СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2284/2-81

3-911

11/5-81 P6-81-22

ST.

К.Зубер,* В.Г.Калинников, Ф.Пражак

ИССЛЕДОВАНИЕ РАСПАДА 154m Но И 154 Но

* Институт ядерной физики, Краков, ПНР

введение

В настоящее время вопрос о свойствах ядер переходной области редкоземельных элементов приобретает все большую актуальность. Одним из ядер, принадлежащих к переходной области, является ¹⁵⁴ Dy, возбужденные состояния которого рассматриваются в настоящей работе. Возбужденные состояния ¹⁵⁴ Dy интенсивно изучались в последнее время методами ядерных реакций.

Ноймен и др. в 11 возбудили уровни ротационной полосы основного состояния до состояния с энергией 2305.5 кэВ со спином 10⁺, а также состояния β-вибрационной полосы со спином 2⁺, 4⁺ и 6⁺. Используя реакцию ¹⁴⁶ Nd(¹² C, 4n)¹⁵⁴ Dy. Коин и до. 12/ исследовали спектом у- и у-у -совпадений и ввели уровни ротационной полосы основного состояния до спина 18+ с энергией 4692 кэВ. В следующей работе Банашиком и др. ^{/3/} подтверждены результаты, полученные в предыдущих работах. Исследование возбужденных состояний 154 Dy , возникающих при распаде 154 Но, было проведено в $^{/1'}$ и $^{/4'}$. В работе $^{/1'}$ введены уровни ¹⁵⁴ Dy, заселяемые при распаде ¹⁵⁴ Ho с T_{1/2}=3,2 мин, которые в основном совпали с уровнями, возбужденными в реакциях, за исключением нового уровня с энергией 2474 кэВ и спином /7[±], 8⁺/. Распад 154 Но с T_{1/2} =11,8 мин изучался Шмид-том – Отто и др. ^{/4/}. Этому распаду приписано 5 гамма-переходов. Настоящая работа посвящена исследованию возбужденных уровней ¹⁵⁴ Dy при распаде ¹⁵⁴ Ho с Т_{1/2} =3,2 мин и Т_{1/2} =11,8 мин.

1. УСЛОВИЯ ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ

1.1. Радирактивные источники ^{154m} Но и ¹⁵⁴ Но

Радиоактивные изотопы гольмия получались в реакции глубокого расщепления тантала протонами с энергией 660 МэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Танталовая мишень /вес 0,2 гр./ после 5 мин облучения на внешнем пучке протонов доставлялась к масс-сепаратору и разделялась по изобарам ^{/5/} без химической обработки. Примеси других изотопов в источниках ¹⁵⁴Но составляли меньше 1%.

Таблица і

Настоящая ребота		Padora [1]		Работа [4]	
E _s (AE _y), Kob	$I_{\chi}(\Delta I_{\chi})$	Е ((ΔЕ ,) , кэВ	I _x (°/.)	Ε_γ(ΔΕ_γ), кэВ	I; (%)
I57.9(3)	2.1(6)	157.8(2)	3.9(0.3)	158	3
280.I(4)	I.I(5)		}	1	
289.5(I)	4.I(4)	289,2(2)	4.3(0.3)	289	3
295.7(I)	8.1(4)	295.8(2)	12.8(0.5)		
301.0(2)	2.1(3)]		
309.5(2)	3.6(3)	310.3(2)	3.0(0.3)	310	2
334.7(I)	I00	334.7(2)	100	334.5(I)	100
346.7(I)	13.2(8)	346.5(3)	12.5(1.0)	346.4(2)	I3(2)
407.0(I)	I9.I(I4)	407.0(3)	24.5(I.O)	406.8(I)	I8(I)
4I2.5(I)	74.7(2I)	412.5(3)	84.0(4.0)	4I2.3(I)	74(3)
435.I(2)	2.5(4)	434.9(4)	2.5(0.3)	435.3(10)	2(I)
443.4(2)	5.0(4)	444.2(4)	5.1(0.5)	443.4(3)	5(I)
		471.9(6)	2.5(0.4)	472	2
477.2(2)	52.0(32)	477.4(4)	56.0(2.0)	477.I(I)	52(3)
504.9(3)	.20.3(35)	505.2(4)	16.2(0.7)	505.I(2)	25(4)
523.7(2)	16.5(13)	523.8(4)	16.0(0.7)	523.9(2)	22(3)
570.6(I)	I2.4(2I)	570.6(5)	10.0(2.0)	570.8(I)	I2(I)
644.2(3)	I.2(3)			Í	
66 I. 4(2)	2.1(3)				
725.3(I)	II.I(8)	726.5(7)	13.0(2.0)	725.6(I)	I4(2)
733.I(2)	3.4(5)		1		
740.9(3)	2.4(6)				
8I4-2(I)	II.8(I2)	815.0(7)	13.0(3.0)	8I4.9(3)	I2(2)
905.3(I)	3.5(7)	906.0(IO)	I.5(0.5)	906(I)	3(1)
				9II(I)	I
959.6(3)	2.1(5)				ļ
968.5(4)	I.7(5)			ļ	
993.3(2)	4.4(5)			j	
I248.8(I)	16.2(14)	1249.5(10)	16.0(20)	I250.5(I)	19(3)

