2714/2-80

Объединенный институт ядерных исследований дубна

23/12-80

P6-80-163

М.Будзынски, Е.П.Григорьев, К.Я.Громов, О.И.Кочетов, Г.Лизурей, Х.Незгода, А.И.Муминов, М.Суботович, Т.Хазратов, Ю.В.Юшкевич

УГЛОВЫЕ КОРРЕЛЯЦИИ у-ЛУЧЕЙ В ¹⁶⁶Ег

Направлено в "Известия АН СССР, серия физическая"

1. ВВЕДЕНИЕ

Схема возбужденных уровней ¹⁶⁶Ег в области энергий до 2.5 МэВ хорошо изучена в результате исследований как распада 186 Tm и 186 Ho, так и ядерных реакций /1-5/. В работе /2/ измерены коэффициенты внутренней конверсии /КВК/ переходов, разряжающих уровни 2133,0 и 2160,3 кэВ ¹⁶⁶Er. определены их мультипольности и выполнен анализ приведенных вероятностей М1. и Е2 -переходов. Оказалось, что эти переходы не подчиняются правилам Алаги. Интенсивности у-лучей, разряжающих уровни 2133,0 и 2160,3 кэВ, в основном объяснены на основе предположения, что их волновые функции содержат компоненты с К = 2 и К = 3. Углубленный анализ возможен после уточнения мультипольного состава этих у -переходов. Использованный метод у-у угловых корреляций позволяет уточнить мультипольности, которые оценены ранее на основе применения коэффициентов внутренней конверсии /3/. Для измерений функций у-у угловых корреляций использовалась установка, содержащая один Ge(Li) и два NaJ(TI) -детектора /6/.

2. ПРИГОТОВЛЕНИЕ ИСТОЧНИКОВ

В ходе исследований использовались источники 166 Yb / T $_{14}$ = 57,5 ч/ \rightarrow 166 Tm / T $_{12}$ = 7,7 ч/, удобные вследств е ного периода полураспада материнского изотопа 166 Yb. При радиоактивном распаде 166 Yb возникает один интенсивный у-переход с энергией 82 кэВ, который не дает вклада в измеряемые спектры совпадений.

Источники были получены в реакции глубокого расщепления тантала протонами с энергией 660 МэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. После хроматографического разделения редкоземельных элементов фракция иттербия разделялась на электромагнитном масс-сепараторе. Алюминиевая фольга с внедренным радиоактивным источником ¹⁸⁶ Yb растворялась в 0.1N растворе HCl в воде. Источник в жидком состоянии помещался в плексигласовую ампулу размером 6 4х8 мм.

3. ИЗМЕРЕНИЯ у-у УГЛОВЫХ КОРРЕЛЯЦИЙ

Проводились измерения угловых корреляций различных у-лучей с у-лучами переходов в ротационной полосе основного состоя-

1

ния с энергией 81 кэВ $(2^+ \rightarrow 0^+)$ и 184 кэВ $(4^+ \rightarrow 2^+)$."Окна" в обоих сцинтилляционных трактах последовательно устанавливались на одинаковых энергетических интервалах, соответствующих *у*-перетходам с энергией 81 и 184 кэВ, а также на соседних участках комптоновского распределения /<u>рис.1</u>/. Совпадения /<u>рис.1</u> и 2/ регистрировались Ge(Li) -детектором. Угловое положение сцинтилляционных детекторов / $\theta = 90^\circ$, 135° и 180°/ менялось цикличестким образом с временем экспозиции 200 с. При вычислении для всех каскадов коэффициентов A_{kk} функции угловой корреляции учитывались случайные совпадения и совпадения с импульсами

Рис.2. Одиночный спектр и спектры совпадений с у -лучами 81 и 184 кэВ для у-лучей в области энергий 1600-2100 кэВ.

от комптоновского распределения других у -переходов. Вводились поправки, обусловленные смещением источника от геометрического центра и конечными телесными углами Ge(Li)-и NaJ(Tl) детекторов. Результаты измерений /со всеми введенными поправками/ приведены в табл.1.

При анализе измеренных значений коэффициентов функции угловых корреляций с использованием метода Арнса-Виденбека мы исходили из схемы уровней ¹⁶⁶ Ег, предложенной в ^{/8/}, и принимали, что у-переходы с энергией 81 кэВ (2⁺ \rightarrow 0⁺) и 184 кэВ (4⁺ \rightarrow 2⁺) являются "чистыми" Е2-переходами /рис.3/.

На основании результатов анализа коэффициентов A_{22} каскадов 594 – /184/ – 81; 672 – /705/ – 81 и 681 – /184/ – 81 кэВ определен мультипольный состав переходов 594, 672 и 691 кэВ /табл.2/.

