

Объединенный институт ядерных исследований дубна

1597/2-81

P6-80-840

30/11-81

В.М.Вахтель, Н.А.Головков, Р.Б.Иванов, М.А.Михайлова, А.Ф.Новгородов, Ю.В.Норсеев, В.Г.Чумин, Ю.В.Юшкевич

АЛЬФА-РАСПАД 210,208,206,204 At И 212 Fr

Направлено на XXXI Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд.

введение

Изучение квантовых характеристик состояний нечетно-нечетных ядер в области дважды магического ядра 208 Pb дает информацию об особенностях нейтрон-протонного взаимодействия в ядре и механизме формирования спектров возбужденных состояний при заполнении протонной (Z=82) и нейтронной (N=126) оболочек. Поэтому представляют интерес исследования спектров уровней нечетно-нечетных ядер нейтронодефицитных изотопов висмута (Z=83) и астата (Z=85).

Альфа-распад нейтронодефицитных нечетно-нечетных изотопов 210-204 At ранее изучали авторы работ $^{/1-9/}$, которые в качестве источников применяли препараты, содержащие смесь изотопов астата с примесями соседних элементов. Сложный характер α -спектров нечетно-нечетных изотопов, небольшие доли α -распада / $\leq 1\%$ / и присутствие в источниках α -радиоактивных примесей существенно затрудняли изучение α -распада изотопов астата. Представлялось интересным провести новое исследование α -распада изотопов астата.

В настоящей работе при помощи а-спектрографа $\pi\sqrt{2}$ проведено исследование а-распада $^{210,208,208,204}{\rm At}$ и $^{212}{\rm Fr}$ с моноизотопными препаратами этих нуклидов.

УСЛОВИЯ ЭКСПЕРИМЕНТА

Изотопы астата и франция образовывались в реакции глубокого расщепления при облучении мишеней из металлического тория или урана в виде пластин на внутреннем протонном пучке / Е_р=660 МэВ/ синхроциклотрона ОИЯИ. Ток пучка составлял ~2 мкА, а продолжи~ тельность облучения варьировалась от 20 мин до 3 ч, в зависимости от периода полураспада изучаемого нуклида.

Выделение астата из мишени с одновременной очисткой и концентрированием его на платиновой фольге проводилось газотермохроматографическим методом после облучения /10,11/. Методика позволяла выделять 60~70% астата от образованного при облучении в мишени. Максимальный уровень радиоактивных примесей в препарате составлял меньше 0,5% от активности астата. Сечение образования астата в реакции глубокого расщепления из тория в 3,5 раза выше, чем из урана /18/. Однако для выделения астата

из ториевой мишени массой 3 г требуется 30-40 мин, а из урановой мишени массой 5 г ~ 10 мин. Так что в зависимости от задачи использовалась ториевая или урановая мишень.

Разделение изотопов астата по массам проводилось на электромагнитном масс-сепараторе^{/13/.}Фольга с препаратом астата помещалась в ампулу из нержавеющей стали, которая вводилась в плазменный ионный источник. Ионы астата, ускоренные до 20 кзВ, внедрялись в алюминиевую фольгу толщиной 18 мкм на коллекторе приемного устройства масс-сепаратора. Разделение изотопов длилось 10-15 мин, эффективность разделения составляла /6+1/%. Примесь соседних масс относительно основной в полученных препаратах астата не превышала 5% по «-излучению.

212Fr был получен при помощи масс-Моноизотопный источник сепаратора из облученной ториевой мишени без предварительного радиохимического выделения и очистки. Ториевая мишень в виде нескольких прутков диаметром 1,5 мм через ~20 мин после конца облучения помещалась в ампулу ионного источника с поверхностной ионизацией /14/. Разделение изотопов франция длилось 10-15мин. Так как эффективность ионизации такого ионного источника экспоненциально уменьшается с ростом потенциала ионизации (V) элемента, то в препаратах франция / V (Er) = 4 эВ/ в заметных количествах могут присутствовать лишь изобары радия / V(Ra) = = 5,3 3В/ и таллия / V(T1) = 3,1 3В/. Однако период полураспа-да 212 Ra равен T_{1/2} = 14 с^{/15/},а величина T_{1/2} (212 T1) хотя и неизвестна, но согласно систематике по крайней мере на порядок меньше Т 4 (²¹² Er)=19,3 мин / 15/. Поэтому к началу разделения изотопов франция в мишени практически отсутствовали нуклиды ²¹² Ra и ²¹²TI. Такая методика, названная "горячий торий", позволяет получать высокоактивные препараты ²¹²Fr. не содержащие примесей соседних изобар.

