

Объединенный институт ядерных исследований дубна

3737 2-

New Y

11/8-80

P6-80-247

А.А.Абдуразаков, Ц.Вылов, К.Я.Громов, Т.А.Исламов, А.Караходжаев, В.В.Кузнецов, Н.А.Лебедев, Нгуен Конг Чанг, Ш.Оманов

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ 153 ТЬ

Направлено в "Известия АН СССР" /сер. физ./

1. ВВЕДЕНИЕ

В работе ^{/1/} нами опубликованы сведения по изучению спектров у -лучей, электронов внутренней конверсии /ЭВК/ и еу -совпадений при распаде ¹⁵⁸Dy. Полученные экспериментальные данные позволяют уточнить и дополнить схему распада ¹⁵⁸Dy. При построении и анализе схемы распада ¹⁵⁸Dy мы использовали также сведения о распаде ¹⁵⁸Dy/2.8/ и результаты исследований реакций (α , 2 ny) и (α , 4 ny) ^{/4/}. Настоящая работа является продолжением работы ^{/1/}.

2. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Из работы $^{/1'}$ / табл.2/ видно, что схемные козффициенты, полученные из анализа спектров 0 у-совпадений, указывают на то, что размещение у-переходов 194,019; 262,597; 274,673; 410,66; 482,59; 491,15; 614,229; 781,87; 1023,994; 1034,60 и 1379,54 кэЕ в схеме другое, чем показано в работе $^{/3'}$. Гамма-переход с энергией 194,02 кэВ непосредственно совпадат с ЭВК К80,7. На основе этого мы вводим в схему распада 153 Dy новый уровень с энергией 274,70 кэВ. Этот уровень разряжается у-переходатми 11,90; 61,044 (M1+E2); 127,126 (E1); 194,019 (E1) и 174,67 кэВ. Мультипольности у-переходов позволили установить, что спин и четность уровня 274,70 кэВ равны 5/2⁻.

Как показал анализ спектра еу-совпадений с ЭВК К99.7. фотопик у 274,67 кзВ сложный и размещается не только между уровнями 537,35 и 262,85 кзВ ^{/8/}.а также и в другом месте схемы ¹⁵³Dy. Ввиду отсутствия относительно сильных по инраспада тенсивности У-переходов, которые могли бы разрядить возможный промежуточный уровень с энергией "Х"кэВ, предполагаем, что у274,67 кэВ размещается в трех местах схемы распада 158Dv. Во-первых, между уровнями 537,35 и 262,85 кэВ. Долю интенсивности /18/2/ ед./ у 274,67 кэВ, разряжающего уровень 537,35 кэВ. мы определили путем анализа величины схемного коэффициента /а = 0,34/3// для заселяющих уровень 537,35 кэВ у -переходов с энергиями 420, 827, 1254, 1375 и 1583 кэВ. Во втором случае у-переход 274,67 кэВ совпадает по месту размещения с ЭВК К99.7 через промежуточный уровень "Х" кэВ. Уровень "Х" кэВ разряжается только одним у-переходом с энергией в несколько кав на уровень 262.85 ков. Долю интенсивности у-перехода

65 Tb 88

Рис.1в

274,67 кэВ, совпадающего с ЭВК К99,7 через промежуточный уровень "Х" кэВ, определяем путем анализа e_{γ} -совпадений равной 18/4/ ед. Третьим местом размещения у 274,67 кэВ является расположение его между уровнями 274,70 и основным состоянием¹⁵³ Тb. Интенсивность последнего перехода /28/5/ ед./ находим как остаток интенсивности, полученной при вычитании из общей интенсивности у 274,67 кэВ интенсивностей переых двух переходов.

Гамма-переход с энергией 262,597 кэВ в работах $^{/2,3/}$ разжещен между уровнями 800,0 и 537,35 кэВ. Схемный коэффициент / a = 0,21/2// для у -перехода 262,597 кэВ при совпадениях с ЭВК К99,7 меньше, чем коэффициент для у-переходов, приходящих на уровень 537,35 кэВ / $\bar{a} = 0,34/3//.$ В настоящей работе γ -переход 262,597 кэВ размещен между уровнями 537,35 и 274,70 кзВ. Мы считаем, что совпадение у262,597 кэВ с ЭВК К99,7 происходит через переход с энергией 11,90 кэВ. В табл.1^{/1/} приводится полная интенсивность этого перехода /1_{полн.}= 7,5/7//, найденная из анализа спектров еу-совпадений.