Энергии и относительные интенсивности гамма-лучей при распаде ¹⁵⁴m Но

1.2. Исследование спектров гамма-лучей

Спектры гамма-лучей $^{154}{}^{\rm Ho}$ и $^{154}{}^{\rm Ho}$ исследовались с помощью спектрометра с $'{\rm Ge}({\rm Li})$ -детектором с чувствительным объемом 27 см $^3/\Delta E_{\gamma}$ =3,0 кэ8 при E_{γ} =1332 кэ8 - $^{60}{}^{\rm Co}$ /. Измерения гамма-лучей, возникающих при распаде изомерного и основного состояний $^{154}{}^{\rm Ho}$, проводились совместно, поэтому

Измерения гамма¬лучей, возникающих при распаде изомерного и основного состояний ¹⁵⁴ Но, проводились совместно, поэтому анализ был затруднен. Идентификация принадлежности линий к распаду изомерного или основного состояния проводилась по спаду интенсивности у~излучения. В том и другом случаях для нормировки интенсивностей принято, что интенсивность у-лучей перехода с энергией 334,7 кэВ равна 100 ед.

В табл. 1 приведены полученные в настоящей работе экспериментальные данные об энергиях и относительных интенсивностях гамма-лучей 154m Но, которые сравниваются с результатами работ $^{/1,4'}$. В табл. 2 приведены полученные нами сведения о распаде 154 Но.

Таблица 2

Энергии и относительные интенсивности гамма-лучей при распаде 154 Ho

Е ₁ (4Е ₁) кэв	I;(AI;)	Е _г (ДЕ _г) кэв	I, (\$I,)
244.5(5)	~I.0	729.8(I)	2.0(2)
326.I(I)	6.4(4)	798.8(2)	I.I(2)
334.7(I)	100	846.8(2)	0.9(2)
346.7(I)	0.9(4)	873.3(1)	I4.0(I0)
407.0(I)	0.5(2)	905.3(I)	. I.7(4)
412.5(1)	I9.5(25)	985.2(3)	0.7(2)
428.9(2)	0.9(2)	999 . 8(I)	4.0(3)
461.0(2)	0.9(I)	1027.2(1)	5.9(5)
485.3(2)	0.9(2)	1052.5(7)	0.4(2)
511.0	25.5(5)	1055.7(3)	I.I(2)
570.6(I)	I2,5(2)	1072.1(3)	0.8(2)
587.5(I)	0.9(2)	I085.9(2)	I.6(2)
692.6(I)	5.8(4)	II08.0(2)	0.7(1)
695.2(I)	I.9(2)	II56 . 7(3)	0.7(2)
ļ	1	II73.2(I)	I.7(2)

1.3. Исследование спектров гамма-гамма-совпадений

Спектры гамма-гамма-совпадений исследовались на установке с двумя Ge(Li)-детекторами с чувствительными объемами 41 см 3 /разрешение 2,5 кэВ для $E_1 = 1332$ кэВ - ^{60}Co / и 27 см 3 /разрешение 3,0 кэВ для $E_1 = 1332$ кэВ/. При проведении экспериментов ширина временного окна выбиралась равной 50 нс. Информация записывалась на ЭВМ НР -2116С на магнитную ленту. Сортировка и анализ информации производились после окончания эксперимента. Результаты исследования гамма-совпадений сведены в табл. 3.

Таблица 3

Результаты анализа спектров у-у-совпадений при распаде ¹⁵⁴m Но и ¹⁵⁴ Но

Окно	Энергим гамма - переходов, набладаемых						
Е ₁ , кэв	в созпаделиях, кэВ						
289.5	334.7 412.5 477.2						
309.3	334.7 412.2						
326.I 334.7	334.7 295.7 ^{x/} 326.I 346.7 407.0 4I2.5 435.I 443.4 477.2 504.5 523.7 570.6						
346.7	334.7 407.0 570.6						
407.0	334.7 346.7 412.5 504.9 570.6						
^I2.5	334.7 407.0 477.2 504.9 523.7						
443.4	334.7 ^{x/}						
477.2	334.7 412.5 523.7						
504.9	334.7 407.0 412.5						
570.6	334.7 346.7 407.0						

х/Переходы не размещены в схеме уровней.