Изучение а-спектров изотопов астата и франция проводилось на большом магнитном а -спектрографе ОИЯИ /16/Связь с абсолют717/ ной шкалой энергий сделана по a -линии 210 Po, E, = (5304,51±0,07) кэВ. Альфа-частицы регистрировались фотопластинками типа А-2 с эмульсией толщиной 50 мкм. Для выбора оптимальной длительности экспозиций, тока магнита и экспрессного анализа а -спектров применялся спектрометр а-частиц на основе многонитяной пропорциональной камеры /18/8 ряде опытов для улучшения энергетического разрешения измерения проводились с источниками, развернутыми вокруг их вертикальной оси на угол 60°. Дело в том. что апларатурная ширина α - линий на спектрографе для тонких a -источников в основном зависит от их ширины ℓ . Величина ℓ активного слоя моноизотопных источников составляет ~3 мм, что определяется формой спектральных линий масс-сепаратора. При повороте источника в спектрографе вокруг вертикальной оси на 60° вдвое уменьшается эффективная ширина источника без потери

активности. При этом пропорционально уменьшается ширина аппаратурных « -линий и увеличивается амплитуда, поскольку источники тонкие /глубина внедрения атомов в алюминиевую подложку составляет 100 Å/ и увеличение эффективной толщины источника в 2 раза не приводит к заметным энергетическим потерям « -частиц и к увеличению "хвоста".

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

 $\frac{^{210}\text{At}}{^{6}}$. Альфа-распад ^{210}At ранее был изучен в работах $^{1-4/2}$ В а-спектре были идентифицированы а-линии с энергиями E_a = 5524+1,5; 5465,0+1,5; 5442,0+1,5; 5386+1; 5361+1; 5131+2 кэв и относительными интенсивностями I_a = 100; 26+2; 95+6; 14+2; 83+6; 1,2+0,4 соответственно $^{/8/2}$. В работе $^{/4}$ были получены данные об интенсивности a-y-совпадений при распаде ^{210}At /(E_y-E_a) кэв/: /83-5442/; /140-5386/; /106-5361/;/167-5361/кэв.

В настоящей работе впервые проведено исследование *a*-спектра ²¹⁰At с моноизотопным препаратом. ²¹⁰At был получен из ториевой мишени. Длительность облучения составляла от 1 до 2 ч. Измерения *a*-спектров выполнены в трех сериях опытов, в каждом из которых проводилось по две или три экспозиции, длительность каждой 8-10 ч. Пример *a*-спектра ²¹⁰At показан на <u>puc.1</u>. Полученые данные об энергиях и интенсивностях восьми *a*-переходов ²¹⁰At приведены в таблице. Для всех *a*-переходов получены более точные по сравнению с данными предыдущих работ ^{/1-4/} значения интенсивностей и уточнены энергии переходов: 5465,5; 5443,0 и 5387 кэв. В *a*-спектре ²¹⁰At не обнаружено *a*-группы с E_a - 5131 кэв ³. Эта группа в работе ^{/3,/}. очевидно, была ошибоч-

но приписана ²¹⁰At при разложении слабоинтенсивного дублета линий a_0 (²⁰⁷Po)и a_{743} (²¹¹At)

Доля « -распада ²¹⁰Аt определена путем сравнения интенсивности a = линий ²¹⁰At и дочернего 210Ро При расчете и (²¹⁰At) были использованы значения Tig (210Po)-= 138,38 дня, «(²¹⁹Ро)=100% и Tig (210At) = 8,3 ч /15/ 2 10At Доля а-распада получена равной/0.18+ +0,02/%, что согласуется с ее значением, приведенным в работе / 3/.

