.926 ОБЪЕЛИ ІЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 23.62

Ц.Вылов, К.Я.Громов, А.Зелински, К.Зубер, Я.Зубер, В.В.Кузнецов, А.В.Потемпа, В.И.Фоминых

17/11-72

P6 - 6441

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ 157 Dy, ЗАСЕЛЯЕМЫЕ ПРИ РАСПАДЕ 157 Ho (T $_{1/2}$ = 14 МИН)

1972

<u>AEPHDIX NPOEAEA</u>

SOPA

P6 - 6441

Ц.Вылов, К.Я.Громов, А.Зелински, К.Зубер, Я.Зубер, В.В.Кузнецов, А.В.Потемпа, В.И.Фоминых

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ¹⁵⁷ Dy, ЗАСЕЛЯЕМЫЕ ПРИ РАСПАДЕ ¹⁵⁷ Ho ($T_{1/2} = 14$ МИН)

Направлено в журнал "Изв. АН СССР"

Объединсяный институт TREADENX LICCHENOBONNE

¹ Институт физики Болгарской академии наук, София, Болгария ² Институт ядерной физики, Краков, Польша

P6 - 6441

Вылов Ц., Громов К.Я., Зелински А., Зубер К., Зубер Я., Кузнецов В.В., Потемпа А.В., Фоминых В.И.

Возбужденные состояния $^{157}D_y$, заселяемые при распаде $^{157}H_0$ ($T_{1/2}$ = 14 мин)

Исследовались спектры гамма-лучей, конверсионных электронов, гамма-гамма-совпадений при распаде ¹⁵⁷Но . Обнаружено более 50 переходов. Предлагается схема распада ¹⁵⁷Но . Обнаружено более лись уровни с энергией 0 кэв (3/2⁻); 60,8 кэв (5/2⁻); 147,8 кэв и 257,4 кэв (9/2⁻) ротационной полосы основного состояния ¹⁵⁷Dy 5/2⁻ /521/ и уровни **341**,1 кэв (5/2⁻), 420,4 кэв (7/2⁻) и 515,6 кэв (9/2⁻) ротационной полосы 5/2⁻ /523/. Наблюдались также уровни 807,0 (5/2⁻) и 990,4 (7/2⁻) ротационной полосы $5/2^-$ /512/. Результаты обсуждаются и сравниваются с соседним ядром

Препринт Объединенного института ядерных исследований. Дубна, 1972

Vylov Ts., Gromov K.Ya., Zelinsky A., P6 - 6441 Zuber K., Kuznetsov V.V., Potempa A.V., Fominych V.I.

Excited States of ^{157}Dy Populated at ^{157}Ho ($T_{1/2} = 14$ min) Decay

Gamma-ray spectra, conversion electron spectra and gamma-gamma coincidence spectra were investigated in the decay of ^{157}Ho . More than 50 transitions were found out. The decay scheme $^{157}Ho \rightarrow ^{157}Dy$ is suggested. The levels with the energies of 0 keV (3/2⁻); 60.8 keV (5/2⁻); 147.8keV (7/2⁻) and 257.4 keV (9/2⁻) for the ^{157}Dy ground state rotational band 5/2⁻ (521) and the levels of 341.1 keV (5/2⁻) 420.4 keV (7/2⁻) and 515.6 keV (9/2⁻) for the rotational band 5/2⁻ (523) were observed as well as the levels 897.0 (5/2⁻) and 990.4 (7/2⁻) for the rotational band 5/2⁻ (512). The results are discussed and compared with the neighbouring nucleus ^{159}Dy and with the theoretical calculations. **Preprint. Joint Institute for Nuclear Research.**

Dubna, 1972

В ведение

Ядро ¹⁵⁷₆₆Dy₉₁ находится на границе между ядрами переходной области деформаций и ядрами области сильной деформации с N > 90.

