

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

3738/2-80

11/8-80

P6-80-346

И.Адам, З.Гонс, М.Гонусек, В.Г.Калинников, В.В.Кузнецов, Т.М.Муминов, Ф.Пражак, Р.Р.Усманов

ИССЛЕДОВАНИЕ РАСПАДА Lu (T = 4,1 мин)

1. ВВЕДЕНИЕ

Изотоп ¹⁶⁸Lu с периодом полураспада Т_{1/2} = 4,1/2/ мин впервые был обнаружен в продуктах ядерных реакций расщепления вольфрама и тантала протонами с энергией 1 ГэВ ^{/1/}. Авторы ^{/1/} исследовали спектры у -излучения ¹⁶³Lu и отнесли к его распаду 37 гамма-переходов. Исходя из систематики основных состояний изотопов иттербия и характера бета-распада основному состоянию ¹⁶³Yb авторами работы ^{/2/} приписаны квантовые характеристики 3/2 7/521/. Возбужденные состояния ¹⁶³Yb исследовались Рихтером и др.^{/3/} в реакциях с тяжелыми ионами ¹⁵²Sm(¹⁸O, 7nye⁻)¹⁶³Yb и ¹⁵⁴Sm (¹⁶O, 7nye⁻) ¹⁶³Yb методами е⁻e⁻ и е⁻ у-совпадений. Авторами работы ^{/3/} обнаружены уровни ротационной полосы основного состояния 3/2⁻/521/ вплоть до J^π = 29/2⁻, полосы 5/2⁻ /523/ вплоть до J^π = 45/2⁻ и состояния сильносмешанной полосы положительной четности с головным уровнем 9/2⁺.Энергия уровня 9/2⁺ ими не была установлена.

Нами исследованы спектры у-лучей, электронов внутренней конверсии /ЗВК/, уу- и еу-совпадений, измерено время жизни уровня ¹⁸⁸Үb с энергией 53,9 кэВ.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

2.1. Приготовление радиоактивных источников

Радиоактивные источники ¹⁸³ Lu / T $_{1/2}$ = 4,1 мин/ получались методом непосредственного разделения продуктов ядерных реакций расшепления тантала протонами с энергией 660 МэВ ^{/4/}. Танталовая фольга толщиной 50÷100 мкм и весом ~0,5 г облучалась на выведенном пучке протонов синхроциклотрона ОИЯИ / J _p ...0,1 мкА/ в течение 5÷10 мин. После облучения мишень транспортировалась ори помощи пневмопочты к электромагнитному масс-сепаратору ^{/5/} и загружалась в ионный источник масс-сепаратора ^{/6/}. При нагреве трубчатого ионного источника происходила поверхностная ионизация продуктов ядерных реакций, и шло разделение ионов редко-земельных элементов по массам в сепараторе.

Радиоактивные ионы изобары А=163 внедрялись в танталовые фольги толщиной 5 мкм на коллекторе масс-сепаратора. Для обогащения радиоактивных источников изотопом ¹⁶³ Lu использовал-

Рис. 1. Слектр у -лучей С. измеренный при помощи спектрометра с Ge(Li) - детектором, V = 0.5 см³.

ся метод "горячего коллектора", основанный на термической десорбции редкоземельных элементов 77 , имплантируемых в нагретый до 1400°С коллектор. Измерения спектров у-лучей и уу совпадений начинались через 5 минут после окончания облучения мишеней, а спектров ЭВК и еу-совпадений - спустя 10 мин.

2.2. Измерения спектров у-лучей и ЭВК

Спектры у-излучения ¹⁶³ Lu исследовались при помощи спектрометров с Ge(Li) -детекторами с чувствительным объемом 0,5 и 41 см ³ и разрешающей способностью 0,8 кэВ при $E_{\gamma} =$ = 122 кэВ ⁵⁷Со и 2,9 кэВ при $E_{\gamma} = 1332$ кэВ ⁶⁰Со соответственно. Накопление спектров производилось в памяти многоканального амплитудного анализатора АИ-4096, находящегося на линии с ЭВМ HP-2116С измерительного центра Лаборатории ядерных проблем 0ИЯИ. Полученные спектры обрабатывались на ЭВМ по программе ⁷⁸⁷, в которой используется подгонка гаусовой функции