iyang .	Доля (сас) Х	E (A E () KBB	I et (A Iet) oth.eg.
210 _{At}	0,18 (2)	5524,3(13)*	ICO
		5465,5 (15)	23,6(10)
		5456 (2)	1,3(2)
		5443,0(15)	93 (5)
		5387 (2)	I5,0(IO)
		536I,I(I3)*	9I (5)
		5242 (3)	2,8 (4)
		5175 (4)	0,7 (2)
208 _{A E}		564I (3)	100
		5626 (4)	2,2 (2)
		5586 (2)	0,9 (I)
206 _{A t}	0,70 (14)	5774 (4)	0,9 (3)
		5767 (3)	2,4 (4)
		5734 (3)	I,2 (3)
		5703 (2)*	100
²⁰⁴ At	3 (1)	5953 (3)	100
212 Fr	44 (5)	6405 (3)	93 (5)
		6383 (3)	100
		6342 (3)	I3 (I)
		6335 (3)	43 (4)
		6262 (4) 6183 (3)	IS6 (20)** 5,5 (5)
		6173 (4)	4,6 (5)
		6127 (3)	5.0 (5)
		6076 (3)	I.8 (2)
		5983 (4)	0.3 (1)

Таблица

* Приняты значения энергий и их погрешности, рекомендованные в /17/,

** Интенсивность определена в ^{/25/}из баланса интенсивностей гамма-переходов в ²⁰⁸ At и ²¹² Rn при распаде ²¹² Fr.

 2^{208} At. Наиболее полное исследование a-распада 2^{208} At ранее выполнено в работе^{/5/}. где источник 2^{208} At был получен как дочерний продукт a-распада 2^{12} Fr В этой работе идентифицированы a-переходы 2^{208} At с $E_a = 5641$; 5626; 5586 и 5507 кэВ.

В настоящей работе 208 At был образован при облучении урановой и ториевой мишеней. Измерения а -спектров проведены в двух сериях опытов, состоящих из двух экспозиций по 2 ч. Спектр 208 At показан на рис.2. Полученные нами данные /таблица/ подтверждают существование трех а -переходов ²⁰⁸At, обнаруженных в работе /3. и уточноют значения относительных интенсивностей и энергий этих переходов. Интенсивности других возможных a переходов ²⁰⁸At с энергиями 5.40 < E < 5.80 МэВ не превышают 0,3% на а -распад. Очевидно, поэтому мы не наблюдали а -переход с Е" = 5507 кэВ и интенсивностью 0,2% на *а*-распад ²⁰⁸At. обнаруженный в /3/.

 2^{206} At. Спектр α -частиц 2^{206} At ранее был изучен при помощи магнитного α -спектрографа в работе $6^{/}$, где 2^{206} At приписан α -переход с $E_{\alpha} = /5696+8/$ кэВ и $T_{1/2} = /31,0+1,5/$ мин. Наиболее точное значение энергии α -частиц этой группы $E_{\alpha} = /5703+2/$ кэВ получено в $7^{/}$. В работе $6^{/6}$ были измерены $\alpha - \gamma -$ совпадения при распаде 2^{206} At и показано, что α -частицы с $E_{\alpha} = 5,70$ МэВ совпадают с γ -квантами с энергией 68 кэВ.

В настоящей работе ²⁰⁶At получен как из ториевой, так и из урановой мишеней. Измерение *а*-спектров проведено в энергетическом диапазоне 5,40 \div 6,00 МэВ в 6 сериях спытов, состоящих из 2-3 экспозиций длительностью 0,5 или 1 ч. Кроме ранее известной *а*-группы с $E_a = 5703$ кэВ, обнаружены еще три новые с $E_{a} = 5774$; 5767; 5734 кэВ /<u>рис.3</u>/. Анализ изменения интенсивностей линий в зависимости от времени в *a*-спектрах ²⁰⁶At и ²⁰⁷At / $T_{1/2} = 1,80$ ч/, и ²⁰⁵At / $T_{1/2} = 25$ мин/ позволил приписать новые *a*-линии ²⁰⁶At.