Возбужденные состояния ¹⁵⁷Dy исследовались ранее в работе Гротдаля и др. ^{/1/} в (d, p) и (d, t) ядерных реакциях. Обнаруженные в этой работе возбужденные состояния ¹⁵⁷Dy и их интерпретация представлены на рис. 1. В ^{/2/} возбужденные состояния ¹⁵⁷Dy ис – следовались в реакции ¹⁵⁷Gd (³He, n) ¹⁵⁷Dy. Авторами ^{/2/} наблюдался изомерный уровень ¹⁵⁷Dy с энергией 199 кэв ($T_{1/2} = 21$ мсек) типа 11/2, 11/2⁻ /505/, который разряжается в нижние возбужденные состояния ¹⁵⁷Dy с энергиями 185, 161, 148 и 61 кэв.

Представляют интерес сведения о распаде ^{157}Ho на уровни ^{157}Dy . В работе Жизона и др. $^{/3/}$, Желева и др. $^{/4/}$ был определен период полураспада ^{157}Ho . Он равен 13 \pm 1 мин и 18 $^{+2}_{-4}$ мин, соответственно. Исследования спектров гамма-лучей и конверсионных электронов при распаде ^{157}Ho ранее не проводились. Нами проведено исследование спектров конверсионных электронов, гамма-лучей и гамма-гамма-совпадений при распаде ^{157}Ho . Обнаружено более 50 переходов. На осно-

Рис. 1. Сравнение возбужденных состояний ^{157}Dy , наблюдаемых при распаде ^{157}Ho и из реакций (d , p), (d , t) /1/ и (³He, 3n)/2/: а) результаты работы Гротдаля и др. /1/, в) результаты работы Боргрина и Слеттена /2/, с) результаты нашей работы.

вании анализа экспериментальных результатов предлагается схема возбужденных уровней ¹⁵⁷Dy, заселяемых при распаде ¹⁵⁷Ho. Предварительные результаты опубликованы в работе ^{/5/}.

Экспериментальная часть

а) Получение радиоактивных источников

Источники ¹⁵⁷Но понучались при распаде ¹⁵⁷Er ($T_{1/2} = 24$ мин), образованного в реакции ¹⁴⁹Sm (12 C, 4n) ¹⁵⁷Er при $Et_{C_{max}} =$ = 81 Мэв на выведенном пучке ускорителя тяжелых ионов У-300 Лаборатории ядерных реакций ОИЯИ. Выбор преимущественного канала реакции для получения изотопа ¹⁵⁷Er осуществлялся изменением энергии частиц ¹²C с помощью фольги из алюминия толщиной 2,5 мг/см². Мишень изготавливалась методом осаждения окиси самария-149 на алюминиевую фольгу – подложку толщиной ~ 6 мг/см². Время облучения составляло 20 минут. Измерения начинались через 5-10 минут после облучения. Для изучения гамма-спектра использовались как смесь ¹⁵⁷Er + + ¹⁵⁷Ho, так и ¹⁵⁷Ho, выделенный химически из эрбия /6/.

Применялись также источники ¹⁵⁷Er + ¹⁵⁷Ho , полученные при расщеплении тантала протонами с энергией 660 Мэв на внутреннем пучке синхроциклотрона ОИЯИ. В этом случае производилось разделение изотопов на масс-сепараторе ^{/7/}.

Излучение 157 Но исследовалось как в равновесии с материнским 157 Er (T1/2 = 24 мин), так и с использованием препарата 157 Ho, выделенного химическим методом из 157 Er через 40 минут после разделения изотопов эрбия на масс-сепараторе.

б) Методика измерений и экспериментальные
результаты

Измерения спектров гамма-лучей ¹⁵⁷Но проводились с помощью амплитудного многоканального анализатора АИ-4096 с использованием

Ge (Li) – детекторов с чувствительными объемами 0,5 см³ (разрешение 0,7 кэв в области энергий 100 кэв и 1,7 кэв на гамма-лучах ^{60}Co) /8/ и 10см³ (разрешение 2,1 кэв на гамма-лучах ^{60}Co) /9/. Измерение конверсионных электронов проводилось с помощью амплитудного многоканального анализатора АИ-4096 с использованием Si (Au)детектора с толшиной чувствительного слоя 2 мм и площадью 100 мм² (разрешение 2,0 кэв на электронах K (121) кэв¹⁵² Eu) /10/.