Анализ спектра e_{γ} -совпадений показал, что переход 1024,0 кэВ непосредственно совпадает с γ -переходом 80,72 кэВ. На основе этого мы вводим в схему распада ¹⁵³Ду уровень с энергией 1104,6 кэВ. Этот уровень разряжается γ -переходами 364,10; 378,0 (E2);379,30; 473,50; 532,97 (E1); 863,88 (E1)и 1024,0 (E1)кэВ. Мультипольности γ -переходов поэволяют приписать этому уровню спин и четность или 7/2⁻, или 9/2⁻.

В табл.1 и на рис.1а-г приведены уровни ¹⁵³ Tb. возбуждающиеся при распаде ¹⁵³ Dy. Там же приводятся спины /в том числе спины, определенные в работе ^{/3/} /, характеристик: одночастичных состояний, интенсивности заселения уровней ¹⁵³ Tb в процентах на распад ¹⁵³ Dy и величины lg ft. Обозначение "еу" в примечании к таблице означает, что этот уровень введен впервые или подтвержден анализом спектров еу-совпадений.

3. СХЕМА РАСПАДА

Из 504 наблюденных у-переходов в схеме распада ¹⁵⁸ Dy, включающей 55 возбужденных состояний ¹⁵³ Tb, размещается 319 у-переходов. Суммарная интенсивность неразмещенных переходов составляет 27% от числа распадов ¹⁶⁸ Dy. Спины основных состояний ¹⁵³ Tb /5/2 ⁺/и ¹⁵⁸ Dy /7/2 ⁻/ определены в работах ^{/5,6}. По модели оболочек нечетный протон ¹⁶⁸ Tb и нечетный нейтрон ¹⁵³ Dy находятся на подоболочках ^{2d} _{5/2} и ^{2f} _{7/2} соответственно.

Согласно работе ⁷⁷ позитронный распад ¹⁵³ Dy в основное состояние ¹⁵⁸ Tb мало вероятен /<0,2%/. Отсюда за 100% распадов принимаем суммарную интенсивность у-переходов, заселяю-,

Таблица_1						
Схема у	ровней ¹	⁵³ Tb, возбуж,	дающихся при	распаде	¹⁵³ Dy	•
Е(Δ Е)ур кэВ	12	_I ≉ /3/	2K[N n _≇ ∧]	(C+B+)•/•	igft	Приме- чание
I	2	3	4	5	6	7
0	$5/2^{+}$	5/2+	5 /402/	-	-	
80.723(20)	7/2+	7/2+	7 /404/	<7	>7.0	
147,560(20)	$(3/2)^+$	3/2(5/2,7/2)+	3 /411/	I,7(9)	7.7	
163,187(20)	II/2	II/2	_	-	_	
213,748(20)	7/2	7/2	-	3,75(33)	7,3	
218,629(20)	5/2+	5/2(7/2)+	-	0,5	8.2	
240,517(20)	(5/2)+	5/2(7/2)+	3 /4II/	I,85(33)	7,6	еĬ
254,232(20)	7/2+	7/2+	5 /402/	2,48(25)	7,5	еĬ
262,846(20)	9/2-	9/2-	-	29(4)	6,4	
274,70(4)	5/2	-	-	3,83(30)	7,3	e∦
324,977(20)	9/2+	7/2+	7 /404/		-	e∦
371,55(20)	9/2*	(5/2,7/2)+	-	1,06(10)	7,8	e∦
389,567(20)	(7/2)+	5/2(7/2)+	3 /4II/	2,26(16)	7,4	e∦
444,739(20)	9/2*	9/2+	5 /402/	I,I3(II)	7,7	e∦
5I0,35(IO)	7/2,9/2+	(7/2,9/2)+	-	1,97(19)	7,4	еĬ
529,41(5)	$II/2^+$	9/2(5/2.7/2)+	7 /404/	0,7	7,9	eĬ
537,35(10)	5/2	5/2(7/2)	-	3,2(5)	7,2	eĬ
543,20(10)	7/2,9/2+	(5/2,7/2)+	-	0,91	7,8	
571,92(10)	9/2+	"+"	3 /4II/	, 	-	eľ
597,35(10)	9/2,11/2	- 9/2-	-	-	-	e∦
630, 52(IO)	$11/2^{+}$	"+ "	5 /402/	0,7	7,8	e∦
651,72(10)	(7/2)+	-	-	-	~	
660,13(5)	9/2*	3/2(5/2,7/2)+	-	-	-	
694,95(5)	9/2	-	-	0,4	7,7	e
722,30(10)	7/2,9/2+	-	-	0,3	8,2	eĬ
725,52(10)	9/2-	9/2-	β -вибр.	5,10(23)	6,9	ej
726,64(10)	5/2	5/2(7/2,9/2)+	β -вио р.	0,8	7,6	e≱
740,56(6)	9/2+	"+"	-	2,88(I9)	7,1	eĬ
773,18(10)	7/2-	-	-	I,57(I3)	7,4	
790,00(10)	7/2,9/2+	(7/2,9/2)+	-	0,3	8,2	e≯
800,00(15)	5/2+	5/2(7/2)***	3 / 4II/+ Q (20) _	-	
807,50(I0)	7/2,9/2	9/2-	-	2,56(17)	7,I	eĬ
957,04(10)	7/2-	(5/2,7/2)	-	0,3	8,0	eĬ
959,90(IO)	7/2-	"+"	-	I,33(IO)	7,4	