2. СХЕМА РАСПАДА ^{154m} Но и ¹⁵⁴Но

Предлагаемая схема распада изомерного и основного состояний 154 Но изображена на <u>рис. 1.</u> Уровни 154 Dy, заселяемые при распаде изомера с $T_{1/2}^{-2}$ =3,25 мин, введены на основе y-y - совпадений и находятся в хорошем согласии с результатами работы ¹. Спины и четности уровней заимствованы из работ ¹ и ². На основе совпадений перехода 289,5 кзВ с переходами 334,7; 412,5 и 477,2 кзВ введен новый уровень с энергией 1513,1 кзВ. Исходя из данных о y-y - совпадениях / 154 Ho с $T_{1/2}^{-2}$ =11,8 мин/,мы ввели новый уровень с энергией 660 кзВ. Ядро 154 Dy является аналогом 152 Сб / N =88/. Из сравнения свойств этих ядер /рис. 2/ можно заключить, что уровень с энергией 660,8 кзВ имеет, по всей вероятности, спин и четность 0⁺.

Новый уровень с энергией 1442,7 кэВ введен на основе сумм энергий гамма-переходов.

В работе Боемана и др.⁷⁶⁷ в ¹⁵² Gd найдены уровни с энергией 1433,9; 1861,7 и 2394,5 кэВ и со спином и четностью 3+, /5+/

	<u>1767_6*</u> <u>1998_6</u>	<u>1748_1°</u> 1820_6	1725_10*		
<u>140 C</u>			<u>437 f</u>	TAD W TAS F	<u>1426 10</u>
1278 (6.9	120_6 320_6	126 6 129 6	<u>1215_0</u> *	<u>1280. 4*</u>	<u>1275_0</u> *
1046. 2"			<u>1086 (</u>	1044 6. 1084 1.	965 &°
<u>773 6'</u> 740 0'	<u>757 4</u>	<u>905_2</u> *	770_6		
	<u>15 ď</u>	<u>660_0</u> *	<u>675 (</u> *	<u>530 5'</u>	<u>581 6'</u>
<u>334 2'</u>	<u>34 2</u>	334_2*	w t.	<u>317 C</u>	<u>_283_(*</u>
<u>0_0</u>	<u> </u>	<u>0 0°</u>	<u>137 2*</u>	99 7 0 0	<u>66</u> 2° 0_0°
150 Sm86	152 Gd	55 Dy ₈₀	66 ¹⁵⁶ Dy ₉₀	58 66 ^{Dy} 92	66 ¹⁶⁰ Dy ₉₄

Рис.2. Сравнение возбужденных уровней в ядрах Sm, Gd и Dy.

и /7⁺/ соответственно. На основании сравнения с этим ядром для уровня ¹⁵⁴ Dy с энергией 1442,7 кэ8 мы предлагаем спин и четность 3⁺.

На основе сумм энергий можно ввести уровень с энергией 1208,1 кэВ /не помещен на рис. 1/, а именно:

747,2/4+/ кэВ + 461,0 кэВ=1208,2 кэВ, 334,7/2+/ кэВ + 873,3 кэВ=1208,0 кэВ.

По аналогии с другими ядрами с N=88 уровень с такой энергией в $^{154}\,\rm Dy\,$ должен иметь спин I" =3 $\tilde{}$.

Сильное заселение уровней с энергией 747,2 кэВ /I^{π} =4⁺/ и 1442,7 кэВ /по всей вероятности, со спином I^{π} =3⁺/ приводит нас к выводу, что спин основного состояния ¹⁵⁴Ho / T_{1/2} = =11,8 мин/ I ≥2.

У основного состояния $^{152}\,\rm Tb$ /ядро с $\,\rm N$ =87/ известен спин I $^{\pi}$ =2 $^-$. Этот факт дополнительно подкрепляет наше мнение.

Екстром и др. 77 , используя метод атомных пучков, измерили спин 154 Но и привели для него значение 1=1, что противоречит

слин по и привели для него значение ≀≠1, что противоречит только что высказанному мнению. Заметим, что результаты измерений, выполненных группой Екстрома для слабодеформированных ядер, в ряде случаев не согласуются с принятыми значениями спинов.

Предложенная нами схема распада 154m,g Но согласуется в основном с результатами недавно опубликованной работы $^{/6}$, в которой исследованы у -излучение и электроны конверсии 154m,g Но. В частности, сообщается о наблюдении в 154 Dy E0 - переходов с уровней 660,8 и 1057,9 кзВ. Состоянию 154 Но при-писаны $I^{\pi} = 3^+$.

ЛИТЕРАТУРА

- 1. Ward D., Neiman M. Nucl.Phys., 1968, A115, p. 529.
- 2. Krien K. et al. Nucl. Phys., 1973, A209, p. 572.
- 3. Banaschik M.V. et al. Nucl. Phys., 1974, A222, p. 459.
- 4. Schmidt-Ott W.D.et al. Phys.Rev., 1974, C10, p. 296.
- Latuszynski A. et al. Nucl.Instr. and Meth., 1974, 120, p. 321.
- Bowman W.W., Sugihara T.T., Hamiter F.R. Phys.Rev., 1971, C3, p. 1275.
- 7. Ekström C. et al. Nucl. Phys., 1969, A135, p. 289.
- 8. Zolnowski D.R. et al. Phys.Rev., 1980, c. 21, p.2556.

Рукопись поступила в издательский отдел 13 января 1981 года.

ł