

Объединенный институт ядерных исследований

дубна

15/6-81

2931 2-81

P6-81-172

1981

В.М.Вахтель, Ц.Вылов, Н.А.Головков, Б.С.Джелепов, А.Караходжаев, В.В.Кузнецов, М.Я.Кузнецова, М.Миланов, Ю.В.Норсеев, Т.И.Попова, В.П.Приходцева, В.Г.Чумин, Ю.В.Юшкевич

СПЕКТРЫ **р**-ЛУЧЕЙ И ЭЛЕКТРОНОВ ВНУТРЕННЕЙ КОНВЕРСИИ ²⁰⁸ At. МУЛЬТИПОЛЬНОСТИ ПЕРЕХОДОВ В ²⁰⁸ Ро

Направлено на XXXI Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд, 1981

Нуклид ²⁰⁸ At / T_{1/2}=1,63 ч/ распадается преимущественно в $208 \operatorname{Po}(\epsilon + \beta^+)$, доля α -распада составляет 0,55% распадов /1/. Впервые распад 208 At $\rightarrow ^{208}$ Po детально был изучен в 1968 году в работе^{/2/.} Авторы этой работы, используя Ge(Li) — и Si(Au)детекторы, изучили спектры у-лучей, электронов внутренней конверсии /ЭВК/ и быстрых и запаздывающих у-у-совпадений; источники получали накоплением ²⁰⁸At при *а*-распаде ²¹²Fr. Обнаружено 33 перехода, для 12 из них определена мультипольность. На основании этих результатов и сведений об уровнях ²⁰⁸ Ро, полученных из реакций (p, 2n), (a, 2n) и (a, 4n), предложена схема распада ²⁰⁸At→ ²⁰⁸ Po. в которой между 13 уровнями размещено 18 переходов. Затем в течение длительного времени в печати не появлялось сообщений о распаде ²⁰⁸ At, вплоть до наших исследований с моноизотопными источниками/3/, которые показали, что в действительности спектры у-лучей этого нуклида значительно сложнее: было обнаружено около 150 новых у-переходов.

В 1979 году появилось краткое сообщение^{/4/} об изучении распада ²⁰⁸At. Источники получали из реакции ²⁰⁹Bi(³He,4n) ²⁰⁸At с большой примесью ²⁰⁹At. Измерены спектры *y*-лучей и *y*-*y*-совпадений /с помощью Ge(Li) -детекторов/, и на бета-спектрометре, состоящем из линзы и Si(Li)-детектора, изучены спектры ЭВК. К сожалению, авторы^{/4/} не опубликовали полных результатов этих измерений ни в этой работе, ни позднее, в ^{/5/}. Сведения о *y*переходах можно извлечь только из предложенной в работе схемы распада ²⁰⁸At. На ней для 33 *y*-переходов, размещенных между 23 уровнями, указаны значения энергии, полной интенсивности и /для наиболее интенсивных переходов/ мультипольность.

В предлагаемой работе подведены итоги наших исследований спектров γ -лучей к ЭВК ²⁰⁸ At, начатых в ^{/3/}.

1. УСЛОВИЯ ЭКСПЕРИМЕНТА

В работе использовали²⁰⁸ At, полученный при разделении на масс-сепараторе смеси изотопов астата, выделенной по методу, описанному в ^{/6/}, из ториевой мишени, облученной протонами с энергией 660 МэВ на синхроциклотроне ЛЯП ОИЯИ. Максимум выхода изотопов астата, получающихся в реакции глубокого расщепления тория, приходится на нейтронодефицитные изотопы с A = =208-211. Активность ²⁰⁸At через ~50 мин после конца облучения была достаточно велика, чтобы выбрать оптимальные условия при измерениях.