Доля α -распада ²⁰⁸ At определена из сравнения интенсивностей α -линий ²⁰⁸ At и дочернего ²⁰⁶ Po. При расчете доли α (²⁰⁸ At) были использованы значения T_{14} (²⁰⁶ Po)=/8,8+0,1/ дня ¹⁹/

Рис.3

 $\alpha({}^{206}\text{Po}) = /5,2\pm0,4/\% /{}^{20/}$ и Т $_{1/2}$ (${}^{208}\text{At}) = /31,0\pm1,5/$ мин ${}^{/6/}$. Полученное значение $\alpha({}^{206}\text{At}) = /0,70\pm0,14/\%$ несколько меньше известного значения /0,88\pm0,08/\% /{}^{87} или /0,96±0,08/% / ${}^{19/}$ рассчитанного по результатам работы /8/ в предположении, что $\alpha({}^{206}\text{Po}) = 5,45\%$.

 $\frac{2^{04}\text{At}}{10}$. Для получения 2^{04}At применялась урановая мишень. Было проведено три серии опытов из двух или трех экспозиций длительностью 10 и 20 мин. Кроме ранее известной α -группы с \mathbf{E}_{α} = /5953+3/ кэв/6-9/, других α -групп 2^{04}At с интенсивностью более чем 10% от наблюдаемой в диапазоне энергий 5,80-6,10 Мэв не обнаружено /рис.4/.

Доля а-распада 204 At получена равной /3+1/% из сравнения интенсивностей а-групп 204 At и дочернего 204 Po, что в ~1,5 раза меньше известного значения /4,5+1,3/% или /4,4++0,3/% /9/. Для расчета доли $a(^{204}$ At) были взяты значения: T₄ (204 Po) = /3,53+0,03/ ч/21/, $a(^{204}$ Po) = /0,62+0,06/% /20/и T₄ (204 At) = /9,3+0,2/ мин /6/. При расчете доли было учтено накопление дочернего 204 Po в препарате 204 At за 15 мин /между началом разделения на масс-сепараторе и началом измерения а-спектра/.

²¹² Fr. Исследование a-распада ²¹² Fr ранее было выполнено методом a - y -совпадений на спектрометра с полупроводниковыми детекторами в работе ^{/22/}, где были обнаружены aлинии с энергиями $E_a = 6407+3$; 6383+3; 6383+3; 6261+3;6179+3; 6127+3; 6077+5; 5983+5; 5828 кзВ и относительными интенсивностями $I_a = 93+9$; 100; 55+5; 180+18; 9,5+0,4; 4,3+0,9; 1,7+0,9; 0,4+0,2; 0,8+0,5 соответственно. В работе ^{/23/}при помощи магнитного a-спектрографа были уточнены результаты, приведенные в^{/22/}и показано, что a-группы 6338 и 6179 кзВ являются дублетами с разницей энергий менее 10 кзВ. Период полураспада ²¹² Fr был получен равным /20,6+0,3/ мин ^{/23/}. В более поздней работе ^{/9/} a-спектр ²¹² Fr изучали при помощи полупроводникового детектора, однако точность измерений в ^{/22,23/} выше, чем в ^{/9/}

В настоящей работе ставилась задача уточнить интенсивности α -переходов ²¹² Fr и в особенности α -линии с энергией 6262 кэВ. Дело в том, что при электронном захвате ²¹² Fr в источнике накапливается ²¹² Rn / Ty = 22 мин/, энергия α -частиц которого $E_{\alpha} = /6262+3/$ кэВ /207 совпадает с этой α -линией /рис.5/.