Таблица 1

Экспериментальные значения коэффициентов угловых корреляций в ¹⁶⁶ Er

Каскад /кэВ/	$I_i - I - (I') - I_f$	A22(AA 22)	$A_{44}(\Delta A_{44})$
705-81	2+-2+-0+	-0,064 (6)	-0,30 (5)
779-81	3+-2+-0+	-0,II2 (8)	-0,009 (27)
2052-81	3+-2+-0+	-0,080 (15)	-0,02 (3)
2080-81	3+-2+-0+	-0,059 (25)	-0,02 (5)
2092-81	3*-2*-0*	+0,00 (4)	-0,03 (9)
I653-I84	3-4+-2+	-0,100 (14)	0,000 (23)
1868-184	3+-4+-2+	-0,207 (7)	-0,107 (15)
1895-184	3+-4+-2+	-0,266(12)	-0,127 (22)
594-(184)-81	3+-4+-2+-0+	-0,008 (II)	-0,03I (20)
672-(705)-8I	22+-2+-0+	+0,009 (II)	-0,03I (20)
691-(184)-81	4+-4+-2+-0+	-0,021 (12)	+0,031 (20)
758-(672)-(705)-81	2-,3-2-2+-2+-0+	-0,023 (26)	-0,132 (50)
810-(184)-81	5+-4+-2+-0+	-0,12 (3)	+0,02 (6)
1653-(184)-81	34+-2+-0+	-0,012 (31)	+0,009 (60)
1868-(184)-81	3+-4+-2+-0+	-0,188 (12)	-0,173 (21)
1895-(184)-81	3+-4+-2+-0+	-0,26 (3)	-0,14 (7)
the second s			

Таблица 2 Смеси мультипольностей у-переходов в ¹⁸⁶Ег

Ey		ыультипольность	8	
(кэВ	из ЮВК /3/	из Х-Х(0)	Настоящая работа	Другие
594	<u>E2</u>	99,97% H2 + (0.03 +0.11)% MI	-57,7 + 00	-9 +3 19 /4/
672	EI	EI + < 0.01% M2	<-0.0I	
691	E2	93,2% E2 + (6,8 ± I,4)% MI	-3,7 ± 0,5	-10 +27 /4/ -3,3+3.0 /5/
705	E2	99,8% E2 + (0,20±0,08)% MI	-22 + 13	-2I /I/ -I9 +38 /5/
758	MI	MI + ≤32% E2		
779	E2	98,6% E2 + (0,4 ± 0,2)% MI	-8,4 ± 0,7	10 -13±0 /4/
810	e2,Mí	E2 +≤0,35% MI	≤ -I7	-30 /1/ -20+4 /4/ -37 ⁺¹⁰ /5/
I653	• EI	EI + <0,1% M2	<-0,03	
1868	E2 + ≤13% MI	92,4% E2 + (7,6 +0.1)% MI	-3,49 +0,04 -0.01	
1895	E2 + ≤ 8% MI	87,4% E2 + (12,6 <u>+</u> 0,3)% MI	-2,59 <u>+</u> 0,01	
2052	E2 + (20 <u>+</u> I0)%MI	97,5% E2 + (2,5 +0,5)% MI	-7,0 + 0,I - 0.5	
2080	E2 + (10 ⁺³⁰)%MI	96,4% E2 + (3,6 +3,4)% MI	-5,2 + 1,5	
2092	e2, mi	93% E2 + (7 + 2,9)% MI	-3,65 +1,9 -0.7	

Каскад 705 - 81 кэв связывает у-вибрационное состояние $I^{\pi} = 2^{+}$ с энергией 786 кэв и основное состояние $I^{\pi} = 0^{+/3/}$. Анализ коэффициентов функции угловой корреляции этого каскада приводит к мультипольности для перехода с энергией 705 кэв типа $E2+(0,20 \pm 0,08)$ МІ. Малая примесь компонента М1 характерна для разрядки у-вибрационных уровней. На <u>рис.4</u> показан график Арнса-Виденбека для гамма-переходов 779, 2052 и 2030 кэВ.

Переходы каскада 810 - /184/ - 81 связывают возбужденные состояния с энергиями 1075, 265 и 81 кэВ с основным состоянием. На основании значения A_2 перехода 810 кэВ /рис.5/, разряжающего уровень с $I^{\pi}=5^+$ у-вибрационной полосы, определена его мультипольность как E2 с возможной примесью компонента M1 до 0,35%.

<u>Рис.6</u>. График Арнса-Виденбека для каскадов 1653-184, 1868-184 и 1895-184 кэВ.

На <u>рис.6</u> показана зависимость A_2 от параметра смеси Q для переходов 1653, 1868 и 1895 кэВ. Мультипольные составы этих *у*-переходов, определенные на основе двойных каскадов /<u>рис.6</u>/ и тройных, с ненаблюдаемым переходом, хорошо согласуются между собой. Средние значения Q для всех исследуемых *у*-переходов приведены в табл.2.

