B-123

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Althen RPCEAEM

add date bright

Дубна.

4047/2

P6 - 6080

29/x1-717.

Я.Ваврыщук, В.Жук, Э.Крупа, В.В.Кузнецов, В.А.Морозов, Х.Фуя, А.Халикулов

ИССЛЕДОВАНИЕ УГЛОВЫХ КОРРЕЛЯЦИЙ В ¹⁵¹ Gd

P6 - 6080

Я.Ваврыщук,¹ В.Жук,¹ Э.Крупа, В.В.Кузнецов, В.А.Морозов, Х.Фуя, А.Халикулов²

ИССЛЕДОВАНИЕ УГЛОВЫХ КОРРЕЛЯЦИЙ В ¹⁵¹ Gd

Направлено в Изв. АН СССР

Объединенный плетитут едерных песнедованей БИБЛИЮТЕНА

¹Университет им. М. Склодовской-Кюри (Люблин). ²Самаркандский государственный университет им. А. Навои.

Введение

В настоящей работе исследовались гамма-гамма угловые корреляции направлений в ¹⁵¹Gd при распаде ¹⁵¹Tb ($T_{1/2}$ =16,5 часа). Ядро ¹⁵¹Gd₈₇, находящееся в переходной области от сферических к деформированным ядрам, представляет большой интерес с точки зрения интерпретации природы возбужденных состояний. В работах /1-6/, посвященных исследованию распада ¹⁵¹Tb , были изучены спектры гамма-лучей и конверсионных электронов, спектры $\ell - \gamma$ - и $\gamma - \gamma$ -совпадений, определены мультипольности ряда переходов, предпринята попытка исследования угловых гамма-гамма-корреляций, изучены времена жизни некоторых состояний.

Эти данные позволили построить схему распада ¹⁵¹тв и провести частичный анализ природы возбужденных состояний ¹⁵¹Gd. Однако отсутствие точных данных о спинах возбужденных состояний ¹⁵¹Gd могло привести к ошибочным выводам о природе возбужденных состояний.

Поэтому нами были проведены детальные измерения угловых корреляций для следующих гамма-гамма-каскадов: (287-108), (180-287), (192-287), (444-287), (479-108), (252-479), (252-587), (615-180), (731-108) кэв; были измерены также угловые корреляции тройного каскада (180-287-108) без наблюдения промежуточного перехода. Из анализа угловых корреляций направлений нами определены спины возбужденных состояний с энергией 395,2; 575,3; 587,5 и 839,3 кэв и определены значения мультипольностей переходов 108,1; 180,2; 192,0; 443,8; 479,2; 587,5 и 731,2 кэв. Предварительные результаты наших исследований угловых корреляций в ¹⁵¹Gd были опубликованы в работе /7/.

Экспериментальная часть

а) Приготовление источников.

Радиоактивные источники ¹⁵¹ Т ℓ были получены в реакции расщепления тантала протонами с энергией 660 Мэв. Из облученных мишеней тантала химическим методом выделялась группа редкоземельных элементов, затем с помощью хроматографического метода /8/ из смеси редкозе – мельных элементов выделялся тербий. Радиоактивный источник тербия через 24 часа после облучения очищался повторно хроматографическим методом от накопившихся при распаде короткоживущих изотопов тербия (147 т ℓ , 149 т ℓ), ядер гадолиния и европия.

Для исследования угловых корреляций источники в жидком виде помещались в плексигла совую ампулу диаметром 4 мм. Присутствие в источнике других изотопов тербия, $^{152}T\ell$, $^{153}T\ell$, $^{154}T\ell$, $^{155}T\ell$ м $^{156}T\ell$, практически не мешало исследованию угловых корреляций в ^{151}Gd .

В отдельных случаях использовались источники 151 т ℓ , полученные с помощью масс-сепаратора ЛЯП /9/. Сепарированные источники 151 т ℓ на алюминиевых подложках растворялись в соляной кислоте и использовались при измерении в жидком виде.

б) Экспериментальная техника

Измерения угловых корреляций проводились на автоматизированной установке гамма-гамма-корреляций /10/ с использованием в одном канале спектрометра с *Ge* (*Li*)-детектором с чувствительным объемом 50 см³ с энергетическим разрешением 4,5 кэв на гамма-лучах ⁶⁰Со и во втором канале-сцинтилляционного спектрометра с кристаллом *Naj* (*Tl*) размером 40 х 40 мм.