к экспериментальным точкам по методу наименьших квадратов. Энергия у-переходов определялась при одновременном измерении спектров у-лучей ¹⁶⁸Lu и калибровочных источников ¹³⁸Ba и ¹⁵²Eu. Кривые эффективности получены при регистрации у-излучения детекторами с точностью не хуже 8%. В спектрах у-излучения обнаружено и отнесено к распаду ¹⁶³Lu 69 у-переходов. Помимо этого в спектрах наблюдались у-лучи дочерних изотопов ¹⁶³Yb / T y_4 = 11,4 мин/ ^{2/}, ¹⁶³Tm / T y_4 = = 104 мин/ ^{/9/} и соседних изобар, присутствующих в источниках

Таблица 1

Значения энергии и относительных интенсивностей у-лучей при распаде ¹⁶³Lu

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) 3) 3) 3) 3) 6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) 3) 3) 6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) (3) (6) (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) 6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6) 5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21
$II8,79(4)^{(a)}$ $II(2) - 553,I7(9)$ $2I(2)$ 326	3)
	5)
I50,72(4) 35(3) 45,0(50) 562,50(9) I0(I) 160	3)
152,89(16) 6(1) - 564,63(18) 5,0(7) 16	3)
I63,08(3) I00(7) I00,0(I00) 567,02(36) 6,0(6) II	2)
167,23(5) 19(2) 22,0(30) 586,08(11) 6,0(6) -	
206,41(13) 6(1) 8,2(20) 615,28(27) 2,2(6)	
221,18(3) 22(2) 18,0(40) 620,68(11) 9,0(9)	
$227,57(20)^{a}$ 4(1) - 624,01(20) 3,1(7)	
239,71(8) 24(2) - 633,55(11) 7(2) 14	4)
244,06(II) 6,0(6) 6,2(I5) 643,89(6) I4(I) I86	3)
252,98(09) 5,0(6) 7,1(15) 682,06(21) 4,3(9) -	
285,37(17) ^{a)} 1,5(5) - 717,55(21) 3,9(8) -	
302,86(4) 20(1) 28(4) 748,79(10) 8,0(9) -	
313,46(16) 21(2) 24(3) 870,98(24) 5(1) 234	4)
317,43(4) IO(I) II(3) 952,39(27) 4,0(9) -	
334,26(19) 2,5(5) - 981,24(19) 10(1) -	
338, 38(29) I, 6(5) - II30, 17(12) ⁸ IO(2)	
357,51(36) 4,0(6) - 1374,18(20) 7(4)	
371,96(4) 40(2) 62(10) 1397,28(19) 8(3)	
380,46(22) 4,0(8) - 1404,39(30) 5(1)	
382, 12(14) 7,0(9) - 1460,00(19) ⁸⁾ 6(1)	
391,17(7) II(I) 20(3) 1526,02(14) I2(I)	
396,70(4) 41(2) 63(7)	
400,43(7) I3(I) I6(2)	
441,25(8) 6,0(7) -	

<u>Примечание</u>. ^{а)} у-переходы, интенсивность у-лучей которых спадала с $T_{45} \approx 10$ мин.

Относительные интенсивности ЗВК переходов, сопровождающих распад ¹⁶³ Lu

Таблица 2

Еу, кәВ	<u>,,,,</u>	I _е , отн.ед.	Мультипольность
19,9	Ee	75	
53,91	Liz	245	MI+ ≤ 0,4%E2
	Lin	9	
	ΣM	70	
58,18	ΣM	104	MI
	ΣM	37	
79,27	К	26	MI
93,42	к	28	MI
94,28	K	50	MI
96,63	К	IO	F.2
98,19	K	16	MI
II8,79	K	9	E2
I50,74	K	27	МІ
152,89	к	5	MI
163,14	К	I4	E2(EI)
167,23	К	7	F2(EI)

Примечание. Погрешности в определении относительных интенсивностей ЭВК составляют 20% для сильных ($I_e \ge 10$) и достигают ~50% для слабых ($I_e \le 10$) по интенсивности электронов.

как примесь /<0,5%/. На рис. 1 и 2 показаны спектры у~лучей, а в табл.1 приведены результаты их анализа.

Спектры ЭВК исследовались при помощи безжелезного бетаспектрометра с тороидальным магнитным полем ^{/10}. На рис. 3 приведен участок одного из измеренных спектров низкоэнергетических электронов. Результаты анализа спектров ЭВК приведены в табл.2. В этой же таблице приведены выводы о мультипольности у-переходов ¹⁶³Lu, полученные на основе сравнения экспери-

Рис.3. Участок спектра ЭВК ^{163}Lu , измеренный с экспозицией на каждой точке $\Delta t = 0,5$ с. Внизу ~ вторая серия измерений, полученная через 10 мин после начала измерения первой серии.

