M-801 объединенный институт **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ Дубна 4200/2-72

1972

P6 - 6635

1x11-42

В.А.Морозов, Т.М.Муминов ,Х.Фуя, А.Б.Халикулов

КВАНТОВЫЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ УРОВНЕЙ ¹³³ La

P6 - 6635

В.А.Морозов, Т.М.Муминов^{*}, Х.Фуя, А.Б.Халикулов^{*}

КВАНТОВЫЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ УРОВНЕЙ ¹³³ La

Направлено в ЯФ

Объединенный институт ясерных всследований БИБЛИОТЕКА

* Самаркандский государственный университет им. А.Навои

Изучение возбужденных состояний ¹³³ La представляет собой интерес в связи с тем, что это ядро прилегает к новой области деформации сильнонейтронодефицитных ядер Ba, La и Ce.

¹³³ La изучались Несмотря на то, что возбужденные состояния ¹³³ La изучались многими авторами ^{/1-8/}, структура большинства возбужденных уровней ¹³³ La до настоящего времени остается неизвестной. Полезную информацию о природе возбужденных уровней можно получить, изучая вероятности переходов, запрешенных по тем или иным квантовым числам, характеризующим определенную модель. С этой целью в настоящей работе были измерены времена жизни возбужденных уровней ¹³³ La с энергиями 97, 130, 174 и 742 кэв.

Аппаратура

Измерения производились на многоканальном временном анализаторе, собранном на базе магнитно-линзового бета-спектрометра, с преобразователем типа $t \to A$. Установка подробно описана в работе ^{/9/}.

Получение источника

В измерениях использовался моноизотопный источник ^{133+133 m} Ce, который был получен в реакции глубокого расшепления при облучении мишени Gd протонами (E_p = 660 Мэв, I = 2 мка) на синхроциклотроне ЛЯП ОИЯИ. Хроматографическим методом /10/ из облученной мишени выделялась фракция изотопов Ce, после чего фракция разделялась по изобарам на масс-сепараторе отдела ЯС и РХ ЛЯП ОИЯИ ^{/11/}

Экспериментальные результаты

Измерение времен жизни уровней ¹³³ La с энергиями 97, 130, 174 и 742 кэв проводилось в совпадениях конверсионных электронов К-97, К-130, L-77, и К-87 кэв соответственно с гамма-лучами с энергией выше 250-300 кэв. Экспериментальные кривые распадов исследуемых уровней представлены на рис. 1.

Значения периодов полураспада уровней определялись методом наименьших квадратов по экспоненциальному спаду кривых задержанных совпадений. Погрешность в определении периодов полураспада уровней, помимо статистической ошибки, включает в себя ошибку калибровки цены канала временного анализатора.

Период полураспада уровня 97 кэв оценен нами по экспоненциальному спаду кривой (К-97) (γ) как $T_{\frac{1}{2}} < 0,4$ нсек. Это не противоречит оценке $T_{\frac{1}{2}} < 0,1$ нсек, сделанной для периода полураспада этого состояния в нашей ранней работе ^{/8/} по сдвигу центров тяжести кривых задержанных и мгновенных совпадений.

Полученные нами результаты и ранее известные данные о временах жизни уровней ¹³³ La представлены в таблице 1.

Рис. 1. а - фрагмент схемы уровней ¹³³ La ; б - участок спектра электронов внутренней конверсии ^{133 + 133 m} Ce ; в,г,д,е - временные спектры измерения периодов полураспада уровней 97, 130, 174 и 742 кэв, соответственно.

	·····	• •		an an an taon ann an taon an ta An taon an taon a				
Е ур кэв.	Т _и нсек							
	работа/7/	работа/	8/ настояща я работа	средне-взвешенное				
97,2	- 1	< 0,1	< 0,4	<0,4				
130,7	0,8 <u>+</u> 0,3	1,19 <u>+</u> 0,20	1,12 <u>+</u> 0,18	1,09 <u>+</u> 0,12				
174,0	-		0,83 <u>+</u> 0,18	0,83 +0,18				
534,9	70 <u>+</u> 30	_	-	70 <u>+</u> 30				
742,1			1,30 <u>+</u> 0,10	 1,30 <u>+</u> 0,10				

