

Объединенный институт ядерных исследований дубна

1204

P6-80-763

9/11/81

Н.А.Бонч-Осмоловская, Нго Фу Ан, С.Бацев

ИССЛЕДОВАНИЕ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ 123,125 J ИЗ РАСПАДА 123,125 Хе

Направлено в "Известия АН СССР, серия физическая".

Распад радиоактивных ядер ¹²³ Хе / Т_{1/о}= 2.08 ч/ и ¹²⁵ Xe /T_{1/9} = 17 ч/ исследовался в работах/1.2 и др.* и /3-6/ и др.*. соответственно. Во всех указанных работах исследования проводились главным образом методами у-спектроскопии и уу-совпадений. В работе^{/6/} измерялись спектры ву-совпадений (¹²⁵Хе).

В конечном итоге были построены достаточно полные схемы распада ^{123, 125} Хе. Так, в $^{2/}$ в схеме распада 123 Хе размещено 103 перехода из 108 наблюдаемых, а в схеме распада 125 Xe в/6/ из 42 переходов неразмещенными остались только 5, суммарная интенсивность которых не более 0,1% на распад ¹²⁵ Xe. Однако, несмотря на сравнительную полноту построения схем распада 123,125 Хе, квантовые характеристики были определены только для нескольких нижних возбужденных состояний ^{123, 125} I, поскольку были известны мультипольности только мягких у-переходов. Некоторая информация о спинах верхних возбужденных состояний 123, 125 T была получена в реакциях (³He, d)^{/7,8/}, однако во многих случаях данные обеих работ противоречили друг другу и, кроме того, даже в случае их согласия, для заключения о четности состояний не хватало знаний мультипольностей у переходов. С целью определения и уточнения квантовых характеристик верхних возбужденных состояний ^{123, 125} I мы предприняли измерения спектров электронов внутренней конверсии /ЭВК/, возникающих при распаде ^{123, 125} Хе, в диапазоне энергий от 110 до 1200 кэВ.

Измерения проводились на eta-спектрометре с ${f Si}({
m Li})$ -детектором, помещенным в однородное магнитное поле /9/. Разрешающая способность спектрометра в наших измерениях составляла в среднем 2,5 кэВ. Получаемая экспериментальная информация обрабатывалась на ЭВМ "Минск-2" /предварительный этап/ и на CDC-6500.

Результаты измерений спектров ЭВК при распаде ¹²⁸Же и ¹²⁵Хе представлены в табл.1 и 2, соответственно. В таблицах приведены не все переходы, возникающие при распаде ^{123, 125} Хе, а только проявившиеся в наших спектрах ЭВК.

Для расчетов коэффициентов внутренней конверсии /КВК/ γ – переходов значения I_{γ} для ¹²³ I использовались из работы /2/, а для ¹²⁵ I – из данных ^{/6/}. Связь шкал I_{γ} и I_{e} для расчетов

Мы не приводим ссылок на более ранние работы по сравнению c/1/ w/8/

Объединенный раститя ядерных роследований БИГЛИОТЕКА

1

Таблица 2

Таблица 1

Данные о гамма-переходах при распаде ¹²³ Хе

Еу(ДЕУ)/2/ кэВ	обол.	^I e(∆I _e)	Ig(a Ig)/2/	$\alpha_i(\alpha_i) \cdot 10^3$	Мульт.	
I48,9(2)	{ K	100,0(34)	(100	320(20)	100	
	{M	5,46(30)	{100	17,5(15)	/ mc	
178,1(2)	1 L	I,70(5)	30,5(15)	17,9(25)) WT	
-	K N	0,365(22)		3,8(7)	[""	
	L K	I,50(5)	(27(4)	(
330,2(2)		0,174(10)	17,5(10)	3,2(6)	MI	
	M	0,039(6)	l	0,70(12)	L	
474,2(2)	К	0,0075(16)	0,21(3)	II ,4(30)	MI , F2	
680,5(2)	к	0,0079(29)	0,41(3)	6,1(23)	MI (52)	
69I,5(3)	к	0,0037(24)	0,23(3)	5,1(32)	MI,62	
718,5(2)	к	0,005(4)	0,35(3)	4,5(35)	MI,E2(EI)	
728,3(2)	к	0,008(6)	0,25(3)	[0(8)	не ЕІ	
782,9(2)	ĸ	0,0082(14)	0,91(9)	2,9(7)	MI,E2	
816,3(3)	к	0,006(5)	0,15(2)	I3(II)	не 51	
870,7(3)	к	0,0072(32)	0,58(7)	4,0(19)	MI(E2)	
899,6(4)	(к	0,0403(23)	5 0(5)	2,6(4)	MT	
	11	0,0072(22)	{5,0(5)	0,45(18)	/T	
909,0(4)	К	0,0021(8)	0,18(2)	3,7(15)	MI	
912,0(4)	к	0,0018(7)	0,17(2)	3,4(13)	MI	
934,9(3)	к	0,0064(16)	0,64(7)	3,2(18)	MI,F2	
964,0(3)	К	0,0066(14)	1,10(10)	I,9(5)	MI,E2	
979,4(3)	К	0,0037(7)	0 ,58(7)	2,0(5)	MI(F2)	
1060,7(4)	к	0,0099(20)	1,60(20)	2,0(5)	MI	
1064,3(4)	к	0,0064(13)	I,35(I5)	I,5(4)	MI,F2	
1093,4(3)	К	0,0217(27)	5,7(5)	1,22(21)	MI,E2	
1113,1(3)	к	0,0113(11)	3,20(30)	I,12(I7)	F2(MI)	
	1					