В канале с Naj (Tl)-детектором использовались два одноканальных анализатора: один для выделения фотопика каскадных гамма-квантов,

второй - для выделения комптоновского распределения за фотопиком. Это позволяло исключить вклад от совпадений комптоновского распределения других гамма-квантов в спектре совпадений изучаемого каскада. Временное разрешение быстро-медленной схемы совпадений в нашем случае было 2 \mathcal{T}_o = 50 нсек. Регистрация совпадений осуществлялась шиклическим образом при углах 90°, 135° и 180° для подвижного сцинтилляционного детектора с экспозициями 2 мин. Спектры совпадений накапливались в шести участках (по 128 каналов) разделенной на 8 частей памяти 1024-канального амплитудного анализатора типа // ТА-5I2 B.

Экспериментальные результаты

При анализе экспериментальных результатов мы исходили из схемы распада 151 тв, представленной в работах^{4,5/}. На рис.I приведен фрагмент схемы распада ¹⁵¹Тв с учетом наших исследований.

Результаты анализа проведенных исследований угловых корреляций гамма-гамма-каскадов в ¹⁵¹Gd приведены в таблице I.

Таблица І

Резу	льтаты исследовании корреляций в 151	гамма-гамма углові Gd	1
Энергия уровня (кэв)	Каскад (кэв)	A ₂	A 4
1	2	3	4
395,2 108,1 0,0	287 - 108	-0,240 <u>+</u> 0,015	- 0,008 <u>+</u> 0,016
575,3 195,2 108,1	180 - 287	+0,046 <u>+</u> 0,018	+ 0,037 <u>+</u> 0,042
575,3 395,2 108,1 0,0	180 - 287-108	+0,021 <u>+</u> 0,103	- 0,042 <u>+</u> 0,167

I	2	3	4
1191,0 575,3 395,2	615–180	+0,002 <u>+</u> 0,03I	+ 0,089 <u>+</u> 0,082
587,5 395,2 108,1	192 - 287	-0,036 <u>+</u> 0,066	- 0,160 <u>+</u> 0,160
587,5 108,1 0,0	4 7 9 - 108	+0,050 <u>+</u> 0,0I5	- 0,018 <u>+</u> 0,034
839,3 587,5 108,1	252 - 479	+0,151 <u>+</u> 0,012	- 0,010 <u>+</u> 0,020
839,3 395,2 108,1	444 - 287	-0,161 <u>+</u> 0,017	+ 0,0I3 <u>+</u> 0,025
839,3 108,1 0,0	731 - 103	+0 , 23I <u>+</u> 0,069	- 0,152 <u>+</u> 0,154
939,3 587,5 0,0	252 - 587	+0,035 <u>+</u> 0,0II	- 0,020 <u>+</u> 0,022

При обработке экспериментальных данных введены поправки на случайные совпадения и телесные углы для Ce (Li)-детектора /II/ и для кристалла Naj (Te) /I2/.

Как видно из таблицы I, исследовались гамма-гамма угловые корреляции как двойных, так и тройных каскадов (без наблюдения промежуточного перехода) в ядре ¹⁵¹Cd. При распаде ¹⁵¹Tb наблюдаются интенсивные каскады гамма-переходов, состоящие из двух. связанных между собой последовательных двойных каскадов. В этих случаях при анализе угловых корреляций особое вначение имеет выбор матричного элемента для определения коэффициента смеси S^{/13}. Существуют два основных теоретических подхода для нахождения этого коэффициента. По определению Биденхарна и Роуза^{/14}, значения S выражаются следующим образом:

 $S_{i} = \frac{\langle j_{i} | L_{i} | l \rangle}{\langle j_{L} | L_{i} | j \rangle}$ для первого-перехода каскада (I)

для второго перехода каскада,

(3)

 $\delta_2 = \frac{\langle j_4 | L_2 | j \rangle}{\langle j_4 | L_2 | j \rangle}$ где ji , j , jf - спины начального, промежуточного и конечного соссоответственно. тояния

 L'_{1} , L_{1} , L'_{2} , L_{2} - порядки мультипольности для смещанных первого и второго переходов соответственно.

В этом подходе определения коэф ${
m d}$ ициента смеси δ при анализе угловых корреляций последовательных двойных каскадов нужно использовать разные знаки б для промежуточного перехода, так как он в одном каскаде является вторым, а в другом - первым переходом.

Во втором подходе, по определению Ллойда /15/, оба перехода каскада рассматриваются как процесс испускания, а в выражения для коэффициентов угловых корреляций A_K входит множитель (-I)^{L-L'}. зависящий от расположения промежуточного перехода в двойных последовательных каскалах.