Периоды полураспада уровней 133 La

Таблица 1

Для периода полураспада уровня 130 кэв мы получили значение $T_{\frac{1}{2}} = (1,12 \pm 0,18)$, что в пределах ошибок совпадает с результатами Абу-Лейла и др. ^{/7/} $T_{\frac{1}{2}} = (0,8 \pm 0,3)$ нсек и значением $T_{\frac{1}{2}} =$ $= (1,19 \pm 0,20)$ нсек, полученным нами ранее ^{/8/}. Периоды полураспада уровней 174 и 742 кэв определены впервые: $T_{\frac{1}{2}} = (0,83 \pm 0,18)$ нсек и $T_{\frac{1}{2}} = (1,30 \pm 0,10)$ нсек, соответственно.

Обсуждение экспериментальных результатов

Изотоп ¹³³ Ce ($T_{y_2} = 5,4$ час) был открыт Стовер ^{/2/}. Гершель и др. ^{/3/} в ядре ¹³³ Ce было обнаружено изомерное состояние, которое распадается с $T_{y_2} = 97$ мин. Наиболее полные данные о распаде ^{133+133 m} Ce приведены в работе Гершель ^{/5/}. Параметр деформации основного состояния ¹³³ La был рассчитан Маршалеком и др. ^{/6/} ($\beta = 0,18$). Параметр деформации состояния 535 кэв ¹³³ La ($\beta = 0,45$) был определен по измеренному значению квадрупольного момента ^{/1/} этого уровня. Основному состоянию ¹³³ La была приписана характеристика 5/2⁺, а возбужденным состояниям с энергиями 97 и 130,7 кэв – характеристики 7/2⁺ и 3/2⁺, соответственно ^{/5/}. В работе ^{/8/}, анализируя факторы запрета *M1* –переходов с энергиями 97 и 130,7 кэв, мы показали, что уровням с энергией 97 и 130,7 кэв необходимо приписать значения спинов 3/2⁺ и 7/2⁺, соответственно. В связи с этим необходимо было пересмотреть ранее приписанные спины другим уровням ¹³³ La и предположить, что состояние ¹³³ Ce T₁₅ = 97 мин имеет 1^π = 1/2⁺, а состояние T = 5,4 часа – 1^π = (9/2⁻).

Перейдем к обсуждению природы некоторых возбужденных состояний

<u>Уровни 97 и 130 кэв</u> разряжаются прямыми переходами типа M1и M1 + E2 на основное состояние – ¹³³ La . Как уже указывалось выше, уровню 97 кэв необходимо приписать значение $1^{\pi} = 3/2^{+}$, а уровню 130 кэв – $1^{\pi} = 7/2^{+/8/}$.

Действительно, если уровню 97 кэв приписать значение $l^{\pi} = 7/2^+$, то величина F_{3AM} (*M1*) \leq 43 противоречит систематике l -запрещенных *M1* -переходов типа $P(g_{7/2} \stackrel{<}{\rightarrow} d_{5/2})^{/12/}$, а уровню 130 кэв противоречит приписание спина $l^{\pi} = 3/2^+$, т.к. при этом для разрешенного *M1* -перехода типа $P(d_{3/2} \rightarrow d_{5/2})$ мы будем иметь величину F_{3AM} (*M1*) = 293, что трудно объяснить в рамках модели оболочек. Если же уровню 97 кэв приписать значение $l^{\pi} = 3/2^+$, а уровню 130 кэв - $l^{\pi} = 7/2^+$, то мы получим хорошее согласие с предсказания-

ми оболочечной модели:

 F_{3AM} (*M1*) $\leq 61 - для разрешенного$ *M1*-перехода с энергией $97 кэв типа <math>P(d_{3/2} \rightarrow d_{5/2})$ и F_{3AM} (*M1*) = 246 и квадрат матричного элемента $m^2 = 0,35 - для\ell$ - запрещенного *M1* -перехода с энергией 130 кэв типа $P(g_{7/2} \rightarrow d_{5/2})$.