В таблице 1 сведены результаты анализа спектров гамма-лучей и конверсионных электронов внутренней конверсии и мультипольности для ряда переходов. При расчете экспериментальных значений коэффициентов внутренней конверсии a_K , a_L , a_M принималось, что переход с энергией 60,8 кэв имеет мультипольность типа M1 ^{/2/} (a_L _{теор}= = 1,410).

Исследование спектров гамма-гамма-совпадений проводилось с помощью двухмерного анализатора /11/ на базе ЭВМ "Минск-2" и двух 'Ge (Li) -детекторов с чувствительными объемами 24 и 25 см³. В этом случае использовался радиоактивный источник ¹⁵⁷Er . полученный в реакнии 149 Sm (12 C, 4n) 157 Er . Измерения спектров гамма-гаммасовпадений при распаде 157 Но начинались через 10 минут после облучения и продолжались с одним источником ¹⁵⁷Er , затем поступал другой источник ¹⁵⁷Ег после следующего облучения. Всего было использовано в измерениях четыре источника. Добавление активности ¹⁵⁷Er в процессе опыта осуществлялось автоматически: облученная окись самария -149 в виде суспензии в амилацетате постепенно осаждалась в специальной стеклянной пробирке в район расположения 'Ge(Li) - детекторов. Выбор энергетических окон для проведения эксперимента гамма-гаммасовпадений проводился заранее по программе, разработанной М.И. Фоминых. Результаты анализа гамма-гамма-совпадений при распаде 157 Но. приведены в таблице 2. Крестиками отмечены совпадающие гамма-переходы.

Таблица І

		нк электрон по	льностях пе	аде пол реходов в ¹	57 <i>Dy</i>	авода о муль	
i.	E _r	J _r	Jĸ	ז,] полн.	α _κ (α,)	Мульти- Поль- ность
I	2	3	4	5	6	7	8
Ι.	40,0 ^X	6					
2.	60,8 <u>+</u> 0,1 [×]	25,0 <u>+</u> 0,5		35,25 <u>+</u> 1,0	300,0	(I,4I) ^{**}	MI
3.	87,0 <u>+</u> 0,1 [×]	29 ,1<u>+</u>0, 5		12,94 <u>+</u> 0,79	140,9	(0,44 <u>+</u> 0,04)	MI
4.	110,3 <u>+</u> 0,2 [×]	3,1 <u>+</u> 0,3					•
5.	127,1 <u>+</u> 0,2 [×]	I,I <u>+</u> 0,3				an a	
6.	147,8 <u>+</u> 0,2 [×]	8,9 <u>+</u> 0,5			· .		E2
7.	153,1 <u>+</u> 0,1 [×]	13,2 <u>+</u> 0,6	2,82 <u>+</u> 0,24		16,2	0,21 <u>+</u> 0,03	EI
8.	162,2 <u>+</u> 0,3 [×]	6,I <u>+</u> 0,9				• .	
9.	179,8 <u>+</u> 0,1 *	2,7 <u>+</u> 0,4	0,33 <u>+</u> 0,08		3,2	0,12 <u>+</u> 0,05	E 2
10.	182,4 <u>+</u> 0,2 [×]	3,2 <u>+</u> 0,5					
II.	187,9 <u>+</u> 0,1 [×]	I6,6 <u>+</u> 0,6	0,68 <u>+</u> 0,06		17,4	0,041 <u>+</u> 0,005	5 EI
12.	193,3 <u>+</u> 0,2 [×]	31,6 <u>+</u> 0,8	10,50 <u>+</u> 0,13	I,08 <u>+</u> 0,I4	43,4	0,330 <u>+</u> 0,020) MI
13.	196,6 <u>+</u> 0,3 [×]	2,5 <u>+0</u> ,4				4	
I4.	209,0 <u>+</u> 0,2 *	5,8 <u>+</u> 0,2	0,70 <u>+</u> 0,II		6,5	0,129 <u>+</u> 0,026	5 E2
15.	258,2 <u>+</u> 0,2 [×]	4,7 <u>+</u> 0,5					
16.	267,0 <u>+</u> 0,4 [×]	2,4 <u>+</u> I,2					. 4
17.	272,3 <u>+</u> 0,1 [×]	18,6 <u>+</u> 1,5	I,78 <u>+</u> 0,II	0,19 <u>+</u> 0,05	20,6	0,101 <u>+</u> 0,020	MI
18.	280,I <u>+</u> 0,I [×]	100,0 <u>+</u> 2,8	9 , 75 <u>+</u> 0,16	I,44 <u>+</u> 0,06	111,2	0,098 <u>+</u> 0,004	MI
19.	297,2 <u>+</u> 0,1	3,5 <u>+</u> 0,2			1		
20.	309,2 <u>+</u> 0,3		I, ,		, f		
21.	320,8 <u>+</u> 0,3 ^x	7,0 <u>+</u> 2,4					
22.	337,4 <u>+</u> 0,4						
23.	341,4 <u>+</u> 0,1 [×]	74,6 <u>+</u> 1,8	4,13 <u>+</u> 0,07	0,66 <u>+</u> 0,6	79,4	0,055 <u>+</u> 0,002	MI+E2