I	2	3	4	5	6.	7
	0/2-			1 21/17)		
1002,00(10)	3/4 T/0.0/07	-	-		7,6	e
1104,60(10)	1/2,9/2	-	-	1,95(12)	7,0	e
1130,70(5)	5/2,7/2,9/2	"+"	-	I,42(9)	7,2	e∦
1151,50(10)	II/2	"+"	-	0,5	7,6	e∦
1226,40(10)	7/2,9/2+	-	-	0,7	7,4	
1240,10(15)	7/2,9/2+		-	I,II(9)	7,2	
1341,50(20)	7/2	"+"	-	0,3	7,6	
1364,80(10)	7/2,9/2	(7/2,9/2)	-	2 ,94(I9)	6,6	e∦
1429,34(5)	7/2	(7/2,9/2)	-	2,30(16)	6,6	e∦
1762,10(15)	7/2,9/2	-	-	I,68(II)	6,I	e∦
1779,20(10)	7/2,9/2	-	-	I,85(I3)	6,I	
1791,30(20)	5/2,7/2	-	-	3,29(19)	5,8	e∦
1822,60(20)	(5/2)	-	-	2,03(I3)	6,0	
1825,00(20)	5/2	-		I,58(II)	6,2	e∦
1835,80(10)	-	-	-	0,9	6,4	
1853,10(10)	9/2-	-	-	1,31(13)	6,2	e∦
1912,50(5)	9/2-		-	5,38(3I)	5,6	e∦
1940,00(16)	7/2,9/2	-	-	0,8	6,4	
2011,30(20)	7/2	-	-	0,7	6,5	e≯
2023,90(10)	-	· _	-	<i>υ</i> ,9	6,4	
2120,00(20)	-	-	-	0,9	6,4	e≯
2120 ,80(10)	-	-	-	0,7	6,5	e≯

Таблица 1 /продолжение/

щих основное состояние ¹⁵³ Tb: 773/42/ ед. /в ед. табл.1 ^{/1/}/. При расчете значений lgft принималось, что $T_{\frac{1}{12}} = \frac{1}{6,29/10} \sqrt{4^{6/3}}$ и $Q_{R^+} = 2171/2/$ кэВ ^{/7/}.

На основании анализа соотношений интенсивностей L-линий ЭВК ^{/8/} мы провели анализ величин S -постоянной ротационных полос. Значения этой величины, рассчитанные по формуле^{/9/}

$$S^{2} = 8.76 \cdot 10^{-7} \frac{(E(I \to I - 1))^{2}}{\delta^{2}(I - 1)(I + 1)} \left(\frac{\pi A. MAPH}{\sigma \cdot \delta}\right)^{2},$$

для полос 5/2⁺ /402/, 7/2⁺ /404/, и 3/2⁺/411/ приведены в табл.2.

Квазиротационная полоса основного состояния $5/2^+/402/$. Уровни квазиротационной полосы $5/2^+/402/$ известны до I = 15/2 из данных исследования ядерных реакций (a, 2ny) и (a, 4ny)⁷⁴. В настоящей работе при распаде ¹⁵⁸Dy мы наблюдаем уровни этой полосы: 254,232 /7/2⁺/, 444,739/9/2⁺/ и 630,52/11/2⁺/ кэВ.

