

Объединенный институт ядерных исследования дубна

2280/2-81

"15-81 P6-80-877

В.М.Вахтель, Н.А.Головков, Р.Б.Иванов, М.А.Михайлова, В.Г.Чумин

СХЕМЫ АЛЬФА-РАСПАДА 210,208,206,204 At И ²¹² Fr

Направлено на XXXI Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд, 1981.

В настоящей работе рассмотрены схемы α -распада нечетнонечетных нуклидов 210,208,206,204 At и ²¹² Fr на основе результатов анализа экспериментальных данных, полученных нами в работе /1/.

МЕТОДИКА АНАЛИЗА АЛЬФА-ПЕРЕХОДОВ

Классификация α -переходов проводилась при помощи предложенного в работах ^{/2,3/} поверхностного спектроскопического фактора α-частицы – W_L/L - орбитальный момент относительного движения α-частицы и дочернего ядра/. Величина фактора W_L определяет вероятность нахождения а частицы в кластерной области ядра. Отметим, что фактор W_L является аналогом приведенной ширины α -распада - $\gamma_L^2 (R_0)^{/4/}$. По величине W_L все α -переходы разделены с учетом эффекта спаривания нуклонов на три типа, называемые соответственно облегченными, полуоблегченными и необлегченными^{/2/}. При облегченном переходе а-частица формируется из спаренных нейтронов и протонов /L =0/. При полуоблегченном переходе формирование а -частицы происходит с разрывом одной пары нуклонов в протонной или нейтронной подсистемах; при необлегченном переходе - с разрывом нейтронной и протонной пар нуклонов. Систематика величин ₩1 и факторов запрета – HF_L рассмотрена в работах $^{/2,5-7/}$. Значения $W_{L=0}$ и $HF_{L=0}$ для облегченных, полуоблегченных и необлегченных *а*-переходов находятся в пределах соответственно: $W_{L=0} = 1 \cdot 10^{-4} - 2.5 \cdot 10^{-5}$ HF_{L=0} ≤ 5 ; $W_{L=0} = 7 \cdot 10^{-6} - 3 \cdot 10^{-5}$, HF_{L=0} ≥ 15 ; $W_{L=0} = 5 \cdot 10^{-7} - 2 \cdot 10^{-6}$, HF_{L=0} ≥ 200 . Факторы запрета заторможенных облегченных перехо-дов находятся в интервале 5-15 /2.5-7/

В настоящей работе значения W_L рассчитывались при помощи метода, изложенного в $^{/8/}$, по следующей формуле $^{/2/}$:

$$W_{L} = \int_{R_{1}}^{R_{2}} |\psi_{L}(R)|^{2} dR.$$
 /1/

Радиальная волновая функция $\psi_L(\mathbf{R})$ в /1/, описывающая относительное движение центра инерции α -частицы и дочернего ядра в подбарьерной области, является решением одночастичного уравнения Шредингера ^{/2/}. При расчетах W_L значения \mathbf{R}_1 и \mathbf{R}_2 в /1/, параметры сферического ядерного потенциала Вудса-Саксона и граничные условия в уравнении Шредингера были такими же, как и в работах ^{/5-7,9/}. Значения энергий α -переходов – \mathbf{Q}_{α} и парциальных периодов полураспада – T взяты согласно экспериментальным данным из нашей работы ^{/1/}.

I

Значения HF $_{L}$ для нечетно-нечетных нуклидов определялись согласно $^{/6,7/}$ из отношения HF $_{L}=W_{L=0}/W_{L}$,где W $_{L}$ рассчитан для $^{\prime\alpha}$ -перехода рассматриваемого нуклида с атомным номером Z, а $^{\prime\alpha}$ есть полусумма значений W $_{L=0}$ для облегченных $^{\prime\alpha}$ -переходов двух соседних четно-четных нуклидов с Z-1. Теоретические значения HF $^{(T)}_{L=0}$ взяты из работы $^{/77}$, где они получены на основе теоретических $^{\prime\alpha}$ -ширин, рассчитанных в сверхтекучей модели ядра.

Как можно видеть из <u>рис. 1-4</u>, где приведены предложенные нами схемы α -распада $\frac{210,208,206}{210,208,206}$ и 212 Fr, энергии уровней ядер висмута и астата, заселяемых α -переходами, не превышают 0,5 МэВ. Основываясь на совокупности результатов экспериментальных и теоретических исследований спектров уровней нечетнонечетных ядер 208 Bi /10/, 206 Bi /11,12/, 210 At /13/ $_{\mu}$ 208 At /14/ можно сделать вывод, что при α -распаде 210,208,206,204 At и 212 Fr в дочерних ядрах будут возбуждаться состояния, главные компоненты волновых функций которых представлены тремя нейтронпротонными мультиплетами: $[p(1h_{9/2})^1 n (2f_{5/2})^1]_{2^+-7^+}$; $[p(1h_{9/2})^1 n (3p_{1/2})^1]_{4^+}, 5^+$; $[p(1h_{9/2})^1 n (3p_{3/2})^1]_{3^+-6^+}$. Появление уровней мультиплетов других конфигураций в рассматриваемых ядрах висмута, астата и франция следует ожидать при энергиях возбуждения более 0,5 МэВ.