Сцелью определения интенсивности этой а-линии ²¹² Fr был проведен ряд экспериментов: а/ измерены а-спектры с максимальным разрешением 2,2 кэВ; б/ для определения накопления в источнике ^{212 Rn} выполнены измерения интенсивности а-линии

6262 кзВ с интервалом в 1 мин и регистрацией а-частиц многонитяной пропорциональной камерой; в/ сделана попытка отделить ²¹² Rn от ²¹² Fr путем нагревания подложки источника. Однако эти опыты не дали положительного результата. Поэтому интенсивность а -перехода с $E_{\alpha} = 6262$ кзВ и доля а -распада ²¹² Fr взяты равными/37±5/% на с -распад и/44±5/% соответственно из нашей работы/²⁴/где они определены из баланса интенсивностей у-переходов между уровнями ²⁰⁸ At и ²¹² Rn при распаде ²¹² Fr. Эти значения хорошо согласуются с результатами работы ²⁵. Отметим, что в работе^{/9/} вклад а -частиц ²¹² Rn в интенсивность а -линии 6262 кзВ, очевидно, не учтен. Значения энергий и интенсивностей, полученные в настоящей работе, для 9 других а -линий ²¹² Fr подтверждают результаты работы ²³/и приведены в таблице.

Детальный анализ характеристик *а*-переходов и схем *а*-распада ^{210,208,206,204 At и ²¹²Fr будут рассмотрены в последующей работе.}

В заключение мы благодарим Л.Вашароша и И.И.Громову за помощь при изготовлении источников.

ЛИТЕРАТУРА

- 1. Hoff R.W. UCRL-2325, 1953.
- 2. Гуэтх Л. и др. ОИЯИ, Р6-4079, Дубна, 1968.
- 3. Головков Н.А. и др. Изв. Ali СССР, сер.физ., 1969, 33, с. 1622.
- Jardine L.J., Shihab-Eldin A.A. Nucl.Phys., 1975, A244, p.34.
- 5. Головков Н.А. и др. ОИЯИ, Р6-4615, Дубна, 1969.
- Hoff R.W., Asaro F., Perlman I. J.Inorg.Nucl.Chem., 1963, 25, p.1303.
- 7. Головков Н.А. и др. ОИЯИ, Д-3893, Дубна, 1968, с.54.
- Latimer R.M., Gordon G.E., Thomas T.D. J.Inorg.Nucl.Chem., 1961, 17, p.1.
- Hornshoj P., Hansen P.G., Jonson B. Nucl. Phys., 1974, A230, p.380.
- 10. Вахтель В.М. и др. Радиохимия, 1976, 18, 6, с.886.
- Вылов Ц. и др. Спектры излучений радиоактивных нуклидов. "ФАН", Ташкент, 1980, с.61.
- 12. Халкин В.А. и др. ОИЯИ, Р6-10725, Дубна, 1977.
- 13. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.
- 14. Beyer G. et al. Nucl.Instr. and Meth., 1971, 96/3, p.437.
- Lederer C.M. et al. Table of Isotopes, 7th edition, John Wiley & Sons, Inc., New York, 1978.
- 16. Головков Н.А. и др. ОИЯИ, Р13-3340, Дубна, 1967.

- 17. Rytz A. Atomic Data and Nucl.Data Tables, 1973, 12, p.479.
- 18. Вахтель В.М., Зинов В.Г., Орманджиев С.И. ОИЯИ, 13-8704, Дубна, 1975.
- 19. Webb M.P. Nucl.Data Sheets, 1979, 26, p.145.
- 20. Головков Н.А. и др. Изв. АН СССР, сер.физ., 1971, 35, с.2272.
- 21. Беляев Б.Н., Калямин А.В., Мурин А.М. ЖЭТФ, 1963, 44, с.10.
- 22. Valli K., Hyde E.K. UCRL-16580, 1966, p.85.
- Головков Н.А. и др. Программа и тезисы докладов XXIII совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", М.-Л., 1973, с.123.
- 24. Головков Н.А. и др. ОИЯИ, Д6-7094, Дубна, 1973, с.158.
- 25. Momyer F.F., Hyde E.K. J.Inorg.Nucl.Chem., 1955, 1,p.274.

Рукопись поступила в издательский отдел 23 декабря 1980 года.