A 17 KAX Lack 103-1

Таблица 1 /продолжение/

I	2	3	4	5	6	_
		M	0,71(8)	E2(44%MI)	84,	
669,45(12)	9,5(25)	1.1	0,44(5)	MI(<61%E2)	10,0(26)	
686,527(20 ^{0,в)}	1000(30)	,	II,9	Е2(принято)г)	1016(33)	
·	Y		2,90(17)	E2(<0,8%MI)		
	e de la	M	0,78(8)	E2(≤II%MI)		
694,33(4) ^{B)}	38,4(23)		0,99(10)	MI+(47÷66)%E2 ^{F)}	40,4(23)	
697 ,94(I2)	I4,I(8)		0,140(28)	E2(41%MI)	14,3(8)	
755,89(4)	15,4(9)		0,52(6)	MI(<20%E2)	16,0(9)	
769,34(5) ^{B)}	21,3(12)		0,70(7)	MI(419%E2)	22,2(12)	
798,68(25)	6,0(6)		0,180(22)	MI(425%E2)	6,2(6)	
802,4(5)	6,70(38)	·	0,25(4)	MÍ	6,9(4)	
807,I37(25) ^{б,в)}	60,0(25)	1 A.	I,80(II)	MI(49%E2)")	62,1(26)	
		L	0,3I(5)	MI(421%E2)	.3	
BII,18(9) ^{B)}	12,4(15)		0,28(6)	MI+(5;54)%E2	12,8(16)	
845,044(20) ^{б,в)}	202(8)	1	0,58(6)	EI(≤0,1%M2) ^{г)}	203(9)	
		L	0,IIO(II)	EI(≼0,9%M2)		
886 ,32(5) ^{б,в)}	25,0(14)		0,55(8)	MI(≼29%E2)	25,7(15)	
÷		L. (1)	0,11(2)	MI(<15%E2)	•	
896,659(35) ^{б,в)}	55,0(23)	¥ ;	0,41(4)	E2(≤7%MI) ^{г)}	55,4(23)	
947,IO(7) ^{B)}	17,6(8)		0,090(13)	E2,EI+(4:8)%M2	17,7(8)	
958,82(20)	5,10(39)		0,100(15)	MI(<21%E2)	5,2(4)	
983,I2(4) ^{0,B)}	46,8(22)		0,75(7)	MI(≼30%E2) ^{r)}	47,8(22)	
		L	0,135(20)	MI(<35%E2)		
989,944(30) ^{0,в)}	110(8)		2,01(14)	MI(≼9%E2) ^{г)}	II2(8)	
		I.	0,343(34)	MI(<13%E2)		
1002,5(7)	3,7(4)		0,030(8)	MI+(I+4I)%E2	3,8(4)	
1008,60(4) ^{6,8)}	23,0(24)		0,057(II)	EI(<2%M2) ^{Γ)}	23,0(24)	
1017,0(5)	4,I(4)		0,042(8)	MI+(36;80)%E2	4,1(4)	
T027.662(24) ^{0,B)}	172(6)		2,60(21)	MI(≤20%E2)")	175(7)	
	e par ti	E.	0,45(5)	MI(<25%E2)	•	
1038,30(3 0)	6,7(5)		0,030(7)	<pre>E2(≤3%MI) EI+(3+10)%M2</pre>	6,7(5)	

Таблица 1

Сведения о у-переходах при распаде 208 At \rightarrow 208 Po. / I _{у686,527} =1000/31/; I _{K686,527} =11,9/

Еу(ДЕу), кэв	Іу(ΔІу) ^а отн. ед.)	I _к (ДI _к) ^{а)} отн.ед.	Мультиполь- ность	Iполн. Іполна) отн. ед.
·I	2	3	4	5	6
I77,595(I7) ^{0,B)}	498(19)		IO2(5)	E2(≼0,0I%MI) ^T	⁾ 86I(33)
1. 4 ¹		$L_{1.2}$	II7(7)	E2(44%MI) ·	
A second se		L ₃	62(5)	E2(<2%MI)	- <u>-</u>
205,400(30) ^{0,B)}	64,8(23)		74(4)	MI(≤8%E2) ^{r)}	158(6)
		$L_{1.2}$	12,4(7)	MI(≼44%E2)	
236,66(10)	5,6(5)		3,6(6)	MI+(6÷40)%E2	II,I(II)
294,04(5) ^{B)}	10,9(6)		5,0(7)	MI(≼I2%E2) ^{r)}	16,7(9)
333,674(30) ⁰⁾	21,5(12)	. •	6,5(4)	MI(<11%E2)	29,5(16)
395,740(50)	12,6(9)		2,15(24)	MI+(2;30)%E2) 15,6(12)
485,10(25)	5,15(27)	÷ i no tra	0,68(7)	MI	6,13(32)
517,055(20) ^{б,в)}	62(6)		6,19(37)	MI(≤II%E2) ^{Γ)}	69(7)
		I.	I,00(II)	MI(<28%E2)	i de la composición de
	· · ·	М	0,300(36)	MI	
538,0(3)	3,9(4)		0,220(27)	MI+(32÷59)%E2	4,3(4)
	i i	L.	0,060(12)	MI(≼33%E2)	
566,24(9)	5,7(6)	13	0,336(27)	MI+(15;42)%E2	6,2(6)
576,5(2)	5,5(6)		0,277(35)	MI+(25:55)%E2	6,0(7)
626,63(9)	4,52(23)		0,30(5)	MI(≤8%E2)	4,83(26)
		L	0,04I(IO)	MI(≤52%E2)	
63I,825(35) ^{б,в)}	33,0(14)		I,84(II)	MI(≰9%E2) ^{r)}	35,2(15)
		L.	0,245(12)	MI+E2	
637,46(9)	5,3(4)		0,16(6)	MI+(34;87)%E2	5,6(4)
		L	0,060(2I)	MI(≤10%E2)	1. 1. J. 1.
660,040(I7) ^{б,в)}	912(31)		II,8(6)	e2(<2%mi) ^{r)}	927(31)
		L	3,17(16)	E2(≤6%MI)	