Так как при α -переходах протонное оболочечное состояние - $1h_{9/2}$ в указанных мультиплетах не меняется, то можно ожидать, что все α -переходы нуклидов астата и франция с изменением нейтронного оболочечного состояния будут полуоблегченными. Альфа-переходы между уровнями одного мультиплета должны быть облегченными, если $J_i^{\pi} = J_f^{\pi}$, и полуоблегченными, если $J_i^{\pi} \neq J_f^{\pi}$.

СХЕМА АЛЬФА-РАСПАДА 210 At

Предложенная нами схема *а*-распада ²¹⁰ At /<u>рис. 1/</u> отличается от ранее известных ^{/15,16/} тремя новыми уровнями ²⁰⁶ Bi с энергиями 69,6кэВ, 287,8кэВ и 356,1кэВ. Уровень 389,3кэВ^{/15/} исключен из схемы. Поскольку соответствующий а впороход на общесники ^{/1/}

чен из схемы, поскольку соответствующий а переход не обнаружен /1/. Спин основного состояния ²⁰⁶ Ві: $J^{\pi} = 6^+$ определен методом атомного пучка /17/, положительная четность и конфигурация $[p(1h_{9/2})^1 n(2f_{5/2})^1]$ даны по модели оболочек /11,12,17/ В работе /13/ на основе анализа схемы распада изомера ^{210m} At с $J^{\pi} = 15^-$ приписали основному состоянию ²¹⁰ At значения $J^{\pi} = 5^+$ и конфигурацию $[p(1h_{9/2})^1 n(3p_{1/2})^1]$. Предположив такие же характеристики для ²¹⁰ At, авторы /16/ получили хорошее согласие для а переходов теоретических значений $\gamma_L^2(R_0)$ с экспериментальными из работы /15/. С этими результатами согласуется полуоблегченный тип перехода a_0 /рис. 1/.

				s L	* 8.3 4 210 85 ^A [†] 0 ₂ = 5632 x ² = 0,18%
			I or.	HF	
. <u></u>	356,1	{4 *}	0.21	50	
	287.8	(5*)	0,9	30	
	166,4	5*	27.8	4,1	
	1400	7*	4,6	34	
==={	82,9 69,6 59,9	5* 3* 4*	28,4 040 7,2	11 920 56	-
206 Bi 83 ^{Bi} 123	0	6*	30,5	27	
			Рис.	I	

В пределах точности опредеделения энергий уровней ядра ²⁰⁶ Ві – /0,5-3/ кэВ из ΔQ_а можно считать, что а-переходы а₆₀, а₇₀, а₈₃ и а₈₅₆ идут на уровни ²⁰⁶Ві: 59,9 кэВ - 4⁺; 70,8 кэВ - 3+; 82,8 кэВ - 5+ и 352,7 кэВ - /4,3/+, известные из схемы распада ²⁰⁶ Ро→ \rightarrow ²⁰⁶Bi^{/12/}, a переход α_{140} заселяет уровень 140,4 кэв - 7+, который возбуждается при распаде изомера 206m Ві с J^{π} = =10^{-/18/}. Такой же вывод относительно уровней 82.8 ков и 140,4 кэВ сделан в работе /16/. где наблюдали *а-у*-совпадения между *а* -частицами переходов а₈₃ И а₁₄₀ И у-квантами с энергиями 83 и 140 кэВ соответственно.

Переход a_{83} по величине HF =11 следует считать облегченным. Уровню 82,8 кэВ авторы^{/12/} приписали характеристики J[#] =5⁺ по схеме распада ²⁰⁶ Ро \rightarrow ²⁰⁶ Ві. В этом случае из облегченности перехода a_{83} / L =0/ следует, что основное состояние ²¹⁰ Аt имеет характеристики J[#] =5⁺ в согласии с работами^{/13,16/}. Хотя значение J[#] =5⁺ и конфигурацию [p(1h_{9/2})¹ n(3p_{1/2})¹] для ²¹⁰ At нельзя считать строго доказанными, необходимо отметить, что соседние изотоны ²⁰⁸ Ві и ²¹² Fr тоже имеют характеристики J[#] = 5⁺ ^{/10,19/}. Кроме того, расчеты показали^{/10/}, что главным компонентом основного состояния ²⁰⁸ Ві также является конфигурация [p(1h_{9/2})¹ n(3p_{1/2})¹].

Уровень 166,4 кэВ /рис. 1/, очевидно, возбуждается и в реакции $^{204}{\rm Pb}(\alpha, d)^{206} {\rm Bi}^{/207}$, где его энергию определили равной /164+1/кэВ. Этот уровень разряжается α -переходом в основное состояние $^{206}{\rm Bi}$, согласно работе $^{/16/}$, где наблюдали совпадения между α -частицами перехода α_{166} и у -квантами с энергией /167+2/ кэВ. Альфа-переход на этот уровень по величине HF =4,1 является облегченным. Поэтому состоянию 166,4 следует прилисать квантовые характеристики J^{π} =5⁺. Такие же характеристики для этого уровня предложили в работах $^{/15,16/}$.