Энергии и относительные интенсивности гамма-лучей и конверсионных электронов при распаде ¹⁵⁷Но.КВК и выводы о мультипольностях переходов в ¹⁵⁷77.

111

продолжение таблицы І

I	2	3	4	5	6	7	(B
24.	353,7 <u>+</u> 0,2	1,5 <u>+</u> 0,3						
25.	359,6 <u>+</u> 0,2 [×]	4,7 <u>+</u> 0,3	0,26 <u>+</u> 0,08		5,0	0,424 <u>+</u> 0,	086	13
26.	367,1 <u>+</u> 0,2	1,9 <u>+</u> 0,3						
27.	379,2 <u>+</u> 0,2 [×]	0,8 <u>+</u> 0,I						
28.	388,6 <u>+</u> 0,2 [×]	I,7 <u>+</u> 0,2						
29.	400,4 <u>+</u> 0,3	I						
30.	420,6 <u>+</u> 0,2 [×]	I,2 <u>+</u> 0,3						
31.	429,5 <u>+</u> 0,3 [×]	0,6						. * .
32.	449,6 <u>+</u> 0,3	I	•					
33.	462,9 <u>+</u> 0,4 [×]	I,5 <u>+</u> 0,3						
34.	466,9 <u>+</u> 0,3 [×]	1,7 <u>+</u> 0,3						
35.	.476,7 <u>+0</u> ,2 [×]	2,3 <u>+</u> 0,2						
36,	503,5 <u>+</u> 0,4	0,8 <u>+</u> 0,3	0,084 <u>+</u> 0,02		0,9	0,107 <u>+</u> 0,0	20	M 2
37.	508,6 <u>+</u> 0,2 [×]	10,4 <u>+</u> 0,5	0,16 <u>+</u> 0,04		10,6	0,0I6 <u>+</u> 0,0	03	E2
38.	555,7 <u>+</u> 0,1 [×]	12,3 <u>+</u> 0,4	0,32 <u>+</u> 0,03		12,7	0,0196 <u>+</u> 0,	0050	MI
39.	570,1 <u>+</u> 0,2 [×]	2,2 <u>+</u> 0,3						
40.	649,0 <u>+</u> 0,3 [×]	I,4 <u>+</u> 0,3				•		
41.	685,5 <u>+</u> 0,2	3,0 <u>+</u> 0,2						
42.	688,5 <u>+</u> 0,2 [×]	2,4 <u>+</u> 0,2			•	· · · · ·	1 - E	
43.	703,4 <u>+</u> 0,3	0,6 <u>+</u> 0,2					•	
44.	708,8 <u>+</u> 0,2 [×]	5,6 <u>+</u> 0,2						
45.	74 9, 2 <u>+</u> 0,3 [×]	I,3 <u>+</u> 0,3					· · · ·	
46.	779,2 <u>+</u> 0,2	I,8 <u>+</u> 0,3				۰.,		
47.	791,3 <u>+</u> 0,3 [×]	0,8 <u>+</u> 0,2						
48.	828,6 <u>+</u> 0,2 [×]	2,5 <u>+</u> 0,2						
49.	835,8 <u>+</u> 0,2 ^X	4,5 <u>+</u> 0,2						
50.	870,3 <u>+</u> 0,2 [×]	3,6 <u>+</u> 0,3						•
БТ	807 0.0 T X	T6 0+0 #	1					

