

P6 - 6403 P

26/1-72

Ю.С.Короткин

ИЗУЧЕНИЕ ГИДРОЛИЗА ТРАНСУРАНОВЫХ ЭЛЕМЕНТОВ II. Гидролиз америция (III) в присутствии ионов с положительной и отрицательной энергией гидратации

P6 - 6403

Ю.С.Короткин

ИЗУЧЕНИЕ ГИДРОЛИЗА ТРАНСУРАНОВЫХ ЭЛЕМЕНТОВ II. Гидролиз америция(III) в присутствии ионов с положительной и отрицательной энергией гидратации

Направлено в журнал "Радиохимия"

Объеденсьный институт пасренах всследований БИБЛИОТЕКА Правильный выбор технологических параметров методов извлечения трансплутониевых элементов (ТПЭ) из водных растворов зависит от достоверности наших знаний о формах их существования в растворах. Большинство методов выделения ТПЭ основано на извлечении их из растворов с $pH \ge 1$ /1- 4/. Число работ, посвященных изучению состояния ТПЭ в этой области значений pH, крайне мало. Они ограничиваются либо качественными представлениями об ионной и коллоидной формах существования Am и Cm в растворах $^{/5/}$, либо вычислением первой и второй константы гидролиза из данных по экстракции, ионному обмену и электромиграции $^{/6-10/}$.

На ограниченность применения указанных методов для получения достоверных данных о состоянии ионов в растворах указывалось в работах ^{/11,12/}. Поэтому при изучении гидролиза трехвалентных ТПЭ в качестве основного метода была выбрана хроматография с обращенными фазами. Основные принципы применения распределительной хроматографии для изучения гидролиза изложены ранее в работе ^{/12/}. В работе применялись также методы электромиграции, ионного обмена и экстракции.

Экспериментальная часть

В качестве неподвижной фазы применялся 0.1М раствор тетрабутилгипофосфорной кислоты (ТБГФК). Носителем служила отмытая хроматографическая бумага ватман-1 и FN -3 (1 x 50 см). Эти бумаги аналогичны по свойствам, но скорость элюирования на FN -3 в два с половиной раза меньше, чем на ватман-1. Элюирование проводилось растворами HNO_3 и $HCIO_4$ с заданными значениями pHвосходящим методом при 18-20°С. Подготовка бумаги, растворов и условия проведения опытов подробно описаны в работе $^{/13/}$. Измерение pH растворов до и после опытов проводилось в аликвотах из общего объема на pH -метре типа "Бекман- R" с точностью \pm 0.002. Нитраты и перехлораты лития, натрия и калия марки "ХЧ" очищались путем перекристаллизации и высушивались перед работой при 150°С. Растворы готовились по навескам соли.

Так как присутствие кремния в растворах делало невозможным проведение опытов, растворы очищались от кремния многократной экстракцией Am(III) теноилтрифторацетоном (TTA). Установлено, что при pH = 3-5 вместе с Am экстрагируется 0.1% кремния. В работе использовалась только тефлоновая и полиэтиленовая посуда. Кислоты очищались изотермической дистилляцией в тефлоновой аппаратуре.

Коэффициенты распределения измерялись статическим способом. Электромиграция проводилась при напряжении 30-40 в/см на бумагах ватман-1 и FN -3 без ТБГФК.

Радиохимическая чистота изотопов ²⁴³Am и ²⁴¹Am проверялась измерением а -спектров на Si - Au -детекторе с разрешением 30 кэв и у -спектров на Ge-Li -детекторе с разрешением ~ 3 кэв.

Америций перед работой переводился в нитратную или перхлорат – ную форму и растворялся в соответствующих элюентах. Для каждого опыта бралось 10⁻² – 10⁻¹ мкг америция в объеме 0.02 мл.