Существование двух облегченных a-переходов у ²¹⁰ At, из которых один – a_{88} – заметно заторможен, можно объяснить,следуя работам ^{/16,21/}, распределением между уровнями 82,9 кэВ – 5⁺ и 166,4 кэВ – 5⁺ двухчастичного состояния [p(lh_{9/2})¹n(3p_{1/2})¹].

i - J Mari		• • •	• • · ·	· ·. ·		T	аблица I	•
Нуклед	T 1/2	Доля ∝-распада %	£ ∝ ≖∋B	Интенсан- ность « - -группн на 100 «- -респадов	Энергия уровня доч.ядра кэВ	Орб. мо- мент L	- lg W _L	HFL
<u> I </u>	2	3	4	5	6	7	8	9
²¹⁰ At	8,39 /40/	0,I8 (2)	5524,3	30,5(9)	0,0	0	5,14(5)	27(3)
н. 1911 - 51						2	4,92(5)	I6(2)
	• . ·	÷ · · · ·	5465,5	7,2(3)	59,9	0	5,46(5)	56(7)
						2	5,24(5)	33(4)
			5456	0,40(6)	69,6	0	6 ,68(8)	920(170)
-		· · · · · ·				2	6,45(8)	540(IOO)
			5443.0	28,4(15)	82,9	0	4,75(5)	II(I)
[.]			5387	4,6(3)	140,0	0	5,25(6)	34(4)
						2	5,02(6)	20(3)
			5361,1	27,8(20)	166,4	0	4,33(6)	4.I(6)
			5242	0,9(I)	287,8	0	5,19(7)	30(5)
						2	4,96(7)	I8(3)
÷								

. i

						-								
I !	2	!	8	!	4	!	5	!	6	17	1	8	1	9
					5175	(0,21(6)		356,I	0		5,42()	(3)	50(15)
										2		5,19()	(3)	30(9)
212 _{Fr}	20,6(3)		44(5)		6405		22(I)		0,0	0		4,66(0	5)	17(2)
										2		4,44(5)	10(1)
					6383	:	24(I)		23,5	0		4,53(5)	I3(2)
					6342	:	3,0(2)		64,2	0		5,26(5)	70(10)
										2		5,04(5)	4 I(6)
					6335		10(1)		71,3	Ð		4,70(5)	19(3)
										2		4,48(5)	I2(2)
					6262	:	37(5)		147,7	0		3,83('	7)	2,5(4)
					6183	-	1,3(1)		226,3	0		4,94(6	5)	33(5)
										. 2		4,72(5)	20(3)
					6173		I,I(I)		236,5	0		4,96('	7)	35(6)
										2		4,74(7)	21(3)
					6127		1,2(1)		283	0		4,72('	7)	20(3)
		·.			6076	(D,4I(5)		335	0		4,97('	7)	36(6)

Таблица 1 /продолжение/

¢π

1	1 2	! 3	!	4	! 5	6	! 7	1 8	9
	- -			5983	0,07(3)	430	0	5,30(16)	76(28)
²⁰⁸ At I,63(3)4 ^{/26}	^{6/} 0,55(5)	/26/	5641	96,9(3)	0,0	0	4,00(II)	3,0(8)	
				5626	2,I(3)	15,3	0	5,59(13)	I2O(35)
				5586	0,9(1)	56,I	0	5,77(12)	180(50)
							2	5,54(12)	106(30)
¹⁶ At -	3I,O(I5)м ^{/30}	^{)/} 0,70(IC)	5774	0,9(3)	0,0	0	6,06(16)	475(180
			•			2	5,83(16)	280(110	
			5767	2,3(4)	7,I	0	5,62(10)	I70(40)	
							2	5,39(IO)	100(24)
				5734	I,I(3)	40,8	0	5,74(I3)	230(70)
							2	5,52(13)	I35(40)
				5703	95 ,7(5)	72,4	0	3,68(6)	2,0(3)
⁴ At	9,3(2)m	30/ 3,0(I		5953	100		0	3,59(14)	2,2(8)
	В скобках у	казаны по	грепнос		лалних знаказ				
	···· ·································				onomiae onenen	•• 			

Таблица 1 /продолжение/

9

ė

Из отношения факторов запрета $HF_{L=0}(a_{83})/HF_{L=0}(a_{166})=2,7$ следует, что эта конфигурация имеет амплитуды 0,52 и 0,85 в волновых функциях уровней 82,9 кэВ и 166,4 кэВ соответственно, что согласуется с результатами /16,21/ фактор запрета для облегченного *a* -перехода²¹⁰ At в чистоте состояние [p(1h_{9/2})¹n(3p_{1/2})¹] равен [1/HF_{L=0} (a_{83})+1/HF_{L=0} (a_{166})]⁻¹ = 3,0 ± 0,3.

Как видно из табл. 1 и рис. 1, значения HF для переходов а $_0$, $_{60}$, $_{a_{70}}$, $_{a_{140}}$, находятся в пределах от 27 до 920, что, согласно классификации а -переходов в шкале W_L и сделанным выше предположениям, позволяет считать их полуоблегченными. Этот вывод согласуется с предложенной в работах ^{/12,16,18/} интерпретацией основного и возбужденного состояний ²⁰⁶ Ві : 59,9кэВ; 70,8 кэВ и 140,4 кэВ как членов мультиплета - [p(Ih_{9/2}¹n(2f_{5/2})⁴].