ментальных отношений L_I+L_{II}/L_{III} /для перехода 53,9 кэ8/ и J_k/J_y, J_L/J_y /для остальных переходов/ с соответствующими теоретическими значениями ^{/11/}. Для связи шкал относительных интенсивностей ЗВК и у-лучей использовано значение коэффициента внутренней конверсии для перехода 53,9 кэВ с мультипольностью M1+< 0,4% E2.

2.3. Исследования спектров еу- и уу-совпадений

Измерения спектров еу-совпадений проводились на установке '12', созданной на базе безжелезного бета-спектрометра с тороидальным магнитным полем и спектрометра с Ge(Li) -детектором. Измерены совпадения у-лучей с ЭВК: L53,9; К93,4 и К94,3 ¹⁶⁸Lu. В качестве примера на <u>рис.4</u> приведены спектр у-лучей и спектр (L53,9-у)-совпадений.

Спектры уу-совпадений измерялись в режиме трехмерного анализа на установке $^{/18/}$ с использованием двух Ge(Li) -детекторов. На <u>рис.5</u> в качестве примера показан слектр (у163-у) совпадений, полученный при сортировке многомерного спектра.

 168 Lu /рис.6/. В спектре электронов, измеренном на магнитно-линзовом бета-спектрометре (Δ H ρ /H ρ = 5%), L53,9 168 Lu полностью не отделялись от K104,3 163 Tm /на вставке

163_{Vb}

рис.6 приведен участок спектра ЭВК изобары A = 163, полученный при разрешении $\Delta H \rho / H \rho \approx 0.8\%$ на бета-спектрометре с тороидальным магнитным полем/. В связи с этим в измеренном временном распределении нами наблюдены два компонента: одии с $T_{12} \approx 0.50/5/\cdot 10^{-9}$ с, обусловленный временем жизни уровня 104,3 кэВ 163 Er. другой с $T_{12} \approx 3.6/4/\cdot 10^{-9}$ с, определяющий время жизни уровня 53,9 кэВ 163 Yb. Значение времени жизни изни для уровня 104,3 кэВ 168 Er хорошо согласуется с определения нами наме $T_{12} \approx 0.52/5/\cdot 10^{-9}$ с.

3. СХЕМА РАСПАДА

На <u>рис.7</u> приведена схема распада ¹⁶⁸ Lu → ¹⁶⁸ Yb, построенная нами на основе анализа спектров у-лучей, ЭВК, еу- и уу совпадений. Справа приведены нижние состояния ротационных полос, наблюденных в реакциях ^{/8/}.

Уровень с энергией 53,9 кэ8 наблюден ранее в ядерных реакциях и идентифицирован авторами работы ^{/2/} как одночастичное состояние 5/2⁻/523/.

Уровни с энергиями 58,2 и 221,2 кэв введены на основе наблюдения совпадений L53,9-y163,1 /ослабл./ и L53,9-y167,2 и существования у-перехода 221,2 кэв. Анализ этих совпадений указывает на то, что должен существовать у-переход с энергией 4,3 кэв с интенсивностью I полн. = 75/20/ относительных единиц.

Уровень с энергией 372,0 кэВ. Результаты наблюдения совпадений (L53,9- γ 150, γ 313 /ослаблены за счет ветвления/); (L58,2 - γ 150,7) и (γ 163,1 - γ 150,7), а также наблюдения γ -перехода 372,0 кэВ указывают на то, что существует этот уровень.

Уровень с энергией 436,0 кэВ введен на основе наблюдения (L53,9 – y382,1) –совпадений. Вследствие анализа спектров (К93,4 – y) –совпадений и (y244,1 – y163,1, y167,2) –совпадений введен уровень с энергией 465,2 кэВ, а уровень 474,2 кэВ – на основе совпадений (y102,3 – y150,7, y163,1, y372,0 кэВ), а также (y253,0 – y163,1 кэВ).

Уровень с энергией 499,3 кэВ введен вследствие наблюдения прямого перехода 499,3 кэВ и подкрепления его ослабленными Таблица 3