В случае угловых корреляций тройных каскадов, в которых не наблюдается промежуточный переход, для анализа экспериментальных данных нами использовались функции углового распределения в виде /16/

 $W(\theta) = W_{L}(\theta) + \delta_{2}^{2} W_{l+1}(\theta)$ · · (2) где 62 - коэффициент смеси мультипольностей для промежуточного перехода,

· L, L+1 - порядок мультипольности промежуточного перехода.

Функция углового распределения в случае промежуточного перехода

одного порядка мультипольности имеет вид $W_L(\Theta) = \sum_{\kappa} A_{\kappa}^{(i)} C_{\kappa}^{(2)} A_{\kappa}^{(3)} P_{\kappa} (\cos \Theta)$

где $A_{\kappa}^{(1)}$, $A_{\kappa}^{(3)}$ - теоретические коэффициенты угловой корреляции для первого и третьего перехода соответственно, $C_{\kappa}^{(2)}$ - коэффициент для промежуточного перехода, имеющий вид

 $C_{k}^{(2)} = (-1)^{K} \sqrt{(2j_{a}+1)(2j_{b}+1)} W(j_{a},K,L_{i}j_{b};j_{a},j_{b}),$ (4) здесь j_{a} , j_{b} - значения спинов уровней, между которыми расположен промежуточный переход, а $W(j_{a},K,L_{i}j_{b};j_{a},j_{b})$ - коэффициент Рака.

Подставив в функцию (2) формулы (3) и (4), получаем теоретическое выражение коэффициента угловых корреляций для тройных каскадов:

 $A_{\kappa} = A_{\kappa}^{(1)} \cdot A_{\kappa}^{(3)} \left[C_{\kappa}^{(2)}(L) + \delta_{2}^{2} C_{\kappa}^{(2)}(L+1) / (1+\delta_{2}^{2}) \right].$ (5)

Коэффициенты $C_{\kappa}^{(2)}$ вычислены Роузом и Бринком /17/. В работе /18/ эти коэффициенты вычислялись для частных случаев тройных каскадов. При анализе полученных результатов в настоящей работе мы использовали теоретические значения $A_{\kappa}^{(2)}$, определенные для каждого перехода в зависимости от $\delta^{(19)}$.

Расчет значений $A_{\kappa}^{(\ell)}$ авторы этой работы провели при использовании коэффициентов F_{κ} , приведенных в работе /20/. Значения спинов первого возбужденного и основного состояния ¹⁵¹ Gd мы принимали как 5/2 и 7/2 соответственно /21/.

При рассмотрении результатов угловых корреляций нами были также использованы мультипольности переходов с энергией 252 и 287 кэв, определенные в работе /3/.

Перейдем к обсуждению исследованных каскадов.

I. Каскад 287-108 кэв. Этот каскад связан с последовательной разрядкой уровней с энергией 395 и 108 кэв в основное состояние 151Gd. На основании анализа схемы распада 151Tb'/2-5/ уровню с энергией 395 кэв можно приписать спин либо 3/2, либо 5/2.

При анализе угловых корреляций мы получили по графику Арнса-Виденбека /22/(рис.2) следующие значения мультипольности перехода

108 кэв: МІ+ (80,0<u>+</u>I,5)% Е2 при δ (287) < 0 и δ (108) > 0 и МІ+(35+76)% Е2 при δ (287) > 0 и δ (108) < 0 для последовательности спинов 3/2, 5/2, 7/2. В случае же последовательности спинов 5/2, 5/2, 7/2 при δ (287) > 0 мультипольность перехода 108 кэв получается Е2, что не согласуется с данными работ $^{/2-5/}$.

Таким образом, значение спина для уровня с энергией 395,2 кэв должно быть 3/2. Выводы о знаках $\mathcal{S}(108)$ и $\mathcal{S}(287)$ будут сделаны из анализа угловых корреляций других каскадов.

2. Каскад 180-287 кэв последовательно разряжает уровни 575, 395 и 180 кэв ^{151}Gd . Из данных работ $^{/2-5/}$ уровню 575 кэв можно приписать значения спина и четности (1/2, 3/2, 5/2)⁻.

Из анализа угловых корреляций этого каскада для последовательности спинов I/2, 3/2 и 5/2 по графику Арнса-Виденбека (рис.3) мультипольность перехода I80,I кэв получается MI+(4<u>+</u>I)% E2 при & (I80)>

> 0 и δ (287) < 0 и MI+(I4,5±2,5)% E2 при δ (I80) > 0 и (287) > 0, а для последовательности спинов 3/2, 3/2, 5/2 MI+(I0,0±I,5)%E2 при δ (I80) < 0 и δ (287) < 0 и MI+(I±I)% E2 при δ (I80) < 0 и δ (287) > 0.