Данные	o	гамма-переходах	при	распаде	¹²⁵ Xe

-

Еу(а Еу)/6/ кэВ	обол.	I _e (⊿I _e)	/6/ (بواه) لم	a: (ad.) · 10 ² MyJET.
188,418(4)	(K L M	100,0(16) 14,27(20) 3,38(7)	100,0(18)	I2(I) I,70(I3) 4,03(33)
243,378(5)	{ К L М	30,5(5) 5,72(9) I,4I(4)	55,7(11)	6,53 reop. 1,2(1) 0,301(25)
340,22(10)	К	0,007(2)	0,037(4)	2,2(7) E2,MI
372,081(14)	К	0,050(2)	0,317(7)	I,88(17) E2,MI
4 53,796(II)	(K L M	0,807(14) 0,099(3) 0,021(2)	8,68(18)	I,II(9) 0,I36(I2) 0,029(4)
635,824(18)	{к 	0,017(2) 0,0038(11)	{0,430(9)	0,47(7) 0,II(4) {E2(MI)
727,096(23)	к	0,0028(8)	0,102(3)	0,33(II) E2,MI
846,511(18)	{ K L	0,0 4 3(2) 0,0049(I2)	{2,06(7)	0,248(24) 0,028(8) {MI
901,505(32)	{	0,0176(18) 0,0041(12)	{I,074(24)	0,20(4) 0,045(I5) {E2,MI
937,492(23)	ĸ	0,0031(10)	0,280(6)	0,I3(4) E2
1007,431(25)	К	0,0039(13)	0,299(6)	0,16(5) E2,MI
1138,229(26)	К	0,0049(15)	0,556(15)	0,II(4) E2,MI
1180,838(25)	К	0,0098(19)	I,267(26)	0,09(3) E2,MI

КВК в случае ¹²⁵ I осуществлялась в предположении, что *y*-переход 243 кзВ является чистым E2 /3/. В случае ¹²³ I использовалось экспериментальное значение $a_k = 0.32(2)$ для *y*-перехода 148 кзВ, измеренное в работе /2/.

В результате расчетов КВК и сопоставления их с теоретическими значениями /10/ удалось впервые определить мультипольности 18 у-переходов в 123 1 и 9 у-переходов в 125 I. Мультипольности других переходов, а именно: 178 кэВ в 123 I /2 и 188, 372, 453 кэВ в 125 I /3/ совпадают с нашими заключениями /табл.1,2/ Уточнена мультипольность у-перехода 330 кэВ в 123 I. В работе $^{\prime 2/}$ она была определена как М1, Е2. Согласно полученным нами значениям $^{\alpha}$ L,M, она может быть только М1.

СХЕМА РАСПАДА ¹²³Хе И ¹²⁵Хе

На <u>рис.1,2</u> приведены фрагменты схем распада ¹²³ Хе и ¹²⁵ Хе, взятые соответственно из ²²⁷ и ⁶⁶⁷, где участвуют у-переходы с определенными мультипольностями.

Учитывая мультипольности у переходов, а также вероятности β -распада $^{/2.6.'}$, мы попытались установить спины и четности возбужденных состояний 123 и 125 Мы определили, что уровни1011, 1048, 1113, 1242, 1310, 1390, 1864, 1934 кэВ (123) и 1007, 1089, 1180, 1381 кэВ (125) могут иметь спин либо $1/2^+$, либо $3/2^+$. Более однозначный вывод о спинах этих уровней в ряде случаев помогают сделать результаты опытов по ядерным реакциям (3 He,d) $^{7.8}$ Рассмотрим последовательно наши данные и данные реакций для каждого ядра.

Уровни ¹²³ I

Для состояний 1048, 1242, 1864 кэВ в обеих работах $^{7,8/}$ получено значение передаваемого орбитального момента l=0 (I=1/2), а для состояний 1011, 1310 кэВ l=2 (I=3/2, 5/2). Отсюда следует определенный вывод, что спин первой группы уровней - 1/2⁺, а второй - 3/2⁺.