Полуоблегченный переход а $_{356}$ с $HF_{L=2}=30$, очевидно, заселяет уровень 352,7 кэв с $J^{\pi} = /4, 3/^+$, известный из схемы распада $_{206}^{206} P_0 / ^{12/}$. Этот уровень авторы $^{/12/}$ интерпретировали как состояние мультиплета [$p(1h_{9/2})^1 n(3p_{3/2})^1$], основываясь на предположении о подобии спектров уровней в нуклидах 208 Bi и 206 Bi. Отметим, что согласно расчетам Вальборна $^{/11/}$, энергии уровней 206 Bi с J^{π} : 5⁺, 4⁺, 6⁺, 3⁺ мультиплета [$p(1h_{9/2})^1 n(3p_{3/2})^1$] составляют: 0,29; 0,36; 0,52; и 0,67 МэВ соответственно.

Авторы/21/ рассчитали значения $\gamma_{L}^{2}(R_{0})$ для *a* -переходов на два уровня ²⁰⁶Bi с J^π =4⁺ и конфигурациями [$p(1h_{9/2})^{1}n(2f_{5/2})^{1}$] и [$p(1h_{9/2})^{1}n(3p_{3/2})^{1}$] соответственно. Отношение факторов запрета для *a*-переходов на эти уровни 4⁺, полученное на основе значений $\gamma_{L=2}^{2}(R_{0})$ из работы ^{/21/}, следует ожидать равным 35/30. Эта величина хорошо согласуется с отношением полученных нами экспериментальных значений HF _{L=2} для переходов *a*₆₀ и *a*₃₅₆ /см. <u>табл. 1</u>/: HF_{L=2}(*a*₆₀)/HF_{L=2}(*a*₃₅₆) =33/30. Поэтому, основываясь на результатах работ ^{/12,21/} и полученном отношении значений HF_{L=2}, состоянию 356,1 кэВ можно приписать характеристики J^π =4⁺ и конфигурацию - [$p(1h_{9/2})^{1}n(3p_{3/2})^{1}$].

Уровню 287,8 кэВ, заселяемому полуоблегченным а-переходом, мы приписали характеристики $J^{\pi} = 5^+$ на основании следующих данных. По энергии возбуждения этот уровень можно отнести к состоянию мультиплета $[p(Ih_{9/2})^1n(3p_{3/2})^1]$. Исходя из предположения о подобии в расщеплении этого мультиплета в ²⁰⁶ Ві и ²⁰⁸ Ві и расчетов Вальборна ^{/11}, следует ожидать в ²⁰⁶ Ві последовательность уровней этого мультиплета /в порядке возрастания энергии/: 5⁺, 4⁺, 3⁺, 6⁺. Если учесть, что энергия мультиплета в ²⁰⁶ Ві с $J^{\pi} = 3^+$ составляет 523,2 кэВ ^{/12}/с $J^{\pi} =$ =4⁺ - 356,1 кэВ, то уровню 287,8 кэВ можно приписать характеристики $J^{\pi} = 5^+$. Согласно Вальборну ^{/11}, энергия этого уровня должна быть 0,29 МэВ. Из отношения факторов запрета HF_{L-0}(a_{83}): : $HF_{L=0}$ (a_{166}) : $HF_{L=0}(a_{288})$ =11:4,1:30 и условия нормировки волновых функций следует, что амплитуда возможной примеси компонента $[p(1h_{9/2})^1 n(3p_{1/2})^1]$ в состоянии 287,8 кэВ не превышает 0,3.

СХЕМА АЛЬФА-РАСПАДА ²¹² Fr

Предложенная нами схема α -распада 212 Fr /<u>рис. 2</u>/включает 9 уровней 208 At, из которых три с энергиями: 71 кэВ, 226 кэВ и 236 кэВ обнаружены впервые.

Основное состояние ²¹² Fr имеет характеристики $J^{\pi}=5^+$, согласно работе ^{/19/}. Нуклид ²⁰⁸ At имеет характеристики $J^{\pi}=6^+$ и конфигурацию $[p(1h_{9/2})^1n(2f_{5/2})^1]$, согласно нашему варианту схемы α -распада ²⁰⁸ At /см. ниже/. С этими данными согласуется полуоблегченный характер перехода α_0 с HF= =17 /рис. 2/.

Переход a_{148} с HF=2,5 является облегченным. Поэтому уровню 147,7 кэВ приписаны характеристики J^{π} =5⁺. Этот уровень разряжается (M1+E2) $\hat{\gamma}$ -переходом 147,7 кэВ на основное состояние 208 At /22/.Согласно расчетам Артамонова и Исакова /14/, результаты которых приведены на <u>рис.</u> 26, состояния с J^{π} =5⁺ в ²⁰⁸ At имеют энергии: 15 кэВ для конфигурации [p(1h_{9/2})¹ n(2f_{5/2})¹], 150 кэВ - для [p(1h_{9/2})¹ n(3p_{1/2})¹] и 240 кэВ для - [p(1h_{9/2})¹ n(3p_{3/2})¹]. Основываясь на этом результате, разумно предположить, что уровню 147,7 кэВ - 5⁺ соответствует конфигурация $[p(1h_{9/2})^1 n(3p_{1/2})^1]$. В этом случае из облегченности перехода a_{148} следует, что главным компонентом основного состояния 212 Fr является конфигурация $[p(1h_{9/2})^1 n(3p_{1/2})^1]$, как и в соседних изотонах 208 Bi и 210 At.