Последовательность спинов 5/2, 3/2,5/2 дает значение мультипольности перехода 180,1 кэв МI при δ (287) < 0 и МI+(13±7)% Е2 при δ (180) < 0 и δ (287) > 0. Из этого следует, что в наилучшем согласии с работой ^{/3/}находятся полученные нами значения мультипольности перехода 180,1 кэв МI+(4±1,0)% Е2 для последовательности спинов 1/2, 3/2, 5/2.

3. <u>Тройной каскад 180-287-108 кэв</u>. Анализ данных по угловым корреляциям этого каскада приводит к значению A_2 =+0,021±0,103. Это значение согласуется с теоретической величиной A_2 =+0,054, вычисленной при последовательности спинов 1/2, 3/2, 5/2 и 7/2 для уровней 575,3; 395,2; 108,1 и основного состояния ¹⁵¹С. соответственно.

Результаты анализа угловых корреляций каскадов I80-287-I08 кэв, I80-287 кэв и 287-I08 кэв согласуются между собой при следующих значениях мультипольностей и знаках δ переходов I80; 287 и I08 кэв: MI+(4,0<u>+</u>I,0)% E2, δ (I80) > 0; MI+I00 E2, δ (287) < 0 и MI+(80,0<u>+</u> I,5)% E2, δ (108) > 0 соответственно.

4. <u>Каскад 615-180 кэв</u>. Полученный изотропный вид функции углового распределения гамма-квантов каскада 615-180 кэв (таблица I) не противоречит приписанию уровню 575,3 кэв ¹⁵¹Cd значения спина I/2, определенного на основании анализа угловых корреляций других каскадов.

5. <u>Каскад 479-108 кэв</u> происходит между уровнями 587,5; 108,1кэв и основным состоянием ¹⁵¹Gd. Используя значения мультипольности и знака & для перехода 108 кэв, приведенные выше,получаем из рис.4 следующие значения мультипольности перехода 479 кэв:

MI + (88,5±4,0)% E2 c δ (479) > 0 и

MI + (4,5 \pm 2,5)% E2 с \mathcal{S} (479) < 0 при последовательности спинов 5/2, 5/2, 7/2, а для последовательности спинов 3/2, 5/2, 7/2

MI + (9,0+2,0)% E2 с S (479) > 0 или E2.

Вывод о спине состояния с энергией 587,5 кэв будет сделан ниже на основе анализа угловых корреляций других каскадов.

6. <u>Каскад 252-479 кэв</u> разряжает последовательно уровни 839,3; 587,5 кэв на возбужденное состояние 108,1 кэв ¹⁵¹Gd. Результаты работы /2-5/ и значения спинов либо 3/2, либо 5/2 для уровня 587,5 кэв позволяют приписать уровню 839,3 кэв спин и четность (1/2, 3/2, 5/2). Экспериментальные данные по измерению угловой корреляции для этого каскада (рис.5) приводят к следующим значениям мультипольности перехода 479 кэв:

МІ + $(27,5\pm2,0)$ % Е2 с $\mathcal{S}(479) > 0$ или Е2 при последовательности спинов 3/2, 5/2, 5/2 и

МІ + (86<u>+</u>І)% Е2 с S (479) < 0 или

MI + (3,0+0,5)% E2 c 8 (479) > 0

для последовательности спинов 5/2, 5/2, 5/2; при последовательности спинов I/2 3/2 5/2 MI или MI+(98,0<u>+</u>0,5)% E2 с 8 (479)>0 и МІ +(75<u>+</u>2)%Е2 с δ (479) > О или МІ +(9<u>+</u>І)% Е2 с δ (479) > О для последовательности спинов 3/2 3/2 5/2, а при последовательности спинов 5/2 3/2 5/2 Е2 или MI+(7,0<u>+</u>I,5)% Е2 с ${\mathcal S}$ (479) < 0. Сравнение этих значений мультипольности перехода 479 кэв и знаков ${\mathcal S}$ с результатами, полученными при обсуждении каскада 479-108 кэв приводит к согласию при следующих значениях мультипольности перехода 479 кэв: либо MI+(9<u>+</u>I)% E2 с S (479) > 0 при последовательности спинов 3/2, 3/2, 5/2, либо MI+(98,0±0,5)% E2 с 8 (479)>0 при последовательности спинов 1/2, 3/2, 5/2 для уровней 839,3; 587,5 и 108,1 кэв соответственно. Значение мультипольности MI+(9<u>+</u>I,0)% Е2 для перехода 479 кэв при последовательности спинов 3/2, 3/2, 5/2 находится в луче шем согласии с результатами работ /4,5/. Отсюда следует, что уровням с энергией 587,5 кэв и 839,3 кэв следует приписать значение спина 3/2.