продолжение таблицы І

I	2	3	4		5	6	7	<u>``</u>	8
52.	929,3 <u>+</u> 0,2 [×]	2,4 <u>+</u> 0,4						•	
53.	1063,4 <u>+</u> 0,2 [×]	0,7 <u>+</u> 0,I			. ^			· •	
54.	1149,9 <u>+</u> 0,2 [×]	3,6 <u>+</u> 0,4		e	•			\$	
55.	1211,0 <u>+</u> 0,2 [×]	9,7 <u>+</u> 0,4							
56.	1379,9 <u>+</u> 0,2	I,7 <u>+</u> 0,2							
57.	1459,3 <u>+</u> 0,4	I,3 <u>+</u> 0,2							
	Примечан	ие: ^ж Пеј **т	еходы,	рази	ещенны	е в схеме	распа	ta 15	⁵⁷ Ho.

മ

 α_{κ} (α_{ι}) принималось, что переход с энергией 60,84 кэв типа МI (α_{ι} =I,4I).

	60,8	87,0	I47,8	162,2	179 , 8	I87,8	193,2	272,3	280, I	320,8	34I,4	
8,74I			•				+	+				
I'SSI				· .		+						
162 , 2	{				, +							
8'6LI		•		+					a.			
8 ' 78I			·					•		`. +		
193,2		+	+			•		•				
5 67,0								+				
272,3		+	+	•							•	
280 , 1	+	-	 -									
350,8		er Goloria Matematica				+		••				
†'I †E									ч 1. с.			
L*555							• . •	÷	+		+	
0*6†9			·						+			
£4078	5						+	: /	+			на се стана При се стана При се стана се стана При се стана се стана При се стана се стана При се стана

Таблица 2

.. 10 Спектры гамма-лучей и конверсионных электронов обрабатывались с помощью ЭВМ – "Минск-2" с использованием светового карандаша и программы "КАТОК" /12/. На основании анализа экспериментальных данных предлагается схема распада 157 Но \rightarrow 157 Dy (рис. 2). На рисунке кружками помечены каскады гамма-лучей, введенные на основании гамма-гамма-совпадений. Остальные уровни 157 Dy введены на основании энергетического баланса и баланса интенсивностей. При расчете значений *lg ft* принималось, что разность масс¹⁵⁷ Но \rightarrow 157 Dy равна 2310 кэв /18/.

Возбужденные состояния ¹⁵⁷Dy и обсуждение результатов

Ламм /14/, используя метод Беса и Шиманского /15/; провел расчет равновесной деформации для нечетных ядер диспрозия в зависимости от ϵ и ϵ_4 (ϵ и ϵ_4 -значения квадрупольной и гексадекапольной деформации, соответственно). Результаты этих расчетов даны в табл. 3.