4. ОБСУЖДЕНИЕ

Результаты измерений позволяют определить экспериментальное отношение приведенных вероятностей E2-переходов с уровней 2133 и 2160 кэВ на уровни ротационной полосы основного состояния как

B(E2; 3-4)		$I_{\gamma}(3-4)$	Г	$E_{\gamma} (3-2)_{1}^{5}$	Q(3-4)	
B(E2; 3 -2)	-	$I_{y}(3-2)$	L	$E_{\gamma}(3-4)$	Q(3-2)	,

где E_{γ} , I_{γ} , Q обозначают энергии, интенсивности и доли E2 в смеси соответствующих у-переходов. Используя значения энергии и интенсивностей у-переходов, определенных в работе $^{/3/}$, получаем следующие значения этих соотношений:

B(1868, E2, 3-4) = 0.36(14)	B(1895, E2, 3 - 4)
B(2052, E2, 3-4) = 0.30(14),	B(2080, E2, 3-4) = 0,28(3).

Полученные значения хорошо совпадают с результатами работы ⁷²⁷. Это неудивительно, так как проведенными опытами установлено, что доля примеси мультипольности М1 невелика в рассмотренных у-переходах.

Повыми сведениями являются данные о примеси мультипольности M1 в переходах с уровней 3⁺: 2133 и 2160 кэВ на уровни полосы основного состояния. В табл. 3 даны отношения приведенных вероятностей B(M1) - переходов с уровней 3⁺ на нижележащие состояния. Отношения В(М1) -переходов, разряжающих эти состояния на уровни 4⁺ и 2⁺ полосы основного состояния, близки к значению 0,75, предсказанному правилами Алаги для К; = 1. Некоторое отличие может быть вызвано примесью компонентов с $K_f = 1$ и $K_f = 2$ в полосе основного состояния с K = 0, а также возможной примесью компонента с $K_{i} \approx 0$ в начальном состоянии. Эти примеси бывают невелики, так как мала разница экспериментальных и расчетных отношений В(М1). Но главный результат заключается в том, что оказался малым компонент с $K_{\rm i}=1$ в начальном состоянии. Это видно по результатам, приведенным во второй и третьей строках табл. 3. Приведенные вероятности B(M1) - переходов на у-вибрационную полосу на 1÷2 порядка больше, чем на полосу основного состояния. Это, с одной сто-

Таблица 3

Экспериментальное отношение приведенных вероятностей M1-переходов с уровней 3⁺:2133 и 2160 кэВ

Отношение	Уровень 2133 кэВ	Уровень 2160 кэВ
$B(MI; 3 - 4_g)$ $B(MI; 3 - 2_g)$	0,94 <u>+</u> 0,20	0,9 + 0,2 - 0,5
B(MI; 3 - 2y) B(MI; 3 - 2g)	9,6 +2,5 -2,0	69 ⁺¹⁰ -35
B(MI; 3 - 4y) B(MI; 3 - 4y)	89 ± 25	13 <u>+</u> 5

роны, оправдывает анализ, сделанный в работе $^{/2/}$, где предполагалось, что волновые функции уровней с энергией 2133 и 2160 кэВ содержат только компоненты с K = 2 и K = 3. С другой стороны, новые данные позволяют уточнить анализ, введя в волновые функции компоненты с K_i = 1. Для подтверждения этого, однако, необходимо уточнить мультипольный состав и других переходов, идущих с этих уровней на уровни у -вибрационной полосы.

Из опытов по угловым y-y корреляциям установлена мультипольность перехода 2092 кзВ, разряжающего уровень с энергией 2173 кзВ. Доля М1 в переходе невелика, как и в переходах 2052 и 2080 кзВ. На основании этих данных можно предположить, что уровень 2173 кзВ с I^{*n*}=3⁺ по своим свойствам похож на близкие по энергии уровни с I^{*n*}=3⁺ 2133 и 2160 кзВ, то есть в нем велики компоненты волновой функции с K = 2 и K = 3.

В заключение авторы выражают глубокую благодарность Т.М.Муминову за поддержку и постоянный интерес к работе, Н.А.Лебедеву и Нгуен Конг Чангу за приготовление препаратов иттербия.

ЛИТЕРАТУРА

- 1. Buyrn A. Nucl. Data Sheets, 1975, 14, p.471.
- Артамонова К.П. и др. Изв. АН СССР, сер.физ., 1974, 38, №8, с.1763.
- Adam I. et al. Czech.J.Phys., 1979, B29, p.997; ОИЯИ, 6-9316, 6-9317, Дубна, 1975.
- 4. Гамильтон Дж.Г. Изв. АН СССР, сер.физ., 1976, 40, №1, с.18.
- Domingos I.M., Symons G.D., Donglas A.C. Nucl.Phys., 1972, A180, p.600.
- 6. Аликов Б.А. и др. ОИЯМ, Р13-9607, Дубна, 1976.

Рукопись поступила в издательский отдел 28 февраля 1980 года.

8