<u>C341.26</u> X-20 СООБШЕНИЯ ОБЪЕДИНЕННОГ 1() ИНСТИТУ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 4345

P6 - 6724

3.Харатым, Т.Кэмписты, А.Корман, Т.Морек, Л.К.Пекер, С.Хойнацки

P6 - 6724

3.Харатым, Т.Кэмписты, А.Корман, Т.Морек, Л.К.Пекер, С.Хойнацки

УРОВНИ	212 86 Rn 126	,	ВОЗБУЖДАЮЩИЕСЯ
ПРИ ЕС	-3AXBATE	с С	212 Fr 87 125

Харатым З., Кэмписты Т., Корман А., Морек Т., Пекер Л.К., Хойнацки С.

Уровни 212 Rn, возбуждающиеся при *EC* -захвате с 212 Fr86 126 квозбужденные уровни 212 Rn из *EC* - захвата 212 Fr, Исследовались возбужденные уровни 212 Rn из *EC* - захвата 212 Fr, полученного в реакциях ест. $Pb(^{11}B, xn)$ и ^{ест.} $Tl(^{12}C, xn)$. В результате проведенных измерений у -спектров и у-у совпадений нами предложена схема уровней 212 Rn.

P6 - 6724

Сообщение Объединенного института ядерных исследований Дубна, 1972

Haratym Z., Kempisty T., Korman A., Morek T., Peker L.K., Chojnacki S. P6 - 6724

The Excited States in $\frac{212}{86}Rn_{126}$ from the EC-Decay of $\frac{212}{F_r}$

The excited states in ^{212}Rn have been investigated in the electron capture decay of ^{212}Fr produced in the reactions $^{net.}Pb(^{11}B,xn)$ and $^{net.}Tl(^{12}C,xn)$. On the basis of the measurements of gamma rays and gamma-gamma coincidences the level scheme of ^{212}Rn is suggested.

Communications of the Joint Institute for Nuclear Research. Dubna, 1972

1. Введение

and the second second

e parte de la competencia de

A stranding the

a free a second and a second

a de la cara de la compañía de la compañía

Исследование свойств ядер, у которых полностью заполнена протонная или нейтронная оболочка, всегда представляет большой интерес, так как дает уникальную возможность в сравнительно чистом виде изучать особенности остаточного взаимодействия нуклонов одного типа. Именно поэтому в последнее время столь тщательно изучаются спектры уровней таких ядер как $\frac{90}{40} Zn_{50}$

53. L 80

 N_{50} , $\frac{92}{42}M_{0}$, $\frac{93}{43}Tc_{50}$, $\frac{210}{84}Po_{126}$, $\frac{211}{85}At_{126}$ 210 Рв 128 и т.д. Впервые данные об энергиях некоторых нижних уровней ²¹²₈₆ Rn₁₂₆ были получены нами при исследовании у -спектра, сопровождающего EC -распад 212 Fr /1/. القارية وراية يتعاريه والم ېر د و و ور Важные сведения об уровнях ²¹² Rn 126 были получены также

the second second a de gara в реакциях с тяжелыми ионами ²⁰⁹Bi(⁷Li,4n)²¹²Rn,²⁰⁵T1(¹¹B,4n)²¹²Rn

 $w^{204} He^{12}C$, $4n^{212} Rn^{2/2}$

法认为 法总统法律法律的 法职行证

В настоящей работе детально изложены результаты, полученные нами при исследовании EC -распада 212Fr - 212 Rn.

2. Эксперимент

ест Изотоп 212 Fr синтезировался в реакциях ${}^{\text{ест}} Pb({}^{11}B, xn)^{212}$ Fr $T1({}^{12}C, xn)^{212}$ Fr. Мишени в виде фольг облучались на выве-

денном пучке тяжелых ионов циклотрона У-ЗОО. После облучения источники не подвергались химической обработке. Измерения γ спектров проводились Ge(Li) - детектором объемом 20 см³. Для исследования совпадений между γ - квантами был использован спектрометр совпадений типа кодировщика время-амплитуда. В качестве детекторов применялись Ge(Li) - детектор объемом 20 см³ и кристалл NaJ(T1) размером 1 1/2" х 2". Массовое число ядер определялось по изменению выходов γ -переходов с изменением энергии падающих ионов, а также по периоду полураспада.

3. Результаты измерений

212 Fr был получен при облучении мишени из свинца 87 Fr 125

нонами ¹¹ В с энергией 91 Мэв, а также мишени из таллия ионами ¹² С с энергией 82 Мэв. На рис. 1 приведен γ -спектр ²¹² Fr из реакции $Pb(^{11}B, xn)$. Гамма-переходы, сопровождающие EC-за-хват этого изотопа, имеют период полураспада $T_{1/2} = 19\pm 2$ мин. Их энергии и интенсивности приведены в таблице 1. Полученные нами значения $T_{1/2}$ согласуются с результатами предыдущих работ, в которых исследовался a -распад²¹² Fr / $T_{1/2} = 19,3$ мин/^{3/}. Измерения $\gamma - \gamma$ совпадений рис. 2 показали, что три основных перехода 1272, 227 и 137 кэв образуют каскад, что хорошо согласуется с данными работы ^{/2/}.