Ядро	e	€ 4	Квантовые характеристики
¹⁵⁷ Dy	0,216	-0,022	3/2 /521/
¹⁵⁹ Dy	0,236	-0,018	3/2 /521/
¹⁶¹ Dy	0,251	-0,010	5/2 /642/
163 ⁻ Dy	0,260	-0,001	5/2 /523/
165Dy	0,267	0,009	7/2 /633/

Таблица 3

Согласно Ламму, основное состояние ¹⁵⁷Dy имеет квантовые характеристики 3/2⁻ /521/. Величина спина основного состояния ¹⁵⁷Dy (3/2) подтверждена экспериментально А. Розеном и др. ^{/16/}.

а) Возбужденные состояния ротационной полосы
основного состояния 3/2⁻ /521/

При исследовании изомерного состояния с энергией 199 кэв (11/2-/505/) в ¹⁵⁷Dy (рис. 2) в работе ^{/2/} получено, что мультипольности переходов с энергией 61 и 87 кэв типа М1, а перехода с энергией 148 кэв – типа Е2. Эти переходы разряжают возбужденные состояния с энергией 148 кэв (7/2⁻) и 61 кэв (5/2⁻) ротационной полосы основного состояния ¹⁵⁷Dy 6/2⁻ /521/.

Т. Гротдаль и др. ^{/1/} при изучении ядерных реакций ¹⁵⁸Dy (d, t) ¹⁵⁷Dy и ¹⁵⁶Dy (d, p) ¹⁵⁷Dy наблюдали также ротационную полосу основного состояния $3/2^-$ /521/ ¹⁵⁷Dy с энергиями 0 кэв ($3/2^-$), 60 кэв ($5/2^-$), 147 кэв ($7/2^-$) и 257 кэв ($9/2^-$). В наших исследованиях при распаде ¹⁵⁷Ho также наблюдаются возбужденные состояния с энергиями 60,8 кэв ($5/2^-$), 147,8 кэв ($7/2^-$) и 258,1 ($9/2^-$) – уровни ротационной полосы основного состояния $3/2^-$ /521/ ¹⁵⁷Dy.

б) возбужденные состояния ротационной полосы5/2⁻ /523/

Т. Гротдаль и др. $^{/1/}$ в (d, t) и (d, p) реакциях наблюдали уровни ^{157}Dy с энергиями 340 кэв $(5/2^-)$, 418 кэв $(7/2^-)$ и 517 кэв $(9/2^-)$ ротационной полосы $5/2^-$ /523/. Из анализа спектров гамма-гамма-совпадений и мультипольностей переходов нами введены уровни с энергиями 341,1 кэв $(5/2^-)$ и 420,4 кэв $(7/2^-)$, члены этой ротационной полосы. Обозначенный пунктирной линией уровень с энергией 515,6 кэв $(9/2^-)$, вероятно, является также членом полосы $5/2^-$ /523/.

в) Уровни с положительной четностью

Из анализа экспериментальных данных нами введен уровень с энергией 187,8 кэв $(5/2^+)$. В реакциях (d, t) Гротдаль и др. $^{/1/}$. наблюдали уровни с энергиями 187 и 209 кэв. Однако о спине и четности этих уровней авторы $^{/1/}$ не высказываются. В соседнем ядре ¹⁵⁹ D_y /1,17,18/ наблюдаются уровни положительной четности с энергией 177,6 кэв (5/2⁺), 209,0 кэв (7/2⁺) и 239,6 кэв (9/2⁺). По модели Нильссона эти уровни можно рассматривать как члены ротационной полосы 5/2⁺ /642/. Из сравнения следует, что наблюдаемые уровни 187 и 209 кэв в работе /1,17/ и уровнем 187,8 кэв (5/2⁺) в наших исследованиях, вероятно, являются членами этой полосы.

г) Другие уровни

Уровни с энергией 162,2; 508,6; 527,4; 688,0; 1050,0 и 1211,2 кэв пока трудно интерпретировать.

Наблюдаемые уровни 897,0 кэв (5/2⁻) и 990,4 кэв интерпретируются нами как члены ротационной полосы 5/2- /512/.