2

Таблица 2

Спектры у-лучей ²⁰⁸ At/ I_{у686,527} =1000/30//

Ey(4 Ey),	Iy(AIy), ^{a)}	$E_{y}(\Delta E_{y}),$ ∂B	Iy(4Iy), ^{а)} отн. ед.
I	2	3	4
Kala	276(17)	716,7(8)	1,33(21)
Kal	490(22)	729,5(5)	I,90(35)
K _B	I7I(I0)	733,68(5) ^{r)}	14,3(7)
Kgi	54(4)	747,70(30)	4,3(5)
123,25(35)	0,64(19)	765,5(10)	I,3(5)
163,47(35)	0,85(25)	832,8(5)	I,47(I7)
172,7(7)	1,20(31)	841,15(30)	8,7(5)
187,50(25) ⁰⁾	~I	852,9(5)	3,2(5)
213,65(15)	3,7(6)	863,7(5)	4,02(28)
252,35(I2) ^{B)}	8,1(6)	921,1(5)	2,7(7)
255,0(5)	~3	923,96(20) ^{r)}	4,40(32)
262,61(12)	3,9(10)	934,05(15)	9,8(5)
3IO (I)	~2,5	963,8(5)	1,98(20)
327,8(5)	3,0(4)	1031,0(10)	4,5(15)
373,20(15)	4,6(6)	1049,2(5)	0,66(7)
390,3(4)	3,9(5)	1057,0(5)	I,15(15)
400,7(4)	3,1(12)	1061,7(5) ⁰⁾	2,0(6)
451,40(20)	6,2(6)	1064,5(5)	I,5(5)
524,5(10)	~2,4	1071,8(5) ⁰⁾	3, 00(35)
574,5(IO)	I,60(30)	1082,6(5)	0,78(12)
605.0(IO)	1,30(30)	1088,06(15)	0,88(10)
621,5(5)	I,8(4)	1104,5(10)	2,0(5)
704,5(6)	1,9(7)	1126,80(25)	I,58(30)
710,5(6)	3,9(5)	II37,5(5)	2,3(4)
712.4(6)	2,7(4)	1139,1(5)	2,5(4)
•			

5

· · · ·			Таблица	I (продолжение)	
I	2	3	4	5	6	
1094,60(II)	2,40(30)		0,040(8)	MI (< 8%E2)	2,43(31)	
1107,73(7)	5,68(32)		0,052(10)	MI+(25÷70)%E2	5,68(32)	
1133,41(26)	2,22(13)		0,020(5)	MI+(I3-73)%E2	2,22(13)	
1145,70(15)	3,21(32)		0,018(4)	E2(≰35%MI)	3,39(34)	
1180,00(15) ⁶⁾	11,0(15)		0,130(19)	MI(<25%E2)	II,I(I5)	
II95,3I(5) ^{б,в)}	15,1(7)		0,122(18)	MI+(20+60)%E2	15,2(7)	
		L	0,027(5)	MI(≰42%E2)		
I229,I84(33) ^{б,В)}	32,0(24)		0,045(7)	EI(≲0,3%M2) ^{r)}	32,1(26)	
I343,44(5) ^{B)}	21,3(9)		0,029(5)	EI(≤I,4%M2)	21,3(9)	
I360,I2(7) ^{б,В)}	9,5(8)		0,0170(31))EI+(0÷5)%M2	9,5(8)	
1438,80(6) ^{б,в)}	II,9(6)		0,067(12)	MI+(0;60)%E2	II,9(6)	
1537,7I(6) ^{б,в)}	17,7(9)		0,018(4)	EI(≤I,5%M2)	17,7(9)	ł
1797,42(10) ^{B)}	8,0(5)		0,30(5)	MI(≼44%E2) ^{г)}	8,0(5)	
1872,88(IO) ^{б,B)}	5,40(38)		0,0046(II))EI(≼4%M2)	5,40(38)	
2029,33(I0) ^{б,В)}	15,9(9)		0,027(5)	E2(<40%MI) EI+(23÷35)%M2	15,9(9)	
2125,65(12)	9,0(6)		0,007	EI(+M2)	9,0(6)	
						1