Результаты анализа спектров еу-совпадений при распаде ¹⁸³Lu

Е перея. (Е _{ур.}) кеВ	Еу совп. кэВ	C. xIOO(AC)	^I е∦(∆І _ө ∦) эксп.	I _e γ(ΔI _e γ) pecq.
I	2	3	4	5
53,9	150,7	46(4)	16,1(15)	19(2)
(53,9)	152,9	25(8)	I,5(5)	2,6(6)
	163,1	39(2)	*	-
	167,2	102(9)	I9(3)	I9(2)
	244,0	38(6)	2,3(4)	3,2(3)
	253,0	35(6)	I,6(4)	2,7(4)
	302,9	48(6)	9,6(12)	I2(2)
	313,5	41(5)	8,6(II)	8,4(8)
	317,4	64(II)	6,4(10)	5,4(6)
	357,5	+	+	-
	382,I	II5(25)	8(2)	7.0(9)
	391,2	73(15)	8(2)	_
	396,7	+	+	-
	400,4	57(II)	7.4(14)	-
	441.3	≤ 64	€3,8	2,4(3)
	453,6	+	+	-
	456,9	≤ 27	≤ I,6	-
	46I.I	42.8	3.4(6)	_
	484.4	89(15)	I5(3)	17(2)
	525,0	+	+	
	564,6	+	+	_
	567.0	+	+	-
	633,6	+	+	-
58,2	150,7	+	+	-
(58,2)	163,1	+	+	-
93,4	150,7	100(13)	35(5)	35(3)
(465,25)	152,9	≤ 125	€7,5	6(I)
	163,I	50(4)	50(8)	54(6)
	167,2	52(15)	IO(3)	IO(2)
	313,5	+	+	~*
	372.0	+	+	-

× 1

Таблица 3 /продолжение/

I	2	3	4	5
94,3	I18,8	+	+	-
(712,6)	I50,7	I6(2)	5,6(5)	-
	152,9	100(17)	6,0(15)	6(1)
	206,4	23(6)	I,4(4)	
	244,I	40(9)	2,4(6)	
	317,4	29(7)	2,9(8)	
	564,6	92(3I)	4,7(17)	5,0(7)

Примечание. Знаком "+" обозначены наблюдаемые совпадения. количественная оценка которых не проведена из-за малой статистики.

По значениям $\alpha \frac{c_X}{3KCIL} = \frac{Se_Y}{S_Y}$ определены полная относитель-ная интенсивность у-перехода с энергией 4,3 кэВ, I полн. = = 75/20/ отн.ед.

совпадениями L53,9 с у441,2 кэВ. Совпадения (L53,9 - у484,4, у317,4 /осл. /), (у163,1 - у317,4) и прямой переход позволяют ввести уровень с энергией 538, 5 кэВ.

Уровень 578,7 кэВ вводится нами на основе наблюдения совпадений (L53.9 - у525.0), (у206.4 - у150.7, у163.1, у372.0). Результаты наблюдения совпадений (К93,4 - y152,9) и (L53,9 - y564,7) позволяют ввести уровень 618,5 кэВ, а (у163,1 - у302,9 /осл./, y453,6) и (y150.7 - y302.9) - уровень 674.8 кэ8.

Уровни с энергией 712,8; 768,7; 854,7 и 938,9 кэВ введены в схеме распада на основе баланса энергий /на рис.7 переходы отмечены пунктиром/ и наблюдения совпадений с у-лучами только одного перехода. Таким образом, при распаде ¹⁶³Lu нами наблюдено, кроме введенного в работе /2/ уровня с энергией 53,9 кэВ, 5/2 5/2^{-/}523/, еще 15 возбужденных состояний ¹⁸³ Yb. Экстрем и др. /16/ измерили спин основного состояния 165 Lu и согласно /17/ предложили его квантовые характеристики / 1/2+/411/. Авторы /17/показали, что орбитали 7/2⁺/404/, 1/2⁺/411/ и 5/2⁺/402/ являются нижайшими протонными состояниями в ядре 185 Lu. Следует ожидать, что для ¹⁶³Lu нижайшими состояниями должны быть те же орбитали, хотя трудно предсказать, какое из ожидаемых состояний должно быть основным для 168 Lu. Однако тот факт, что нам не удалось при бета-распаде 168 Lu обнаружить состояния 7/2^{-/}523/ и 5/2^{-/}521/ ¹⁶⁸ Уb. наблюденные в ядерных реакциях, говорит в пользу квантовых характеристик 1/2 4/411/ основного состояния ¹⁶⁸ Lu. Анализ полученных значений α_{w} И ВЫВОДЫ О МУЛЬТИПОЛЬНОСТЯХ У ПЕРЕХОДОВ ПОЗВОЛЯЮТ ЛИШЬ СДЕ-