Таблица 2

0 ہم							
Уровень		Энергия перехода	Парамето смешивания	9x-9R 23MASH.			
E(I),P	сэB	I	I→I - 1	5 ² /8/	Q0 e.5		
254,2	232	7/2	254,3	0,II9 <u>+</u> 0,024	0,206 <u>+</u> 0,021		
444,7	739	9/2	I 9 0,5	0,07 <u>+</u> 0,03	0,155 ± 0,032		
324,9	977	9/2	244,2	0,319 <u>+</u> 0,061	0,092 ± 0,009		
529,4	I	II/2	204,4	0,35 <u>+</u> 0,I0	0,060 <u>+</u> 0,008		
240,5	17	5/2	93, 0	0,032 ± 0,005	0,212 <u>+</u> 0,016		
389,5	i67	7/2	149,0	0,05I <u>+</u> 0,0I2	0,184 <u>+</u> 0,022		

Параметр $|\mathbf{S}| = |\frac{\mathbf{B}_{K} - \mathbf{B}_{R}}{\mathbf{G}_{0}}|$ для вращательных полос ¹⁵³ Tb.

Как видно из табл.2, анализировать величину [8] невозможно из-за большой ошибки в [8] для состояния 444,739 кзВ.

Квазиротационная полоса 7/2 [†]/404/. Уровни квазиротационной полосы 7/2 [†]/404/ известны до I = 27/2 из данных изучения ядерных реакций (a, 2ny) и (a, 4ny)^{/4}. В настоящей работе при распаде ¹⁵³ Dy мы наблюдаем уровни этой полосы: 80,723/7/2[†]/, 324,977/9/2⁺/ и 529,41/11/2⁺/ кэВ. Величины |S| для уровней 324,977 и 529,41 кэВ различны. Это, по-видимому, объясняется тем, что в рассматµлваемых состояниях проявляется вклад других состояний. Теоретические расчеты^{/10/} по неадиабатической модели показали, что уровни 324,977/9/2⁺/ и 529,411/1/2⁺/ кэВ имеют следующую конфигурацию: 7/2/404/–49%, 5/2/413/–5,9%, 5/2/402/–43%, 1/2/411/–1,7% и 7/2/404/–45,8%, 5/2/413/–11%, 5/2/402/–41,6% соответственно.

Ротационная полоса $3/2^+/411/$. Эта полоса была интерпретирована в работе ⁷²⁷.В настоящей работе при распаде ¹⁵³ Dy наблюдаются уровни этой полосы: 147,560/3/2⁺/, 240,517 /5/2⁺/, 389,567/7/2⁺/ и 572,92/9/2⁺/ кэВ. Эти уровни также наблюдены в ядерных реакциях (a,2ny) и (a,4ny) ^{4/}. Анализ величины [S] /табл.2/ для уровней 240,517 и 389,567 кэВ показывает, что волновая функция этих состояний не содержит заметной примеси других состояний. Теоретические расчеты ^{/10/}по неадиабатической модели дали для уровней 240,51//5/2⁺/ и 389,567/7/2⁺/ следующую конфигурацию: 5/2/402/-7,2%, 3/2/411/-84%, 1/2/420/-6,3%, 1/2/411/-1,9% и 7/2/404/-5,5%, 5/2/413/-1,1%, 5/2/402/-8,6%, 3/2/411/-79%, 1/2/420/-4,6% соответственно. В более тяжелом изотопе ¹⁵⁵ Tb,в частности для уровня 155,79 кэВ ^{/11}/полосы 3/2⁺/411/, рассчитанная нами величина |S| равна 0,185/5/. Это значение совпадает с величиной |S| в ¹⁵⁹ Tb. Совпадение значений величин |S| в двух соседних изотопэх ¹⁵⁸ Tb и ¹⁵⁵ Tb указывает на то, что полосы $3/2^{+}/411/$ в этих двух ядрах имеют одинакотае свойства.