a) I_j, I_к и I_{полн.} можно выразить в % на распад, если принять, что I ед.табл. =0.0979% на распад ²⁰⁸At.

б) Переходы ранее наблюдали в работе /2/.

в) Переходы ранее наблюдали в работе /4/.

г) Мультинольности этих переходов определены также в работах/2,4/.

Спектры у -лучей исследованы при помощи Ge(Li) -детекторов объемом 0,8; 38 и 50 см⁸ с энергетическим разрешением (ΔE) соответственно 570 эВ / $E_y \sim 100$ кэВ/, 2,3 и 2,5 кэВ / $E_y \sim 1,3$ МэВ/. Методика измерения энергий и относительных интенсивностей у лучей, используемые реперы и методика обработки экспериментальных данных с применением ЭВМ описаны в работе '7'.

Спектры ЭВК в диапазоне энергий 60-2100 кэВ изучены с помощью Si(Li) -детектора / $\Delta E = 2,5$ кэВ, $E_e \sim 1$ МэВ/, помещенного в магнитное поле⁸⁶. Для электронов с энергией меньше 300 кэВ использовали также тороидальный бета-спектрометр / $\Delta H_\rho/H_\rho$ = =1,1%/⁹⁹.

Таблица 2 (продолжение)

<u> </u>	2	- 3	4
2038,2(3)	I,89(I9)	2475,5(5)	0,50(20)
2085,85(I0) ^{r)}	5,8(6)	2494,8(5)	7,9(8)
2091,3(10)	~1	2523,5(5)	I,4I(3I)
2094,75(10)	4,40(30)	2556,I(5)	1,23(15)
2101,5(4)	I,37(26)	2619,2(5)	I,70(20)
2129,0(5)	3,26(36)	2638,55(30) ^{B)}	21,3(15)
2132,5(5)	I,8(5)	2643,3(5)	5,4(5)
2158,5(5) ^{d)}	I,94(I9)	2662,7(5)	0,76(15)
2167,85(20)	4,00(32)	2668,2(5)	0,58(14)
2174,4(5)	0,90(25)	2718,3(10)	0,27(10)
2207,10(20)	5,00(32)	2732,5(5)	I,3I(I3)
2216,4(5)	I,5(6)	2901,5(5)	0,50(10)
2222,0(7)	I,00(30)	2998,6(7)	0,45(9)
2284,0(5)	1,32(16)	~3016	~0,18
2336,30(25)	4,8(5)	~3164	~0,38
2370,0(5)	3,76(36)	~ 3223	~0,34
2467,7(5)	2,19(20)		A

а) Iy ед.табл. =0,0979 % на распад ²⁰⁸At .

б) Возможно, дублет.

в) Переходы также наблюдали в работе /2/ .

г) Переходы также наблюдали в работе /4/.

2. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Предварительные результаты измерений спектров у -лучей и ЭВК опубликованы в работах ^(3,10,11). В табл. 1 и 2 предлагаемой работы приведены результаты многократных измерений. Для большинства случаев приведены средневзвешенные значения E_y по 3-10, а I_y по 3-4 сериям измерений. В табл. 3 даны энергии и интенсивности у -лучей, которые наблюдали лишь в одной серии, их существование и принадлежность распаду ²⁰⁸At нуждается в подтверждении.

В интервале энергий 60-2100 кэВ определены относительные интенсивности ЭВК, соответствующих 52 переходам ²⁰⁸Ро/табл.1/.