Отметим, что уровень 97 кэв ($l^{\pi} = 3/2^{+}$) ${}^{133}La$ не заселяется при распаде состояния ${}^{133}Ce$ ($l^{\pi} = 1/2^{+}$); это свидетельствует о различной природе рассматриваемых состояний. Аналогичный случай наблюдается при распаде основного состояния ${}^{135}Ce$ ($l^{\pi} = 1/2^{+}$) на возбужденный уровень ${}^{135}La$ с энергией 265 кэв ($l^{\pi} = 3/2^{+}$) ${}^{/14}$.

Уровень 174 кэв разряжается на уровень 97 кэв переходом 77 кэв типа M1 и прямым переходом неустановленной мультипольности на основное состояние ¹³³ La ^{/5/}. Возможные значения спина этого уровня $l^{\pi} = 1/2^+$, $3/2^+$ и $5/2^+$. Значения одночастичных факторов запрета для M1 -перехода с энергией 77 кэв (F_{3AM} (M1) = 12 + 115) при всех возможных значениях спина уровня не противоречат: предположению об одночастичной природе этого уровня.

Возможные характеристики уровня – 174 кэв ¹³³ La позволяют приписать переходу 174 кэв мультипольность типа M1, M1 + E2 (при $l^{\pi} = 3/3^+$, $5/2^+$) или чистый E2 (при $l^{\pi} = 1/2^+$). Если предположить, что переход 174 кэв типа M1 или M1 + E2, то при этом трудно в рамках модели оболочек объяснить высокую степень запрета M1 -перехода (F_{36M} (M1) = 5000. Если же переход 174 кэв типа E2, то фактор ускорения этого перехода $F_{yck.}$ (E2) = 2,3 будет иметь обычную для разрешенных E2 -переходов величину. Очевидно, что из самых общих рассуждений следует отдать предпочтение приписанию уровню 174 кэв спина $l^{\pi} = 1/2^+$. При этом переход с энергией 174 кэв, согласно модели оболочек, будет разрешенным E2 -переходом типа

Р ($s_{\frac{1}{12}} \rightarrow d_{5/2}$), а переход 77 кэв – ℓ –запрещенным M1 –переходом типа Р ($s_{\frac{1}{12}} \rightarrow d_{5/2}$). В настоящее время отсутствует какая-либо систематика ℓ –запрещенных M1 –переходов типа Р ($s_{\frac{1}{12}} \rightarrow d_{3/2}$) для рассматриваемой области ядер, однако величины (M1) = 115 и m^2 (M1) = 0,24 для перехода 77 кэв в ¹³³ La не противоречат такому предположению.

Таким образом, из приведенных выше рассуждений можно заключить, что уровень 174 кэв La имеет значение $l^{\pi} = 1/2^{+}$ и разряжается M1 -переходом типа P ($s_{\frac{1}{2}} \rightarrow d_{\frac{3}{2}}$) и E2 -переходом типа P ($s_{\frac{1}{2}} \rightarrow d_{\frac{3}{2}}$).

<u>Уровень 535 кэв</u> разряжается переходом с энергией 58 кэв (E2 + M1) на уровень 476 кэв, переходом 404 кэв (E1 + M2) на уровень 130 кэв ($I^{\pi} = 7/2^+$) и слабым прямым переходом 535 кэв не установленной мультипольности на основное состояние ¹³³ La^{/5/}. Возможные эначения спина уровня 476 кэв 5/2⁺, 7/2⁺.

Уровню 535 кэв, учитывая величину log ft = 6,4 ^{/5}, можно прилисать значение $I^{\pi} = 7/2^{-}, 9/2^{-}$. Время жизни 535 кэв ¹³³ Ia было измерено в работе Абу-Лейла и др. ^{/7/},где проводился анализ вероятностей переходов, разряжающих рассматриваемый уровень, в предположении, что уровни 535, 476 и 130 кэв имеют значения спинов $3/2^{+}, 5/2^{+}$ и $3/2^{+}$. соответственно.

Анализ вероятностей переходов, разряжающих состояние ¹³³ La с энергией 535 кэв, в свете новых предположений о спинах уровней ¹³⁸ La приведен в таблице 1.