<u>Результаты и обсуждение</u>

Первая серия опытов проводилась в растворах HNO₃ и HClO₄ с постоянной ионной силой, равной 0.1 и 1, которая поддерживалась перхлоратом лития. Так как растворы HNO3 с заданным pH готовились разбавлением 0.1М HNO3 с последующим добавлением NH₄OH, то в этих опытах концентрация NO₃-ионов с ростом *pH* уменьшается (рис. 2а,б; За,б). Пики на полученных хроматограммах (рис. 1) группировались по методу, описанному в работе /12/ - пики значения R, которых лежат на одной прямой, относятся к одной комплексной форме (см. рис. 2). Точность определения R, в пределах ошибок, указанных на рисунке. Далее составлялась графическая зависимость относительной площади пиков (в %), относящихся к одной ионной форме от *pH* раствора (рис. 3). Равновесия при [NO₃] = const (μ = 0.1 по LiNO3) показаны на рис. 5а и ба. Очевидно, что гидролиз Am(III) в указанных условиях протекает по схеме: $I \neq II \neq III \neq IV \neq V$. Заряд формы 1 определялся электромиграцией из соотношения Z_i = = $\frac{U_i}{U_o}$ Z_0 (1), где Z_i и U_i -заряд и подвижность исследуемого иона, а Z_0 и U_0 -известного иона $^{/14/}$. Для сравнения был выбран уранил-ион, заряд которого в HNO_3 и $HCIO_4$ при pH = 1-2 равен +2. При $pH \ge 2.5$ UO_2^{2+} начинает гидролизоваться и непригоден для сравнения. Результаты опытов представлены в табл. 1. До рН = 2 Z= +2 в НNO₃ и +3 в НСЮ₄.

Как известно^{/15/}, зависимость типа $lg K_p = f [A^-]$ (2) позволяет судить о заряде иона, поскольку

$$\frac{\partial \, lg \, K_p}{\partial \, lg \, [A^-]} = \frac{Z_k}{Z_a} - \bar{n} = -\frac{\nu}{Z_a}$$
(3), где

-5

 K_p -коэффициент распределения, $[A^-]$ -концентрация аниона, Z_k заряд катиона, Z_a -аниона, \bar{n} -среднее координационное число, ν заряд комплекса. Поэтому для определения заряда комплекса мы использовали зависимость $Rm = f \ 1g \ [NO_3^-]$, т.к. $Rm \sim K_p \ ^{/12/}$ (рис.4). Заряд формы 1, определенный этим методом, оказался равен + 1,7 при $\mu = 0.1$ и +2 при $\mu = 1$ (рис. 4, прямые 2 и 3). Концентрация лития при этом поддерживалась постоянной с помощью $LiClO_4$. Определение коэффициентов распределения Am(111) между растворами $HClO_4$ и Дауэкс-50 х 8 ($\mu = 0.1, LiClO_4$) показало, что заряд $Am = HClO_4$ при pH = 1 равен +3. Кроме того, добавление в раствор $HClO_4$ при pH = 1 ионов NO_3^- вызывает появление на хроматограммах второго пика с R_f , соответствующим значению R_f америция в HNO_3 .

Таким образом, форма 1 в растворах HNO_3 является мононитратом – $Am(NO_3)^{2+}$, что соответствует литературным данным ^{/20/}. В растворах $HCIO_4$ форма 1 является ионом Am^{3+} .

Форма II в HNO_3 имеет Z = 0.86 (прямая 1, рис. 4). Уменьшение заряда с увеличением pH может происходить только за счет гидролиза при сохранении в форме II иона NO_3^- , т.к. прямая 1 имеет $tg \ a \neq 0$ (рис. 4). Добавление ионов NO_3^- в $HClO_4$ при pH = 6 вызывает появление на хроматограммах и при электромиграции пиков, соответствующих формам 1 и II в HNO_3 . Это значит, что форма II в HNO_3 имеет состав $[Am^+(NO_3)(OH)]^+$, а в $HClO_4 - Am(OH)^{2+}$, что соответствует их подвижности при электромиграции.

Так как при электромиграции в $HClO_4$ форма III имеет положительный заряд (~ в два раза меньше заряда формы II в $HClO_4$) и ее $R_f = 0$, а в HNO_3 эта форма нейтральна и ее $R_f = 0$, то форма III в HNO_3 имеет состав $[A_m(OH)_2 NO_3]^0$, а в $HClO_4$ – $A_m(OH)^{2+}$ ($R_f = 0$ имеют ионы с двумя OH^- -группами $^{/12/}$).