10

Результаты	анализа	спектров уутсовладений распаде ¹⁸⁸ Lu	при
Eyr	Era	Iyy(\$ Iyy)	Iyy(DIyy)
Еур.) кәВ	көВ	əkcu.	расч.
I63,I	102,3	4,4(12)	5,9(17)
(221,2)	150,7	35(3)	35(3)
	206,4	4,2(12)	3,2(6)
	244,I	7,2(18)	6,0(6)
	253,0	4,0(16)	5,0(6)
	302,9	13,1(23)	10,8(6)
	313,5	5,7(22)	II(I)
	317,4	5,5(25)	IO(I)
	453,6	II,6(32)	10,0(8)
	562,5	5,6(3)	
	633,6	13,8(42)	7(2)
167.2	150.7	7,2(19)	6,7(6)
(221,2)	244 I	3,4(14)	I,2(II)
	302,9	4,9(16)	3,8(2)
221.2	150,7	II,2(I8)	7,7(4)
(221,2)	302,9	5,2(18)	4,4(3)
150,7	102,3	1,8(9)	3,9(II)
(372.0)	163,I	28,1(27)	35(3)
(0.2)07	167,2	7,7(16)	6,7(7)
	206,4	3,0(IO)	2, I(4)
	221,2	9,3(14)	7,7(8)
	302,9	6,7(18)	7,0(4)
313,5	102.3	6,8(32)	4,2(3)
(372,0)	206,4	9,8(29)	2,4(4)
	302,9	34,4(56)	8,0(4)
	396.7	14,9(4)	16,4(8)

лать заключение об отрицательной четности состояний ¹⁶³ Yb с энергиями 58,1; 221,2; 371,3; 465,2 и 618,5 кэВ.

В спектре ЭВК /рис. 3/ наблюдены электроны с $E_e = 9,4$ кэВ, приписанные нами к ¹⁶⁸ Lu. Эти электроны можно идентифицировать как L, 19,9 (М1) или К 70,7 (М2). Значение энергии и мультипольность у-перехода 19,9 ков позволяют сделать предположение о возможном возбуждении при бета-распаде ¹⁶³ Lu

<u>Рис.6</u>. Временные распределения (у ~ L53,9) совпадений. Внизу - участок спектра ЗВК изобары A=163, вверху справа - фрагмент схемы распада ¹⁶³Lu.

<u>Рис.7.</u> Схема распада 163 Гл. – 183 ур

С другой стороны, при исследовании совпадений у-лучей с электронами /E = 9,4 кзВ/ мы не наблюдали заметных по интенсивности у -лучей с E >100 кзВ в спектре совпадений. Это можно, по-видимому, объяснить тем, что существует изомерный уровень с $T_{\frac{K}{2}} \ge$ 20,5.10 - 6 с, разря-

жаемый переходом 70,7 кэВ (M2).Данное состояние, вероятно, является головным уровнем 9/2⁺ аномальной полосы положительной четности, образованной сильным кориолисовым смешиванием подоболочки 113/2, аналогично состояниям, наблюдаемым в соседних нечетно-нейтронных ядрах.

В заключение авторы приносят искреннюю благодарность проф. К.Я.Громову за дискуссию и ценные замечания при написании статьи.

ЛИТЕРАТУРА

- 1. Алхазов Г.Д. и др. ОИЯИ, Еб-12505, Дубна, 1979.
- 2. Gromov K.Ya. et al. Nucl. Phys., 1975, A254, p.63.
- 3. Richter L. et al. Phys.Lett., 1977, 71B, p.74.
- 4. Latuszynski A. et al. JINR, E6-7780, Dubna, 1974.

- 5. Музиоль Г., Райко В.И., Тыррофф Х. ОКЯИ, Р6-4487, Дубна, 1969.
- 6. Beyer S. et al. Nucl.Instr. and Meth., 1971, 96, p.437.
- Beyer G.-J., Novgorodov A.F., Khaikin V.A. Radiokhimija, 1978, XX, p.589.
- 8. Андерт К. и др. ОИЯИ, Р6-8564, Дубна, 1974.
- Strusny H. et al. Jahresbericht ZfK-Rossendorf, ZfK-283, 1974, p.37.
- 10. Гасиор М. и др. ОИЯИ, Р6-7094, Дубна, 1973.
- 11. Hager R.S., Seltzer E.C. Nucl.Data, 1968, A4, p.1.
- 12. Кузнецов В.В. и др. ОИЯИ, Р13-12810, Дубна, 1979.
- 13. Тонусек М. и др. ОИЯИ, Р13-12422, Дубна, 1979.
- 14. Аликов Б.А. и др. ОИЯИ, Р13-10911, Дубна, 1977.
- 15. Andreitsceff W. et al. Nucl. Phys., 1974, A220, p.438.
- 16. Ekstrom C. et al. Phys.Scr., 1974, 10, p.301.
- 17. Ekstrom C. Phys.Scr., 1976, 13, p.217.

Рукопись поступила в издательский отдел 13 мая 1980 года.