Из систематики *E1* -переходов в сферических ядрах /15/ известно, что значения факторов запрета для переходов такого типа не превышают величины F_{3AM} (*E1*) $\leq 2 \cdot 10^6$. Величины факторов запрета F_{3AM} (*E1*) $\approx 10^8 - 10^9$ для переходов 404 и 535 кэв (*E1*) не

противоречат выводу /1,7/ о деформации ядра в состояниях 535 и 476 кэв и одночастичной природе уровня 130 кэв и основного состояния La .

Уровень 742 ков. Как было предложено в работе 151, уровень 742 кэв разряжается переходами с энергиями 87 (M1) и 178 кэв (M1 + E2) на уровни ¹³³ La 653 и 563 кэв, соответственно. Следует отметить, что значения а _{к экспл.} = 0,40 /15/ для перехода 178 кэв не противоречат определению его мультипольности как ЕГ + 67% M2 /16/

Исходя из разрешенного характера заселения уровня 742 кэв $_{2}$ (log ft = 5,8) при К-захвате состояния ¹³³ Се ($L^{\pi} = 1/2$), рассматриваемому состоянию l^{33} La можно приписать значения $l^{\pi} = 1/2^+$, 3/2+. В связи с тем, что уровни 653 и 535 ков не заселяются при рас-133+133m Ce и учитывая мультипольности гамма-переходов, западе селяющих эти уровни, им можно приписать квантовые характеристики $l^{\pi} = 5/2^{+}$ н $l^{\pi} = 5/2^{+}$ или $5/2^{-}$, соответственно. Вследствие этого уровню 742 кэв необходимо приписать значения спина и четности 1 " = $= 3/2^{+}$.

Из анализа результатов измерения времени жизни уровня 742 кэв видно: значение $F \xrightarrow{M}_{3AM} (MI) = 180$ для перехода 87 кэв $(3/2^+ \rightarrow 5/2^+)$ не противоречит нашим предложениям о спинах уровней 742 кэв (1 " = = $3/2^+$) и 635 кэв ($1^{''}$ = $5/2^+$); значение $F_{3AM}^{''}$ (M1) = 1,17 · 10⁴, согласно предположению Гершель /5/ о мультипольности перехода 178 кэв как M1 + E2 , трудно объяснить на основе существующей систематики M1 -переходов в сферических ядрах, в то время как значение (*E1*) = 1,66 · 10⁴ для перехода 178 кэв (3/2⁺ → 5/2⁺) характерно для Е1 -переходов в этой области ядер - это свидетельст-

вует в пользу приписания уровню 563 кэв характеристики 1" = 5/2.

Таблица I

Анализ вероятностей переходов, разряжающих уровни 97, 130,175, 535 и 742 кэв 133/ и

Е ур кэв	^Т I/2 10 ⁻⁹ сек	Е Хэв	f	$\overline{I}_i^{\overline{h}} \Rightarrow \overline{I}_j^{\overline{h}}$	26	Т ⁷ (72) Эксп. Сек	F (22)
97,2	<0,4	97,2	I	3/2+ → 5/2+	MI/4/	<8,8.10-10	61
130,7	1,12 <u>+</u> 0,18	130 , 7	I	7/2 ⁺ → 5/2 ⁺	/4/ 98%NI + 2% E2	1,75.10 ⁻⁹ 7,59.10 ⁻⁹	209,4 0,03
174,0	0,83 <u>+</u> 0,18	76,9	0,915	I/2 ⁺ ·→ 3/2 ⁺	MI /5/	3,03.10 ⁻⁹	115,0
ئىيە 		174	0,085		E2	1,28.10 ⁻⁸	0,44
534,9	70 <u>+</u> 30/1/	58,4	0,927	$7/2^{-} \rightarrow 5/2^{+}$ $7/2^{-} \rightarrow 7/2^{+}$ $9/2^{-} \rightarrow 7/2^{+}$	_{EI} /5/	I,5.10 ⁻⁷ - * - - * -	4,85.10 ⁴ 1,79.10 ³ 5,00.10 ⁴
		404,6	0,066	7/2 ⁻ → 7/2 ⁺ 9/2 ⁻ → 7/2 ⁺	6% EI + 94% M2 6% EI + 94% M2	1,93.10 ⁻⁵ 1,21.10 ⁻⁶ 1,93.10 ⁻⁵ 1,21.10 ⁻⁶	7,66.10 ⁷ 48 2,14.10 ⁹ 3,5
		534,9	0,017	7/2" -> 5/2* 9/2" -> 5/2*	EI M2	3,76.10 ⁻⁶ 3,91.10 ⁻⁶	9,4.10 ⁸ 800
742,1	1,30 <u>+</u> 0,10	87,9	0,93	3/2+ → 5/2+	MI/5/	3,54.10 ⁻⁹	180,4
		178,6	0,07	$3/2^+ \rightarrow 5/2^+$ $3/2^+ \rightarrow 5/2^-$	MI/5/ 33,3%EI+ +66,7%M2	2,75.10 ⁻⁹ 1,28.10 ⁻⁷ 6,44.10 ⁻⁸	1,18.10 ⁴ 1,66.10 ⁴ 0,016