Форма IV в HNO₃ имеет $R_f > 0.8$ и не содержит NO_3^- -группы во внутренней координационной сфере (прямая 4, рис. 4). Зависимость $R_f = f [pH]$ соответствует присутствию OH⁻ -групп (т.к. $R_m =$ $= -x lg [OH⁻]_{\pm a}^{/12/}$). При электромиграции эта форма в виде отдельного пика не проявляется. Из работы $^{/12/}$ следует, что подобными свойствами обладает димерная форма, т.е. $[A_m(OH)_2]_2^{2+}$.

Форма V в HNO_3 и форма IV в $HCIO_4$ имеют $R_f = 0$ и не мигрируют в электрическом поле, и, т.к. при pH > 8 достигается произведение растворимости гидроокиси америция, то естественно предположить, что эти формы соответствуют полимерной гидроокиси америция.

Суммируя все вышеизложенное, можно предположить, что механизм гидролиза $A_m(III)$ выражается следующим образом (гидратация не учитывается для простоты записи): в HNO_3 ($\mu = 0.1 - 1$ по $LiCiO_4$ и $LiNO_3$)

$$\begin{array}{c}
Am\left(NO_{3}\right)^{2+} \rightarrow \left[Am\left(NO_{3}\right)(OH\right)\right]^{+} \rightarrow \left[Am\left(OH\right)_{2}NO_{3}\right]^{0} \neq \\
I & III & III \\
\rightarrow \left[Am\left(OH\right)_{2}\right]^{2+} \rightarrow Am\left(OH\right)^{0}_{3} \quad \forall \Pi \varkappa \quad \left[Am\left(OH\right)_{2}\right]^{+\chi}_{x};
\end{array}$$
(4)

в $HC10_4$ при $\mu = 0.1$ ($LiC10_4$)

$$\begin{array}{ccc} Am^{3+} \stackrel{}{\underset{l}{\leftarrow}} & Am(OH)^{2+} \stackrel{}{\underset{l}{\leftarrow}} & Am(OH)^{2} \stackrel{}{\underset{l}{\leftarrow}} & Am(OH)^{0}_{3} & \text{или} \\ I & II & III & IV \\ \left[Am(OH)_{2} \right]^{+x}_{x} \end{array}$$

$$(5)$$

При рассмотрении равновесий 4,5 (рис. 3,6а) обнаруживается влияние концентрации фонового электролита (*LiClO₄* и *LiNO₃*) на процесс гидролиза. Влияние электролита в настоящее время связывается с изменением активности ионов. По Самойлову ^{/16/} изменение активности распределяемых ионов обусловлено изменением гидратации катионов электролитов. Литературные данные о влиянии знака гидратации катиона электролита на процесс гидролиза отсутствуют, поэтому были поставлены опыты по изучению гидролиза в присутствии катионов *Na*⁺

и К+ .Катион калия обладает высокой отрицательной гидратацией (т.е. это оводняющий катион), а Na⁺ обладает слабой положительной гидратацией, близкой к нулю. Результаты показаны на рис. 5-8. Как и в предыдущих опытах, разделение проводилось как на бумаге ватман-1, так и на бумаге FN -3. На бумаге ватман-1 пики на хроматограммах получались размытыми с высоким фоном вдоль хроматограмм (рис.5б, в, 6б, в). Форму III на них обнаружить не удалось. Это было объяснено тем, что в присутствии катиона лития, обладающего высокой положительной гидратацией (обезвоживающий катион), форма III , имеющая две гидроксильные группы, взаимодействует с неподвижной фазой гораздо быстрее, чем в присутствии ионов K^+ и Na^+ . Нужно учесть, что ионы NO3 тоже обладают отрицательной гидратацией. Опыты, поставленные на бумаге FN -3 с гораздо меньшей скоростью элюции, дали сложную картину, показанную на рис. 7,8. Расшифровка этого спектра проводилась описанным выше методом. Форма 1 является мононитратом – $Am(NO_3)^{2+}$. Форма II имеет заряд +1 при $NO_3^- \ge 0.03$ М (рис. 4, прямая 6), а заряд формы III при *рН* = 3.9 равен +2 (при NO3 > 0.06 M). Такое повышение заряда с увеличением рН можно объяснить димеризацией. Форма IV имеет R_f = 0, но при электромиграции она не образует отдельной зоны, превращаясь, очевидно, в форму III . Заряд формы IV Юлизок к единице (рис. 4, прямая 7). Эти данные позволяют считать форму IV образующейся из формы III присоединением ОН -- группы, которая не входит во внутреннюю координационную сферу. Формы У и VI соответствуют по свойствам подобным формам в присутствии LiNO3 . Отрицательно заряженные комплексы с очень низкой подвижностью (~ 5.10⁻⁸ см/в-1сек-1) образуются при рН > 9.5. Таким образом, гидролиз в 0.1М растворах КNO3 и NaNO 3 можно представить следующей схемой:

отрицательные коллоиды.