Уровень 23,5 кэВ заселяется заторможенным облегченным α переходом с HF =13 и, следовательно, должен иметь характеристики J^π =5⁺. Этот вывод согласуется с результатами работ ^{/22,23/}, где изучали мультипольности *у*-переходов при распаде ²¹² Fr и схему распада ²⁰⁸ Rn \rightarrow ²⁰⁸ At и показали, что уровень 23,5 кэВ связан с уровнем 147,7 кэВ и основным состоянием ²⁰⁸ At *у*-переходами типа M1. Из сопоставления с теоретическим спектром ²⁰⁸ At ^{/14/} /<u>рис. 2</u>/следует, что главным компонентом уровня 23,5 кэВ - 5⁺ является конфигурация [p(1h_{9/2})¹ n(2f_{5/2})¹].

Облегченный, хотя и заторможенный характер перехода a_{23} можно объяснить распределением силы облегченного а-перехода 212 Fr по уровням 208 At 147,7 кэВ и 23,5 кэВ вследствие смешивания конфигураций [p(1h $_{9/2}$)¹n(3p $_{1/2}$)¹] и [p(1h $_{9/2}$)¹n(2f $_{5/2}$)¹]. На смешивание этих конфигураций указывают и ℓ -запрещенные γ -переходы типа M1 с уровня 147,7 кэВ в основное состояние 208 At и на уровень 23,5 кэВ, обнаруженные в $^{/22'}$. Учитывая, что сила облегченного а-перехода 212 Fr распределена только между переходами a_{23}, a_{148} , можно из отношения $\mathrm{HF}_{\mathrm{L=0}}(a_{23})/\mathrm{HF}_{\mathrm{L=0}}(a_{148}) = 5,2$ сделать вывод, что состояние [p(1h $_{9/2}$)¹n(3p $_{1/2}$)¹] имеет амплитуды 0,40 и 0,92 в волновых функциях уровней 23,5 кэВ и 147,7 кэВ соответственно. Эффективное значение HF для облегченного а-перехода $^{212}\mathrm{Fr}$ в чистое состояние [p(1h $_{9/2}$)¹n(3p $_{1/2}$)¹] составляет 2,1<u>+</u>0,2.

Полуоблегченные переходы a_{64} и a_{71} с HF =70 и HF =19 можно сопоставить с полуоблегченными переходами a_{60} и a_{140} At с HF=56 и HF=34 на уровни 59,9 кэВ - 4⁺ и 140 кэВ - 7⁺ соответственно в ²⁰⁶Bi /<u>рис.</u> 1/ - члены мультиплета [p(1h_{9/2})¹ n(2f_{5/2})¹]. Положение состояний этого мультиплета в рассчитанном спектре ²⁰⁸At /14/ <u>/рис.</u> 26/ согласуется с предположением, что уровни 64 и 71 кэВ имеют характеристики 4⁺ и 7⁺ соответственно. Уровень 64 кэВ связан у-переходами типа M1 с уровнями 23,5 кзВ -5⁺ и 147,7 кэВ - 5⁺ ²⁰⁸At, согласно работам ^{/22,23/}. Уровень 71кзВ разряжается в основное состояние ²⁰⁸At, у-переходом типа M1^{/22/} и не возбуждается при распаде ²⁰⁸Rn, как и уровень 140 кзВ - 7⁺ в ²⁰⁶Bi при распаде ²⁰⁸Rn, как и уровень 140 кзВ - 7⁺ в ²⁰⁶Bi при распаде ²⁰⁸Rn, как и зарактеристики 4⁺ и 7⁺ соответственно и конфигурация [p(1h_{9/2})¹ n(2f_{5/2})¹].

Что касается уровней ²⁰⁸ At с энергиями 226; 236; 283; 335 и 430 кэВ, на которые идут полуоблегченные а-переходы ²¹² Fr, то для них пока трудно сделать выводы о значениях J^{*π*}. Если

9

A 4.1

учесть, что в соседнем с ²⁰⁸ At изотоне ²⁰⁷ Po энергии одноквазичастичных состояний 1/2+ и 3/2+ составляют 68,7 кэВ и 236,6 кэВ /24/ и провести сопоставление с рассчитанным спектром ²⁰⁸ At /рис. 2/, то можно высказать предположение, что большинство из этих уровней представляют состояния мультипле- $\tau a = [p(1h_{0/0})^{1}n(3p_{0/0})^{1}].$

Из сравнения схем а-распада ²¹⁰ At и ²¹² Fr /рис. 1,2/можно видеть, что факторы запрета и спектры уровней изотонов 206 Bi и ²⁰⁸ At имеют сходный характер. Это указывает на общий для нечетно-нечетных ядер механизм формирования спектра низколежащих уровней, отмеченный ранее в /14/.