Бета-вибрационное состояние с положительной четностью. Уровень с энергией 800,0 кэВ разряжается γ -переходами 525,53; 559,63 (M1+E2+E0) и 581,57 кэВ на уровни 274,70/5/2⁻⁷, 240,517/5/2⁺⁷ и 218,629/5/2⁺⁷ кэВ. Наличие E0 -компоненты в γ -переходе 559,63 кэВ указывает на то, что уровень 800,0 кэВ, по-видимому, имеет бета-вибрационный характер. В более тяжелом изотопе ¹⁵⁵ Tb бета-вибрационный характер. В более тяжелом изотопе ¹⁵⁵ Tb бета-вибрационные состояние 3/2⁺⁷/411/+Q(20) наблюдалось при энергии 760,0 кэВ⁻¹¹. Не исключено, что уровень 800,0/5/2⁺⁷ кэВ является членом бета-вибрационной полосы 3/2⁺⁷/411/ + Q(20).

<u>Низколежащие уровни с отрицательной четностью</u> образуют "ираст"-полосу состояний $h_{11/2}$ ⁷¹⁰⁷. Кориолисово взаимодействие нечетного протона с остовом приводит к опусканию уровня с I=j, и происходит инверсия последовательности спинов 11/2⁻⁻, 7/2⁻⁻, 9/2⁻, 5/2⁻⁻/см. табл.1/, которая также наблюдается в соседних изотонах ¹⁵¹ Eu 7127, ¹⁵⁵ Ho /13.14[/]. Исследования ^{/4/} ядерных реакций (a, $2n\gamma$) и (a, $4n\gamma$) привели к обнаружению в ядре ¹⁵⁸ Tb несвязанной полосы, основанной на подоболочке $h_{11/2}$. Энергетическая структура этой полосы аналогична структуре квазиротационной полосы основного состояния четно-четного ядра

 $^{152}_{64} {\rm Gd}_{88}^{/15,16/}$. Появление квазиротационных полос с $\Delta \tilde{I}=2$ можно интерпретировать как релизацию "выстроечной" схемы связи, вве-

Бета-вибрационное состояние с отрицательной четностью. Уровень с энергией 725,52/9/2/ кэВ разряжается у -переходами 128,24 (M1):400,8(E1):450,80; 462,63 (M1+E2+E0); 471,35 (E1); 512,0 (E2) и 562,25 (M1+E2)кэВ на уровни 597,35 /9/2⁻, 11/2⁻, 324,98 /9/2⁺/, 274,70/5/2⁻/, 262,85/9/2⁻/, 254,24/7/2⁺/, 213,75/7/2⁻/ и 163,19/11/2⁻/ кэВ. Присутствие Е0 -компоненты в у-переходе 462,63 кэВ указывает на то, что этот уровень, возможно, является бета-вибрационным состоянием.

В заключение авторы выражают глубокую благодарность Ю.Юшкевичу за приготовление радиоактивных препаратов.

ЛИТЕРАТУРА

- 1. Абдуразаков А.А. и др. ОЧЯИ, Р6-80-146, Дубна, 1980.
- 2. Зубер К. и др. ОИЯИ, Р6-8669, Дубна, 1975.
- 3. Devous M.D., Sugihara T.T. Phys.Rev., 1977, C15, p.740.
- 4. Winter G. et al. Nucl.Phys., 1978, A299, p.285.
- 5. Rosen A. et al. Nucl. Phys., 1970, A154, p.526.
- Adelroth K.E., Nyqvist H., Rosen A. Phys.Scr., 1970, vol.2, p.96.
- 7. Громова И.И. и др. ОИЯИ, Р6-10863, Дубна, 1977.
- 8. Аликов Б.А. и др. Изв. АН СССР, сег.физ., 1977, 41, с.1098.
- Э. Джелепов Б.С., Драницына Г.Ф., Михайлов В.М. Свойства деформированных ядер с К=1/2. "Наука", Л., 1971, с.165.
- 10. Аликов Б.А. и др. ОИЯИ, Р6-10861, Дубна, 1977.
- 11. Абдуразаков А.А. и др. ОИЯИ, Р6-12733. Дубна, 1979.
- Leigh J.R. et al. J.Phys.G: Nucl.Phys., 1977, vol.3, No.4, p.519.
- 13. Foin C. et al. Nucl. Phys., 1979, A234, p.182.
- 14. Будзяк А. и др. ОИЯИ, Р6-12849, Дубна, 1979.
- 15. Sakai M. Nucl.Data Table, 1972, A10, p.511.
- 16. Дэнау Ф., Райнхардт Х. ЭЧАЯ, 1979, т.10, вып.6, с.1191.
- 17. Stephens F.S. et al. Phys.Rev.Lett., 1972, vol.29, p.438.

Рукопись поступила в издательский отдел 26 марта 1980 года.