Процессы (5) и (6) соответствуют известному факту о том, что гидролитическая полимеризация ионов металлов начинается при концентрациях ~ 10^{-6} М. В присутствии ионов Na^+ , K^+ и NO_3^- условия для димеризации резко улучшаются, т.к. уменьшение электронной плотности связи *О-Н* в связанной воде обусловливает более легкое протекание реакций типа

$$Me(H_2O)_x^{3+} + H_2O \quad \Rightarrow \ Me(H_2O)_{x-1}(OH)^{2+} + H_3O \quad + \tag{7}$$

и, соответственно, более раннее начало гидролиза.

Гидролиз такого типа ведет к образованию полиядерных комплексов. Механизм процессов (4) и (6) в общем соответствует теории гидролитической полимеризации Силлена – "ядро-звенья" /17/.

Надо отметить, что константы устойчивости 1-й и 2-й гидролизных форм, вычисленные для раствора в 0,1М $LiNO_3$ (pH = 3-4), совпадают с литературными данными и равны 2.10¹¹ и ~10²¹ соответственно

Уравнения (4) и (6) могут в некоторой степени не отражать истинного процесса в результате избирательной сорбции формы *III* в процессе (4) и формы *IV* в процессе (6), который может идти преимущественно по схеме $I \stackrel{\leftarrow}{\to} II \stackrel{\leftarrow}{\to} III \stackrel{\leftarrow}{\to} V$ (8).

В растворах нитратов гидроокись и предшествующие ей комплексы, очевидно, имеют в своем составе NO₃ -группы. Но внешнесферные группы в комплексах затруднительно изучать методами, применяемыми

в данной работе. То же относится и к составу гидроокиси. Участие NO_3^- -иона в процессе гидролиза америция (*III*) при наличии ионов Na^+ и K^+ проявляется значительно больше, чем в присутствии ионов Li^+ . Это явление аналогично отмеченному в работе /18/ влиянию добавок ионов K^+ , Ba^{2+} и NH_4^+ в раствор хлорида родия, которое смещает равновесие в сторону образования комплексов с большим числом ионов CI^- в 1-й координационной сфере. Надо отметить, что при малых концентрациях электролита (*NaNO3* и *KNO3*) наблюдается оводняющее действие, не только катионов, но и аниона, NO_3^- . Состояние америция (*III*) в чистых растворах HNO_3 должно быть близким к состоянию в растворах с *NaNO3*, т.к. ион *Na*⁺, обладая энергией гидратации, близкой к нулю, почти не разрушает структуру воды. Li^+ и K^+ , наоборот, сильно разрушают структуру воды, что вызывает изменение скорости реакций обмена /19/.

Таким образом, в отличие от общепринятых вэглядов /4-10,20/, гидролиз америция (III) начинается при низких значениях pH (1,0-2) и является сложным процессом. Очевидно, что при таких низких значениях pH гидролиз может быть обусловлен только процессами, которые соответствуют уравнению (7).

Автор благодарен С.А. Плешуковой за помощь в проведении экспериментов.

Выводы

1. Изучен гидролиз ионов америция (*III*) (10^{-6} M) в растворах *HNO*₃ и *HC1O*₄ с постоянной ионной силой в интервале *pH* = 1-11.

2. Показано различное влияние на процесс гидролиза ионов с положительной и отрицательной энергией гидратации.

8. Доказано, что с помощью распределительной хроматографии на бумаге можно получить достоверные данные о процессах гидролиза.