СХЕМА АЛЬФА-РАСПАДА ²⁰⁸ At

Схема α распада ²⁰⁸ At, показанная на рис. 3, согласуется с предложенной ранее^{/25/} Для расчета значений W₁ ²⁰⁸At взяты значения T_{1/2} =/1,63+0,03/ ч и а =/0,55+0,05/%, рекомендованные в ^{/26/}.

= 5752 = 0.55%

			`		6+	1,63 y
1						208 At 85 At 123
					n 0.	_a = 5752
		·			.∥ ¤	L = 0,55%
		- 	Ior	HF	•	
	56,1	7+	0,9	180		
ſ	15,3	(4)+	2,1	120		4
	. 0	6*	96,9	3,0	1	1
204 Bi 83 ^{Bi} 121			Рис.3	н	1	•

Спин основного состояния 204 Bi – $J^{\pi} = 6^+$ определен методом атомного пучка^{/17/}, четность дана положительная, согласно мо-дели оболочек. В работе^{/27/} предположили, что 208 At имеет харак-теристики $J^{\pi} = 6^+$ или 7^+ и конфигурацию $[p(1h_{9/2})^1 n(2f_{5/2})^1]$ на основании анализа схемы распада 208 At $\rightarrow ^{208}$ Po.

Переход α_0^{208} At по величине HF =3,0 является облегченным. Поэтому 208 At следует приписать характеристики $J^{\pi}=6^+$. Экспериментальное значение HF совпадает с теоретическим HF^(T)= =2,9 /7/. Отсюда следует, что главный компонент волновых функций основных состояний ²⁰⁸ At и ²⁰⁴ Bi совпадает, и амплитуда

его близка к единице. Расчеты спектра уровней ²⁰⁸ At в статье $^{/14/}$ показали, что 208g At должен иметь характеристики J^{π} =6⁺ и главный компонент волновой функции - $[p(1h_{9/2})^1 n(2f_{5/2})^1]$. Учитывая этот результат и выводы работы $^{/27/}$, можно утверждать, что 204g Bi имеет такую же конфигурацию.

Уровень ²⁰⁴Ві с энергией 15 кэВ /рис. 3/ заселяет полуоблегченный а-переход. Этому уровню при изучении схемы распада ²⁰⁴Ро - ²⁰⁴Ві в ^{/28/} приписали характеристики $J^{\pi} = 4^+$ или 5⁺, и значение 4⁺ принято более вероятным. Из сравнения схем уровней ²⁰⁶Ві и ²⁰⁴Ві /рис. 1,3/ можно предположить, что уровень 15 кэВ в ²⁰⁴Ві является аналогом состояния 59,9 кэВ - 4⁺ в ²⁰⁶Ві с конфигурацией [p(1h_{9/2})¹ n(2f_{5/2})¹].

Уровень ²⁰⁴Ві с энергией 56 кэВ, заселяемый полуоблегченным переходом с HF=180, возбуждается и при распаде изомера ^{204m} Ві с J^π=10⁺, согласно работе ^{/18/},где этому уровню приписали характеристики J^π=7⁺ и конфигурацию [p(lh_{9/2})¹n(2f_{5/2})¹]. Уровень 56 кэВ ²⁰⁴Ві, очевидно, является аналогом состояния 140 кэВ с J^π=7⁺ в ²⁰⁶Ві /18,29/

СХЕМА АЛЬФА-РАСПАДА 206 At

Схема a— распада 206 At /рис. 4/ включает три возбужденных состояния 202 Bi с энергиями 72 кэВ, 41 кэВ и 7 кэВ. Ранее авторы ${}^{/30/}$ методом a—у-совпадений обнаружили только один a—переход 206 At на уровень ~68 кэВ в 202 Bi

В работе $^{/31}$, где изучали схему распада 206 At $\rightarrow ^{206}$ Po, приписали основному состоянию 206 At характеристики J^{π} =/5/⁴. Так как спин соседнего изотона 205 Po равен 5/2 $^{/32/}$, то, согласно модели оболочек и по аналогии с 208 At и 204 Bi, можно предположить, что в основном состоянии 206 At имеет конфигурацию

 $[p(1h_{9/2})^{1}n(2f_{5/2})^{1}]$. При *а*-распаде ²⁰⁶ Аt наблюдается только один облегченный переход *а*₇₂, фактор запрета которого HF = =2+0,3, хорошо согласуется с теоретическим значением HF^(T)= =1,9^{/7/}. Поэтому если согласно работе ^{/81/} принять для ²⁰⁶ At характеристики J^π =5⁺, то уровню 72 кэВ в ²⁰² Вi следует приписсать характеристики J^π =5⁺ и конфигурацию [p(1h_)]n(2f_)]