Наши данные показывают также, что с у-переходами 1272 и 227 кэв совпадают у -переходы 1184 и 8О2 кэв. Учитывая интенсивности в одиночном спектре и спектрах Y-Y - совпадений, а также тот факт, что сумма энергии переходов 137,1 и 1046,6 кэв равна энергии перехода 1183,6 кэв, мы построили схему уровней $\frac{212}{86}$ Rn₁₂₆, показанную на рис. 3.

4. Обсуждение

Основное состояние $\frac{212}{87}$ Fr $_{125}$, согласно модели оболочек, должно иметь конфигурацию $p(h9/2)^5$ $n(p 1/2)^{-1}$, и, следовательно, спин I = 5+ подобен однотипным основным состояниям

 ${}^{208}_{83}$ В i_{125} и ${}^{210}_{85}$ At $_{125}$. Следовательно, при его EC-распаде могут заселяться уровни с I < 6.

Наши выводы о свойствах трех нижних возбужденных уровней ${}^{212}R_n$ с I = 2+, 4+, 6+, приведенные в работе ${}^{/1/}$, хорошо согласуются с более полными данными работы ${}^{/2/}$. Эти три уровня совместно с основным состоянием, несомненно, относятся к мультиплету $P(h 9/2)^4$ и характеризуются значением сеньорити $\nu = 2.$ Уровни конфигурации $p(h 9/2)^4$ с $\nu = 4$ имеют значительно большую энергию возбуждения и поэтому не могут возбуждаться при β -распаде. Сопоставление схем распада ${}^{212}Fr$ и ${}^{210}At$ и озволяет предположить, что уровень ${}^{210}Rn$ 2302 кэв аналогичен уровню ${}^{210}P_0$ 2383 кэв. В этом₃ случае уровень 2302 кэв имеет I = 4+ и конфигурацию p(h 9/2) (t 7/2).

Особенно интересен уровень 212 Rn 2683 кэв. Близкие по величине относительные интенсивности γ -переходов 1183,6 н 1046,6 кэв на уровни с I = 6+ и I = 4+ указывают на одинаковую мультипольность обонх переходов и, следовательно, на спин уровня 2683 кэв I = 5. Судя по большой интенсивности указанных переходов, этот уровень сильнее всех других заселяется при EC - распаде (1g ft \approx 6) 212 Fr. Такие же особенности характерны для уровня

2910 кэв с I = 5-, в $\frac{210}{84}$ Po $_{126}$, заселяющегося при ЕС-распаде

210At / 1g ft = 6,2/ ^{/4/}, они позволяют провести между обонми уровнями аналогию. Такое значение 1g ft характернодля однократно запрещенного β -перехода типа $p(s 1/2) \rightarrow n(p 1/2)$ нли $p(h 9/2) \rightarrow n(g 9/2)$. Сходные β -переходы в нечетных ядрах $2^{07}T1 \rightarrow 2^{07}Pb$ $p(s 1/2) \rightarrow n(p 1/2)$ и $2^{09}Pb \rightarrow 2^{09}Bi$ $p(h 9/2) \rightarrow n(g 9/2)$ имеют соответственно 1g ft = 5,2 и 5,5 ^{/5/}. Поэтому уровни с I = 5- в $2^{08}Pb$ 3198 или 3708 кэв, $2^{10}P_0$ 2910 кэв $u^{212}Rn 2683$ кэв могут иметь конфигурацию $p[(h 9/2)^n \nu = 1_s 1/2]$ или $p(h 9/2)^{n-1} n(g 9/2^1 p 1/2^{-1})$, т.е. они связаны с возбуждением нейтрона(p 1/2)или протона (s 1/2)из остова с полностью заполненными оболочками Z = 82; N = 126, соответствующего ядру $2^{08}Pb_{126}$.

Авторы выражают благодарность академику Г.Н.Флерову за интерес к работе, а также группе эксплуатации циклотрона У-ЗОО, обеспечившей хорошую работу ускорителя.

Литература

1. 2.	3.Харатым, Т.Кэмписты, А.Корман, Т.Морек, Л.К.Пекер, С.Хой- нацки. Программа и тезисы докладов XXII совещания по ядерной спектроскопии и структуре атомного ядра. Киев, 1972, стр. 166. К. Н. Мајер, J. P. Logah, P. M. Dismond, F. S. Stophano,
3.	Nucl. Chem. Ann. Report (1970) UCRL 20426. E.K.Hyde, A.Chiorso and G.T.Seaborg. Phys. Rev.
1.	<u>77</u> , 765 (1950). S.G.Prussin, J.M.Hollander. Nucl. Phys., <u>A110</u> ,176
5.	N.D.S. Vol. 5 No. 5 (1971).

Рукопись поступила в издательский отдел 18 сентября 1972 года. Таблица 1

у - переходы в 212 Rn

5 100	30+	20±4	J	10+2	13±2	95+5	15 <u>+</u> 2	ν γ
3,6 1272,3	5 118:	1046,	1030	802	358,2	227,4	137.1	E

227 кэв. у-у -совпадений с линиями

Рис. 3. Схемы уровней ²¹² Rn и ²¹⁰ Ро