В работе ^{/1/} наблюдались также возбужденные состояния с энергией 901, 985 и 1101 кэв. Двум последним состояниям авторы приписывают квантовые характеристики 7/2⁻, 5/2 /512/ и 9/2⁻, 5/2 /512/, соответственно.

На рис. 1 приведены основные результаты анализа возбужденных состояний ^{157}Dy , полученных в наших исследованиях, в реакциях (d, t), (d, p) /1/, а также из распада изомерного состояния 11/2⁻/505/, полученного в реакции (3 He, 3n) /2/.

д) Спин основного состояния ¹⁵⁷Но

Непосредственное измерение спина основного состояния методом атомных пучков в работе ^{/19/} дало значение спина 7/2. По модели Нильссона для 67 протона возможными являются состояния либо 7/2⁻ /523/, либо 7/2⁺ /404/.

Из анализа схемы распада ¹⁵⁷Но → ¹⁵⁷Dy , значений *lg ft* (рис. 2) следует, что квантовыми характеристиками основного состояния ¹⁵⁷Но являются 7/2⁻ /523/.

Из сравнения теоретических значений деформации для ¹⁵⁹ Dy и ¹⁵⁷ Dy (табл. 3), полученных Ламмом ^{/14/}, ожидается аналогичное по-

14'

		Таблица 4
B	Сопоставление одночастичных эксперименте с одночастичными "/20/	состояний ¹⁵⁷ Dy, наблодаемых состояниями ¹⁵⁹ Dy, рассчитанными

	157 _{Dy}	(эксп.)	159Dy(Teop./20/					
К	Наши данные Е кэв	(d,p) и (d,t)/1/ Е ир Кэв	E yp	Структура состояний -	\$			
I	2	3	4	5				
3/2	0	0	0	3/2-/521/	94			
5/2+	188		197	5/2*/642/	97			
3/2+	. . .	235	240	3/2+/651/	89			
5/2	34I	340	290	5/2 /523/	9I [°]			
3/2+		306	300	3/2*/402/	72			
I/2+		388	330	I/2 ⁺ /400/	63			
I/2+	•		500	I/2 ⁺ /660/	79			
I/2		464	530	1/2-/521/	55			
II/2 ⁻	199 ^(a)	199	820	II/2 /505/	99			
7/2+			1000	7/2+/633/	64			
3/2		399	1040	3/2 / 532/	80			
I/2		555	1100	I/2 ⁻ /530/	66			
5/2	897	(901)	1200	5/27/512/	64			
7/2			1270	7/2 /521/+9	87			
5/2+			I340	5/2+/400/	68			
3/2-			1350	3/2 /521/+0	100			

Примечание: а) уровень, наблодаемый в работе /2/.

Табанца 5		Акэв В _{КЭВ}	I2 , 0 0 , 022				I0,8 -0,04I			II,3 -0,005				I2,2 -0,003		
	параметров А и	E yp K3B	0	60,8	I47,8	258 , I	34I,I	420,4	516,3	0 0 1	56,6	I36,5	236,0	309,6	395,4	505, I
	Рассчитаниме значения	Ядро Квантовые характе- ристики	157Dy 3/2,3/2 /521/	5/2"	7/2"	9/2" *	5/2 ,5/2 /523/	7/2	9/2" "	[59]]/16/3/2",3/2 /521/	5/2" "	7/2 ^m a	9/2" "	5/2",5/2 /523/	7/2" "	9/2 -

.

.

ведение одночастичных состояний этих ядер. Это подтверждается также экспериментальными результатами. В таблице 4 дано сопоставление одночастичных состояний ¹⁵⁷Dy, полученных в эксперименте, с рассчитанными авторами работы ^{/20/} одночастичными состояниями ¹⁵⁹Dy.

В таблице 5 приведены значения $A = \frac{\hbar^2}{2J}$ и В для ротационных полос в ¹⁵⁷Dy и ¹⁵⁹Dy , рассчитанные по формуле

$$E_{k}(l) = E_{k}^{0} + A[l(l+1) - K^{2}] + B[l(l+1) - K^{2}]^{2}$$

на основе экспериментальных результатов.