сать характеристики $J^{\pi} = 5^+$ и конфигурацию $[p(1h_{0/2})^1 n (2f_{5/2})^1]$. Спин основного состояния ²⁰² Ві измерен $J^{\pi} = 5^{+/33/2}$. Переход а 0²⁰⁶ Атявляется полуоблегченным с HF = 470. Это свидетельствует о том, что волновые функции основных состояний ²⁰⁶ At и ²⁰² Bi имеют различные главные компоненты, хотя спины их совпадают -5⁺. Согласно модели оболочек, в работе ^{/ 83/}приняли, что основное состояние $2^{\overline{0}2}$ Ві имеет конфигурацию $[p(1h_{9/2})^1 n(2f_{5/2})^1].$ Однако полуоблегченность перехода «0²⁰⁶ At заставляет предположить, что ²⁰²g Bi наиболее вероятно имеет конфигурацию $[p(1h_{9/2})^{1}n(3p_{3/2})^{1}].$ Это предположение основано на том, что соседний с 202 Ві изотон 201 Ръ имеет спин 5/2, что соответствует нейтронному оболочечному состоянию 2f_{5/2}, а первое возбужденное состояние ²⁰¹ Pb с энергией 88,5 кэВ и J=3/2 можно интерпретировать как нейтронно-дырочное возбуждение Зр 3/2 /34/ Следует отметить, что в ²⁰²Ві, в отличие от ²⁰⁶Ві, судя по значениям НF для переходов α_0 и α_{72} /рис. 4/,нет заметного распределения амплитуды конфигурации $[p(1h_{9/2})^1 n(2f_{5/2})^1]$ по уровням с $J^{\pi} = 5+$.

Уровень 7 кэВ в 202 Ві заселяется полуоблегченным *a*-переходом с HF =170. Если учесть, что энергия уровня с J^{*π*} =7⁺ в 208 Ві , 206 Ві , 204 Ві составляет: 651 кэВ $^{/26/}$.140 кэВ и 56кэВ соответственно, а основное состояние 200 Ві имеет характеристики J^{*π*} =7⁺/^{83/}, то, основываясь на этой систематике, уровню 7 кэВ в 202 Ві можно приписать значения J^{*π*} =7⁺ и конфигурацию [p(1h _{9/2})¹ n(2f _{5/2})¹].

Полуоблегченный переход α_{41} с HF =230, очевидно, заселяет уровень 41,2 кэВ, который разряжается в основное состояние 202 Bi y-переходом типа M1 согласно схеме распада 202 Po \rightarrow 202 Bi /^{35/}. Возможные значения J^T для этого уровня есть 4⁺, 5⁺ и 6⁺. Так как при электронном захвате 206,204 Po в дочерних ядрах висмута слабо возбуждаются уровни с J >5 $^{/12,18,28/}$, то наиболее вероятно,что уровень 41,2 кэВ имеет характеристики J^T =4⁺.

СХЕМА АЛЬФА-РАСПАДА 204 At

Единственный известный α -переход ²⁰⁴At с E_{α} =5953 кэВ и HF =2,2+0,8 является облегченным. Теоретическое значение HF^(T) =1,4 для ²⁰⁴At ^{/7/} лучше согласуется с HF =1,5, полученным

при $a(^{204} \text{At}) = 4,5\%$ из работ $^{/36,37'}$. Заметим, однако, что фактор запрета для облегченного a-перехода соседнего изотона 206 Fr рассчитанный на основе экспериментальных данных из $^{/37'}$, равен HF = 1,9+0,1, а соответствующее теоретическое значение $\text{HF}^{(T)} = 1,2^{/7'}$. Согласно систематике значений \mathbb{W}_L и HF $_L$ для облегченных a-переходов $^{/2,5,6'}$, величины $\text{HF}_{L=0}$ с ростом Z в изотонах не увеличиваются. Поэтому представляется разумным полученное нами значение $^{/1}$ доли a-распада 3% для 204 At

Спин ²⁰⁰ Ві определен методом атомного пучка, равным 7⁺, а положительная четность дана по модели оболочек ^{/33/} Чтобы объяснить спин 7, предположили^{/33/}, что основное состояние ²⁰⁰Ві имеет конфигурацию [p(1h_{9/2})¹ n(2f_{5/2})¹]. Измерений спина ²⁰⁴ Аt не проводилось. В работах ^{/38,39/} из анализа схемы раст пада ²⁰⁴ At \rightarrow ²⁰⁴ Po и модели оболочек приписали ²⁰⁴⁸ At характеристики J^π = 5⁺ или 6⁺.

Если облегченный а -переход 204 At заселяет основное состоя-ние 200 Bi, то, очевидно, 204g At имеет характеристики $J^{\pi} = 7^+$ и конфигурацию $[p(1h_{9/2})^{1}n(2f_{5/2})^{1}]$. Однако если учесть расхождение значений НF (эксп.) HF (T) то оно указывает на распределение силы облегченного а перехода ²⁰⁴ At с эффективным фактором запрета HF=1,4 по нескольким состояниям ²⁰⁰ Bi. Поскольку в состоянии с $J^{\pi} = 7^+$ примесь конфигураций других рассматриваемых мультиплетов, кроме $[p(1h_{Q/2})^{1} n(2f_{5/2})^{1}],$ исключается, то можно предположить, что наблюдаемый а -переход $^{204}{
m At}$ заселяет возбужденное состояние с J<7 и спин $^{204}{
m At}$ меньше 7. К тому же выводу пришли в обзоре / 39/ где на основе систематики уровней с J^{π} =5⁺ в нечетно-нечетных изотопах висмута и астата предположили, что спин 204 At равен 5⁺, и облег-ченный α -распад заселяет возбужденное состояние 5⁺ с энергией ~100 кэВ в ²⁰⁰ Ві. Фактор запрета для возможного второго облегченного а-перехода ²⁰⁴ At составляет HF =3 ÷ 5, если принять, что эффективная величина HF близка к теоретическому HF^(T)=1.4.