	тафина г (продолжение)					
I	2	3	4			
1160,32(10)	2,40(35)	1578,2(5)	3,0(9)			
II64,29(II)	5,0(4)	I58I,I(5) ^{B)}	6,9(7)			
II84,5(5)	I,0(5)	I584,6(5)	2,6(8)			
1234,0(6)	3,1(6)	1588,6(5)	2,50(35)			
1237,3(6)	I,8(5)	1593,5(6)	I,00(30)			
1256,0(7)	0,67(20)	1598,5(8)	I,20(35)			
1259,3(7)	0,94(30)	1608,4(5)	I,23(I4)			
1263,03(13)	3,51(35)	1613,2(5)	2,2(5)			
1270,5(5)	I,00(30)	1616,4(5)	6,8(8)			
I280,I0(35) ^{B)}	4,3(7)	1620,5(5)	2,17(34)			
I282,4I(35) ^{B)}	5,5(5)	1623,4(6)	2,92(27)			
1286,60(14)	2,9(4)	1636,6(8)	~0,8			
1292,80(30)	1,20(30)	1641,60(25)	2,02(32)			
1300,54(30)	1,35(30)	1647,00(35)	3,53(35)			
1304,53(25)	I,48(3I)	1692,76(23)	2,83(20)			
1308,95(16)	2,47(27)	1725,2(6)	0,92(15)			
1314,56(30)	I,27(25)	1752,16(20)	2,29(20)			
1324,6(5)	0,82(20)	1773,68(20)	3,50(35)			
1348,41(27)	2,50(25)	I83I,8(5)	I,I4(I5)			
1402,82(35)	1,20(12)	1847,30(15)	I,3(5)			
1456,5(8)	I,40(I7)	1916,5(4)	I,35(II)			
1468,3(8)	1,25(30).	1923,4(4)	I,30(20)			
1472,54(19)	1,92(22)	1929,5(4)	2,64(21)			
1490,5(4)	1,19(12)	1944,2(4)	I,8(7)			
~ I507	I,7(5)	1951,0(10) ⁰⁾	I,IO(30)			
15II,89(8)	4,00(28)	1971,0(6)	0,96(20)			
1516,8(5)	0,82(20)	1983,8(5)	I,IO(I8)			
1523,37(25)	I.89(20)	2011,5(5)	1,05(30)			
1569,3(5)	1,21(20)	2026,0(7)	3,5(10)			

7

Таблица З

Энергии и инте	нсивности	<i>γ</i> −лучей,	возможно,	принадле-
жащих распаду	208 At - 208	Po / I _{v68}	6,527 =]	000/30//

^Е у(• ^Е у), кэВ	Iy(Δ Iy), oth.ed.	Ey(AEy) Rob	Iү(▲Iү) отн.ед.	Ey(a Ey), RəB	Iу(4Iу). отн. ед.
22	I,0	1005	I,3	1858,5	I,0
32	0,3	1042	I,0	I9 57	0,5
II2	0,2	1091	0,9	I978	0,8
24I	1,2	1204,5	I,0	2002	0,4
342	2,0	1218	0,8	2043	0,5
344	I,5	1251	0,6	2108	0,6
360,5	I,8	I275,5	I,0	2120	0,5
645	I,0	I354	0,5	2I38, 5	0,5
677.5	I,0	I368	0,8	2145	0,6
760	I,0	I387	0,7	2185	0,5
775	I,0	1482	I,3	2200	0,6
784,5	I,0	1491,3	I,4	2211,5	I,0
817	4,0	1500,5	0,5	2327	0,6
820	4,0	I557	0,5	235I	0,5
823	2,0	I563	0,5	2359	0,3
829	0,7	I567	0,6	2406,5	0,4
850	2,0	1631	0,7	2424	0,3
929	0,5	I67I	0,8	245I	0,4
939,5	0,6	1757	0,6	2652,5	0,5
944	0,7	1783	0,9	2877	0,15
949	I,5	I79I,5	0,5	2893,5	0,15
953	0,7	I807,5	0,6	2914	0,14
979	2	1844	0,4	2980	0,18

Мультипольность перехода с энергией 177,59 кэВ можно определить по I_в. Для него экспериментальные отношения I_K: I_{LI,LII}: I_{LIII} =87/6/:100:53/5/ согласуются с теоретическими ^{/12}лишь для E2 -мультипольности /86:100:53/. Предположив, что переход 177,59 кэВ - чистый E2 -переход и имеет $a_{\rm K}$ =0,216 ^{/12/}, вычислили $a_{\rm K}$ для перехода 686,53 кэВ. Полученное значение $a_{\rm K}$ = =0,0125 /9/ согласуется с теоретическим для E2-мультипольности - 0,0119. Этот вывод подтверждается хорошим совпадением экспериментальных отношений I_K: I_L: I_M =100:24,4/17/:6,5/9/