- 1. E.K.Hulet, D.D.Bode. Int.Rev.Sci., 4, 1 (1971-72).
- "Symposium sur less elements transuraniens", Liege, 21-22 Avrill (1969).
- 3. У. Мец, Г. Уотербери. Аналитическая химия трансурановых элементов. Атомиздат (1967).
- 4. Е.В. Егоров, С.Б. Макарова. Ионный обмен в радиохимии. Атомиздат (1971).
- 5. И.Е. Старик, Ф.Л. Гинэбург. Радиохимия, 3, 6, 685 (1961).
- 6. B.Marin, T.Kikindai, C.r.Acad.Sc.Paris, C268, 1, 1-4 (1969).
- 7. Desire Bernard. "Determination de la premiere constante d'hydrolyse d'elements (111)-4f et 5f". These la faculte des sciences de Paris (1968).
- 8. R.Guillaumont et al. C.r.Acad.Sc.Paris, 268, 140 (1969).
- 9. Электромиграционный метод в физ. хим. и радиохим. исследованиях. стр. 125, Москва, Атомиздат (1971).
- 10. S.H.Eberle. KFK-1136, Karlsrue (1970).
- 11. В.В. Фомин. Радиохимия, 9,6, 652 (1967).
- 12. Ю.С. Короткин. Препринт ОИЯИ, Р6-6402 (1972).
- 13. Ю.С. Короткин. Радиохимия, 13, 1, 137 (1971).
- 14. И.Е. Старик. "Основы радиохимии" стр. 570, Наука (1969).
- 15. В.В. Фомин и др. ЖФХ, 29, 11, 2042 (1955).
- 16. Самойлов. Структура водных растворов электролитов и гидратации ионов, М., Изд. АН СССР (1957).
- 17. L.Sillen. Acta Chem.Scand., 8, 299, 318 (1954).
- 18. К.А. Бурков и др. ЖНХ, 15, 6, (1601 (1970).
- 19. Куприк и др. ЖОХ, XI 1, 111 (1971).
- 20. А.И. Москвин. Радиохимия, 2, 141 (1959).

Рукопись поступила в издательский отдел 20 апреля 1972 года.

Таблица

	Ион	$U - (CM/B^{-1}CeK^{-1})$ pH = 1	U			
			Z _k	pH = 2	Z _k	
HNO 3	<i>UO</i> ²⁺ ₂	3,5.10-4	+2	3,0. 10 ⁻⁶	+2	
	$Am^{(3-x)}$	3,7.10 ⁻⁴	+2,1	3 , 0.10 ⁻⁶	+2	
HC10 ₄ -	UO_{2}^{2+}	3,0.10 ⁻⁶	+2		······	
	$Am^{(3-x)}$	4,4.10 ⁻⁶	+2,93			

Определение заряда америция в *HNO₃ и HClO₄* (ватман-1, 0,1M *LiClO₄*)

ţ

Рис. 1. Разделение гидролизных форм америция а) – электрофорез, pH = 5,2 $LiClO_4$ – 0,1 M, V = 40 в/см, 120 мин; б) бумажная хроматография, pH = 6,9 $HClO_4$ + $LiClO_4$, $\mu = 0,1$.

Рис. 2. Зависимость R_f гидролизных форм от pH a) – $LiCIO_4$ – 1 M; б) $LiCIO_4$ – 0,1M (в HNO_3); в) $LiCIO_4$ – 0,1M (в $HCIO_4$).

Рис. 3. Распределение гидролизных форм Am(III) в зависимости от (а,б,в - то же, что на рис. 2).

Рис. 4. Определение заряда гидролизных форм Am(III) в $LiNO_3$: 1 – форма II, 2 и 3 – форма 1, 4 – форма IV; в KNO_3 : 5 – III; 6 – II; 7 – IV.

Рис. 5. Зависимость R_i гидролизных форм от pH на ватман-1. а) - 0,1M LiNO₃; б) 0,1M NaNO₃; в) 0,1M KNO₃.

Рис. 6. Распределение гидролизных форм Am(III)в зависимости от pH на ватман-1. а) – $LiNO_3$; б) $NaNO_3$; в) KNO_3 .

Рис. 7. Зависимость R_f гидролизных форм от $_{pH}$ на FN -3; а) 0,1М KNO_3 ; б) 0,1М $NaNO_3$.

Рис. 8. Распределение гидролизных форм Am(III)в зависимости от *pH* на *FN* -3; а) *KNO*₃ - 0,1M; б) *NaNO*₃ - 0,1M.