П

Для окончательного выяснения квантовых характеристик уровней и переходов в ядре ¹³³ La необходимо продолжить изучение распада 133 + 133 m

Се методами угловых корреляций гамма-лучей и дальнейшее исследование спектров гамма-лучей и конверсионных электронов

^{133+133 m} Ce с целью уточнения мультипольностей гамма-переходов. В таблице 1 приведены значения приведенных вероятностей и одночастичных факторов запрета переходов, разряжающих исследованные уровни
¹³³ La

На основе проведенных выше обсуждений предлагается фрагмент схемы уровней ¹³³ La, приведенный на рис. 1.

Авторы глубоко признательны В.П. Афанасьеву, И.И. Громовой и Н.А. Лебедеву за работу по выделению радиоактивных препаратов.

Литература

- 1. C.Gerschel, N.Perrin, L.Valentin. IDN-B.P. n^O 1-91. Orsay 1970.
- 2. B.Stover. Phys.Rev., <u>81</u>, 8 (1951).
- 3. C.Gerschel, G.Albouy. Compt. Rend. 246, 183 (1967).
- 4. А.А. Абдумаликов, А.А. Абдуразаков, С.Б. Бурибаев, К.Я. Громов, Н.А. Лебедев. ЯФ, <u>3</u>, 602, 1966.
- 5. C.Gerschel. Nucl. Phys. A108, 337-352 (1968).
- 6. E.Marschalek, L.W.Person, R.K.Scheline. Rev. Mod. Phys. 35, 108 (1963).

7. H.Abou-Leila, C.Gerschel, N.Perrin. Compt. Rend., 265, 1131 (1967).

8. Р. Бабаджанов, В.А. Морозов, Т.М. Муминов, В.И. Разов, А.Б. Халикулов. Сообщение ОИЯИ, Р6-5200, Дубна, 1970.

- В.П. Афанасьев, И.И. Громова, Н.А. Лебедев, В.А. Морозов, Т.М.Муминов, Х. Фуя, А.Б. Халикулов, Ф.Ш. Хамраев. Сообщение ОИЯИ, P6-6426, Дубна, 1972.
- 10. Ф. Молнар, Н.А. Лебедев. Препринт ОИЯИ, 6-3955, Дубна, 1968.
- В.П. Афанасьев, А.Т. Василенко, И.И. Громова, Ж.Т. Желев,
 В.В. Кузнецов, М.Я. Кузнецова, Д. Мончка, Ю. Поморски, В. Райко,
 А.В. Ревенко, В.М. Сороко, В.А. Уткин. Сообщение ОИЯИ, 13-4763,
 Дубна, 1969.
- 12. Э.Е. Берлович. Структура ядра, стр. 15, изд. ФАН, Ташкент, 1969.
- 13. В. Жук, Э. Крупа, В.А. Морозов, Т.М. Муминов, Х. Фуя, А.Б.Халикулов. Изв. АН СССР, сер. физ., <u>36</u>, 753, 1972.
- 14. C.F.Perdrisat. Rev. Mod. Phys. <u>38</u>, 41 (1966).
- J.J.Simpson, D.Eceleshell, M.J.L.Yates, N.J.Freeman. Nucl. Phys. <u>A94</u>, 177 (1967).
- R.S.Hager, E.C.Seltzer. Nucl. Data. Sheets. Section A, v4, No 1-2 (Febr. 1968).

Рукопись поступила в издательский отдел 28 июля 1972 года.