Не нашлось аналога в реакциях уровню 1113 кэВ /рис.1/. Неясно, почему авторы /8/ связали с ним обнаруженное ими состояние 1150 кэВ. Очевидно, что оно относится к уровню 1152 кэВ, наблюдаемому и в работе /7/, а также введенному предположительно/2/ при распаде ¹²³ Хе /энергия 1153 кэВ/.

Также не идентифицировано в реакциях состояние с энергией 1390 кэВ /рис.1/. В^{/7/} приводится состояние с энергией 1368 кэВ, а в ^{/8/} - с энергией 1370 кэВ, но, по-видимому, это другой уровень, поскольку различие в энергиях велико.

В работе $^{7/}$ обнаружено состояние 1928 кэВ, близкое по энергии к возбуждающемуся при распаде 123 Xe 1934 кэВ /рис.1/. Однако, по мнению авторов $^{7/}$, это - дублет $\ell=.0+2$, и, таким образом, трудно сделать однозначный вывод - будет ли спин его 1/2 или 3/2.

На <u>рис.1</u> не приведено известное из распада ¹²³ Хе состояние 2062 кэВ^{/2/}, поскольку из наших экспериментов не следует прямых сведений о его квантовых характеристиках. Гамма-переход 909 кэВ, мультипольность которого мы определили как М1 /табл.1/, разряжает этот уровень на состояние 1153 кэВ / I = = 3/2, 5/2 /7.8 //, четность которого нам не удалось установить. Однако уровень 2062 кэВ весьма интенсивно заселяется при распаде ¹²³ Хе(log ft=5.8), и, вероятнее всего, спин его должен быть 1/2⁺ или 3/2⁺, а спин уровня 1153 кэВ должен быть, следовательно, 3/2⁺. Значение спина 5/2⁺ для уровня 1153 кэВ в этом случае следует исключить, поскольку величина logft = 7.9 /2/ мала для дважды запрещенного β-перехода на него

Уровни ¹²⁵ І

Как указывалось выше, для возбужденных состояний ¹²⁵I 1007. 1089, 1180, 1381, кэВ /рис.2/ мы определили квантовые характеристики как $I^{\pi} = 1/2^+$ или $3/2^+$. К сожалению, в этом случае данные ядерных реакций не позволяют решить эту дилемму. Полученные в /7,8/ сведения о спинах этих уровней весьма противоречивы. Так, в работе /7/ спин уровня 1007 кэВ /энергия 1005 кэВ/ определяется как 1/2, а в работе /8/ /энергия 1010 кэВ/ - как 3/2, 5/2. Уровень 1089 кэВ, по сведениям ^{/7,87} - дублет, но, согласно /7/, этот дублет 1/2 + 11/2 /энергия 1087 кэВ/, а согласно^{/8/}, - /3/2 , 5/2 + 11/2///1090 кэВ/.Спин уровня 1381 кэВ в работе /7/ /энергия 1381 кэВ/ определен также как дублет 1/2 + 3/2, 5/2, а в работе ^{/8/} /1390 кэВ/ приведено значение I = 3/2, 5/2. Для состояния 1180 кэВ не наблюдается в ядерных реакциях уровней с близкой энергией. Возбуждаемые в них состояния 1198 кэв /7/ и 1210 кэв /8/ заметно отличаются по энергии от состояния 1180 кэВ.

Однако результаты опытов по реакциям (8 He,d) позволяют решить вопрос о спине нижнего уровня ${}^{125}I$ 372 кэВ. Ранее из данных по распаду 125 Хе указывалось 6 , что возможные значения спина этого уровня 5/2⁺, 7/2⁺, 9/2⁺. В обеих работах 7,8 /для уровня 372 кэВ получено значение I = 3/2, 5/2. Таким образом, ему можно однозначно приписать спин 5/2⁺.

ЛИТЕРАТУРА

- 1. Gföller D., Schöneberg R., Flammersfeld A. Z.Phys., 1968, 208, p.299.
- Stippler R., Lode D., Schrader H. Z.Phys., 1971, 242, p.121.
- 3. Geiger J.S. Phys.Rev., 1967, 158, No.4, p.1094.
- 4. Ludziejewski J. et al. Acta Phys.Pol., 1969, 36, p.939.
- 5. Ludziejewski J., Klamra W., Kownacki J. Acta Phys.Pol., 1970, B1, p.189.
- 6. Бонч-Осмоловская Н.А. и др. Изв АН СССР, сер.физ., 1980. т.44, №9, с.1861.
- 7. Lien J.R. et al. Nucl. Phys., 1977, A281, p.443.
- 8. Szanto de Toledo A. et al. Phys.Rev., 1977, 15C, p.238.
- 9. Береги Е. и др. ОИЯИ, Р13-6830, Дубна, 1972.
- 10. Hager R.S., Seltzer E.C. Nucl.Data, 1968, A4, p.1.

Рукопись поступила в издательский отдел 26 ноября 1980 года.