Для уровней ротационных полос $3/2^{-}/521/$ и $5/2^{-}/523/$ влияние взаимодействия Кориолиса мало. Матричный элемент взаимодействия, рассчитанный для деформаций $\epsilon = 0,2$ и $\epsilon_{4} = 0$, имеет выражение

$$A_{K,K+1} = \frac{\hbar^2}{2J} |\langle K | J - | K+1 \rangle | = -1.339 \frac{\hbar^2}{2J}.$$

Такое значение матричного элемента указывает, что влияние этого взаимодействия на энергетическое расположение уровней рассматриваемых ротационных полос мало.

В заключение авторы считают приятным долгом поблагодарить профессора Г.Н. Флерова за предоставленную возможность проведения ряда экспериментов в Лаборатории ядерных реакций, А.Баланду и К. Круляса за помощь при проведении облучения мишеней, Л. Черны за участие в обработке результатов.

Литература

T.Grotdal, K.Nybø, B.Elbek. Mat.Fys.Medd.Dan.Vid. Selsk., 37, No. 12 (1970).

2. J.Borggreen, G.Sletten. Nucl. Phys., A143, 255 (1970).

- 3. A.Gizon, J.Trecherne, J.Valentin. Departament de Physique Nucleaire, Annuaire 1964, Institut du Radium.
- Ж.Т. Желев, В.Г. Калинников, А.В. Кудрявцева, Н.А. Лебедев, С.П. Макаров, Г. Музиоль, Х. Херрманн. ЯФ, <u>2</u>, 956 (1965).
- 5. Ц. Вылов, К.Я. Громов, Я. Зубер, К. Зубер, В.В. Кузнецов, А.В. Потемпа, В.И. Фоминых. Программа и тезисы докладов ежегодного совещания по ядерной спектроскопии и структуре атомного ядра в Киеве, стр. 120, изд. "Наука", Ленинград (1972).
- 6. Б.К. Преображенский, О.М. Лилова, А.Н. Добронравова, Е.Д. Тетерин. ЖАХ, 1, 2294 (1956).
- 7. В.П. Афанасьев и др. Препринт ОИЯИ, 13-4763 (1969).
- 8. Ц. Вылов, И.Н. Егошин, С. Орманджиев, Б.П. Осипенко, Д. Срнка, Я. Юрковски. Препринт ОИЯИ, 13-6440 (1972).
- 9. Б. Амов и др. Препринт ОИЯИ, Д6-5783, стр. 185 (1971).
- 10. Б. Амов и др. Препринт ОИЯИ, Д6-5783, стр. 186 (1971).
- 11. В.С. Александров и др. Изв. АН СССР, сер. физ., <u>34</u>, 69 (1970),
- 12. В. Гаджоков. ПТЭ, № 5, 82 (1970).
- 13. W.D.Mayers, W.J.Swiatecki. Preprint UCRL-11980 (1965).
- 14. Inger-Lena Lamm. Nucl. Phys., A125, 504 (1969).
- 15. D.Bes, Z.Szymanski. Nucl.Phys., <u>28</u>, 42 (1961). Sci.Prog.Oxf. <u>55</u>, 187 (1967).
- 16. A.Rosen, C.Ekstrom, H.Nyqvist, K.E.Adelroth. Nucl. Phys., <u>A154</u>, 526 (1970).
- 17. J.Boutet, J.P.Torres, P.Paris. Nucl. Phys., <u>A167</u>, 326 (1971).
- 18. К.Я. Громов и др. ЯФ, <u>4</u>, 1102 (1966).
- 19. C.Ekstrom, T.Noreland, M.Olsmats, B.Wannberg. Nucl. Phys., A135, 289 (1969).
- 20. L.A.Malov, V.G.Soloviev, S.I.Fedotov. JINR Preprint, E4-5567, Dubna, 1971.

Рукопись поступила в издательский отдел 4 мая 1972 года.