В заключение мы благодарим проф. С.Г.Кадменского и В.И.Фурмана за полезные обсуждения работы, С.Д.Кургалина - за помощь при расчетах на ЭВМ.

ЛИТЕРАТУРА

- 1. Вахтель В.М. и др. ОИЯИ, Р6-80-840, Дубна, 1980.
- 2. Кадменский С.Г., Фурман В.И. "ЭЧАЯ", Атомиздат, М., 1975; т. 6, вып. 2, с. 469.
- 3. Кадменский С.Г., Фурман В.И. Материалы XIII зимней школы ЛИЯФ, Л., ЛИЯФ, 1978, с. 59.
- 4. Расмуссен Дж. В кн.: Альфа-, бета- и гамма-спектроскопия, под ред. К.Зигбана, Атомиздат, М., 1969, т. 2, с. 137.

- 5. Вахтель В.М., Кадменский С.Г. Тезисы докладов XXVIII совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", М.-Л., 1978, с. 390.
- 6. Громов К.Я. и др. ОИЯИ, Д6-11574, Дубна, 1978, с. 53.
- 7. Чумин В.Г. и др. ОИЯИ, Д6-11574, Дубна, 1978, с. 47.
- Вахтель В.М., Кургалин С.Д., Рапопорт А.М. В сб.: Математическое обеспечение ЭВМ вузов, изд. ВГУ, Воронеж, 1980, с. 60.
- 9. Вахтель В.М. и др. ЯФ, 1978, 28, с. 1241.
- 10. Артамонов С.А., Исаков В.И. Сообщение ЛИЯФ, №420, Л., 1978.
- 11. Wahlborn S. Nucl.Phys., 1957, 3, p. 644.
- 12. Kanbe M., Fujioka M., Hisatake K. J.Phys.Soc.Japan, 1975, 38, p. 928.
- 13. Rahkonen V. et al. Z.Physik, 1978, A284, p. 357.
- 14. Артамонов С.А., Исаков В.И. Изв. АН СССР, сер.физ., 1979, 43, с. 2071.
- 15. Головков Н.А. и др. Изв. АН СССР, сер.физ., 1969, 33, с. 1622.
- 16. Jardine L.J., Shinab-Eldin A.A. Nucl.Phys., 1975, A244, p. 34.
- 17. Johansson C.M., Lindgren J. Nucl.Phys., 1958/1959, 9, p. 44.
- 18. Ракивенко Ю.Н. и др. ЯФ, 1974, 20, с. 617.
- 19. Ekstrom C. et al. Phys. Scripta, 1978, 18, p. 51.
- 20. Daehnick W.W. et al. Phys.Rev., 1977, C15, p. 594.
- 21. Shinab-Eldin A.A., Jardine L.J., Rasmussen J.O. Nucl.Phys., 1975, A244, p. 435.
- 22. Головков Н.А. и др. ОИЯИ, Д6-7094, Дубна, 1973, с. 158.
- 23. Вашарош Л. и др. Изв. АН СССР, сер.физ., 1979, 43, с. 71.
- 24. Jonson B. et al. Nucl.Phys., 1971, A177, p. 81.
- 25. Головков Н.А. и др. ОИЯИ, Р6-4615, Дубна, 1969.
- 26. Lewis M.B. Nucl.Data Sheets, 1971, 5, p. 243.
- 27. Treytł W.J., Hyde E.K., Yamazaki E.K. Nucl.Phys., 1968, A117, p. 481.
- 28. Вахтель В.М. и др. ОИЯИ, Р6-11683, Дубна, 1978.
- 29. Hagemann U. et al. Nucl. Phys., 1972, A197, p. 111.
- 30. Hoff R.W., Asaro F., Perlman I. J.Inorg. Nucl. Chem., 1963, 25, p. 1303.
- 31. Lingeman E.W.A. Phys.Scripta, 1977, 15, p. 205.
- 32. Axensten S., Olsmats C.M. Ark.Fysik, 1961, 19, p. 461.
- 33. Axensten S., Johansson C.M., Lindgren J. Ark.Fysik, 1959, 15, p. 463.
- 34. Richel H. et al. Nucl. Phys., 1978, A303, p. 483.
- 35. Вахтель В.М. и др. Тезисы докладов XXVII совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", М.-Л., 1977, с. 111.

- 36 Latimer R.M., Gordon G.E., Thomas T.D., J.Inorg.Nucl.Chem., 1961, 17, p. 1.
- 37. Hornshoj P. et al. Nucl. Phys., 1974, A230, p. 380.
- 38. Dairiki J.M. UCRL- 20412, 1970.
- 39. Schmorak M.R. Nucl.Data Sheets, 1979, 27, p. 518.
- 40. Lederer C.M. et al. Table of Isotopes, seven edition, New York, 1978.

Рукопись поступила в издательский отдел 30 декабря 1980 года.