с теоретическими /12/ 100:25.6:5.5 для мультипольности Е2. Связь шкал интенсивностей у -лучей и ЭВК осуществлена по переходу 686,53 кэВ, для которого принято $a_{\kappa}(\mathbb{E}^2) = 0,0119^{7127}$, а интенсивность конверсионных электронов приведена к І К686 =11,9. Погрешности в I_в включают погрешность 3% в I_{К686} и погрешность измерения интенсивности самой конверсионной линии. Выводы о мультипольности остальных переходов сделаны из сравнения экспериментальных КВК с теоретическими /12/ и приведены в табл. 1. Следует заметить, что в тех случаях, когда переходу приписана мультипольность M1. Е2 или M1+ E2 нельзя исключить вероятность того, что в действительности она является смесью E1+M2. За исключением нескольких случаев, оговоренных в табл. 1, мы не указываем эти маловероятные смеси, так как получается слишком большая примесь М2 к Е1. Наши выводы о мультипольности переходов и те, которые получены также в/1,4/, хорошо согласуются между собой. за исключением двух случаев. В работе 14/ переходам 631.82 и 1027.66 кэВ приписана мультипольность соответственно E2 и M1+E2, а в предлагаемой работе их мультипольность определена как М1. В работе /5/, где изучены у -лучи, сопровождающие реакции (p, 2n) и (a,4n), переходу 631, 8 кэВ приписана мультипольность M1+E2.Заметим, что для ряда интенсивных переходов в работе 151 получены мультипольности. совпадаюшие с найденными нами.

Полные интенсивности переходов определены по I_{γ} и теоретическим КВК для чистых мультипольностей /в случае смешанной мультипольности взята мультипольность, указанная для перехода первой/. Погрешность в $I_{\Pi O \Pi H}$, связанная с возможной примесью другой мультипольности, не учитывалась. Приведенные в <u>табл. 1</u> интенсивности I_{γ} , I_{e} и $I_{\Pi O \Pi H}$ и I_{γ} в <u>табл. 2</u> можно выразить в % распадов, если предположить, что основное состояние ²⁰⁸ Ро заселяется лишь γ -переходом 686,53 кэВ, который имеет интенсивность 99,45% на распад /доля α -распада ²⁰⁸At равна 0,55% /1//. Тогда γ -ед. табл. 1,2=0,0979% на распад. Экспериментальные результаты настоящей работы существенно дополняют опубликованные ранее ^{(2,3,4/}. Обнаружено около 190 γ -переходов, сопровождающих распад ²⁰⁸At, причем сведения о 150 переходах получены впервые. Для 52 переходов определена мультипольность, для 33 из них – впервые.

В заключение мы благодарим И.И.Громову, В.М.Горожанкина, Ш.Оманова и М.И.Фоминых за помощь при проведении экспериментов.

ЛИТЕРАТУРА

^{1.} Table of Isotopes, Ed. Lederer C.M., Shirley V.S.; J.Wiley and Sons Inc., New York, 1978.

- 2. Treytl W.J., Hyde E.K., Yamazaki T. Nucl. Phys., 1968, A117, p. 481.
- 3. Вахтель В. и др. Программа и тезисы докладов XXV Совещания по ядерной спектроскопии и структуре атомного ядра, "Наука", Л., 1975, с. 155.
- 4. Rahkonen V., Hattula J. Dept. of Phys., Univ. of Jyväskylä, Ann.Rep., 1978, 3-16, Jyväskylä, 1979.
- 5. Rahkonen V. Dept. of Phys., Univ. of Jyväskylä, Res.Rep., No.10/1980. 6. Чумин В.Г. и др. ОИЯИ, P6-12615, Дубна, 1979.
- 7. Вылов Ц., Осипенко Б.П., Чумин В.Г. ЭЧАЯ, 1978, 9, с. 1350.
- 8. Вылов Ц. и др. ОИЯИ, Р6-9071, Дубна, 1975.
- 9. Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977.
- 10. Вахтель В.М. и др. Тезисы докладов XXXI Совещания по ядерной спектроскопии и структуре атомного ядра, "Наука", Л., 1981, с. 156.
- Вахтель В.М. и др. Тезисы докладов XXXI Совещания по 11. ядерной спектроскопии и структуре атомного ядра, "Наука", Л., 1981, с. 158.
- 12. Банд И.М., Тржасковская М.Б. Таблицы коэффициентов внутренней конверсии у - лучей на К- L-и М - оболочках, 10≤Z ≤ 104. ЛИЯФ, 1978.

Рукопись поступила в издательский отдел 11 марта 1981 года.

10