосновать введение каждого возбужденного состояния 163 Er.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований уточнены период полураспада и энергия распада 163 Tm. Обнаружены 254 у-перехода, для которых существенно уточнены значения энергий, а также интенсивностей у-лучей и ЭВК; из них 46 переходов наблюдены впервые. Для 174 у-переходов сделаны выводы о мультипольности; ранее в 177 мультипольность у-излучения была известна для 148 переходов. Получены более широкие сведения о временных совпарадениях переходов и позитронах при распаде 163 Tm. Совокупность полученных данных позволяет предложить наиболее полную схему распада 163 Tm.

ЛИТЕРАТУРА

- 1. Buyrn A. Nuclear Data Sheets, 1972, A163, B8, 4, p.295.
- Dairiki J.M., Browne E., Shirley V.S. Nuclear Data Sheets, A=163,1980, 29, p.653.
- Громов К.Я. и др. Тезисы докладов XXVIII Совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1978, с.97.
- Вылов Ц. и др. Спектры излучений радиоактивных нуклидов. "ФАН", Ташкент, 1980.
- 5. Вылов Цв. и др. Тезисы докладов XXX Совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1980, с.122.
- 6. Афанасьев В.П. и др. СЛЯИ, 13-4763, Дубна, 1969.
- 7. Молнар Ф., Халкин В., Херрманн Э. ЭЧАЯ, 1973, т.4, вып.4, с.1077.

- 8. Вылов Цв., Осипенко Б.П., Чумин В.Г. ЗЧАЯ, 1978, т.9, вып.6, с.1350.
- 9. Громов К.Я. и др. В сб.: Прикладная ядерная спектроскопия. Атомиздат, М., 1978, вып.8, с.59.
- 10. Кузнецов В.В. и др. ОИЯИ, Р13-12810, Дубна, 1979.
- Громов К.Я. и др. Программа и тезисы докладов XIV ежегодного совещания по ядерной спектроскопии. "Наука", Л., 1964, с.59.
- 12. Wapstra A.H., Bos K. Atomic Data and Nuclear Data Tables, 1977, 19, p.177.
- 13. Вылов Цв. и др. В кн.: Спектры излучений радиоактивных нуклидов, измеренные с помощью полупроводниковых детекторов. ZfK-399, Россендорф, 1980, с.401-408.
- 14. Абдуразаков А.А. и др. Изв. АН СССР, сер.физ., 1980, т.44, 9, с.1843.
- 15. Hager R.S., Seltzer E.C. Nuclear Data Tables, 1968, A4, p.1.
- 16. Bjornholm S. et al. J. Inorg. Nucl. Chem., 1961, 21, p.193.
- 17. Абдуразаков А.А. и др. Изв. АН СССР, сер.физ., 1976, т.40, 10, с.2089.