7. <u>Каскад 444-287 кэв.</u> Экспериментальное значение коэффициента угловой корреляции A₂ (рис.6) приводит к следующим значениям мультипольности для перехода 444 кэв:

МІ или МІ + (96<u>+</u>I)% E2 с δ (444) > 0 при последовательности спинов 3/2, 3/2, 5/2, а для последовательности спинов I/2, 3/2, 5/2

МІ + (18,0±1,5)% Е2 с & (444)>0 или

MI + $(99,0\pm0,5)$ % E2 c δ (444) < 0.

Значение мультипольности МI для перехода 444 кэв находится в удовлетворительном согласии с результатами работ /2-5/, что подкрепляет вывод о спине 3/2 уровня 839,3 кэв.

II

8. <u>Каскад 192-287 кэв.</u> Этот каскад идет между уровнями 587,5; 395,3 и 108,1 кэв ¹⁵¹Gd. Результаты анализа угловых корреляций (рис.6) для каскада 192-287 кэв приводят к следующему выводу о мультипольности для перехода 192 кэв:

МІ + (4,5±3,5)% Е2 с S (192) < 0 при последовательности спинов 3/2, 3/2, 5/2.

9. <u>Каскад 731-108 кэв</u> идет между уровнями 839,3; 108,1 кэв и основным состоянием ¹⁵¹Gd. При значении спина уровня 839,3 кэв 3/2 из графика Арнса-Виденбека (рис.4) следует значение мультипольности перехода 731 кэв

МІ + (24,5 + 95,5)% Е2 с S (73I) > 0 при последовательности спинов 3/2, 5/2, 7/2.

10. <u>Каскад 252-587 кэв</u> разряжает возбужденные состояния 839,3 и 587,5 кэв на основное состояние ¹⁵¹Gd. Из графика Арнса-Виденбека (рис.7) для перехода 587 кэв получаются следующие значения мультипольности:

E2 + (I,0 ± 0,5)% M3 с d⁽⁵⁸⁷⁾ < 0 для последовательности спинов 3/2, 3/2, 7/2.

Заключение

Анализ результатов по изучению угловых корреляций гамма-каскадов в ^{151}Gd показал, что подтверждаются значения спинов уровней с энергией 395,2; 575,2; 839,3 кэв, предложенные в работах $^{/4},5/$, а для уровня с энергией 587,5 кэв получено значение спина 3/2, что исключает ранее принимавшееся значение спина 5/2.

Сравнение наших результатов по определению мультипольностей низкоэнергетических переходов с наиболсе точными данными, полученными в работе /3/на основании интенсивностси линий конверсионных электронов на L -подоболочже для соответствующих переходов, показало хорошее согласие этих результатов. Кроме того, были определены неизвестные ранее коэффициенты смеси для некоторых переходов больших энергий.

Выводы о мультипольностях и знаках S -переходов, сделанные нами на основе анализа угловых корреляций, сведены в таблицу 2. В этой же таблице приведены для сравнения результаты работ^{/3,4/}. Полученное нами значение примеси E2 в переходе I08 кэв несколько завышено из-за возможного возмущения угловой корреляции каскада 287-I08 кэв.

Таблица 2

Мультиполы	юсти г	тереход	ов в	151Gd,	получени	ные	при
анал	пизе уз	ловых	корре	ляций		1.1	

Энергия	Мультипольно	Мультипольность переходов						
перехода (кэв) Работа	3/ _{Работа} /4/	Настоящая работа	δ					
108,1 MI+50% E2	MI+70% E2	MI+(80,0 <u>+</u> I,5)%E2	>0					
180,I MI+4,5%E2	MI	MI+(4 <u>+</u> 1)% E2	> 0 ≺					
192,0 MI+3 % E2	MI	MI+(4,5 <u>+</u> 3,5)% E2	< 0					
251,8 MI+5% E2	MI	MI+5 % E2 *)	> 0					
287,2 MI+I0% E2	MI	M1+10% E2 *)	< 0					
443,8 -	MI (E2 + E0),_,	NI						
479,2 -	MI, MI+E2/5/	MI+(9,0 <u>+</u> 1,0)% E2	> 0					
587,5 -	E2 + MI	E2+(1,0 <u>+</u> 0,5)% M3	∠ 0					
731,7 -	E2, E2+MI	M1+(24,5+95,5)% E2	> 0					

ж) Значения мультипольностей переходов, взятые из работы/3/.

Однако, как это было показано в работе^{23/}, в ядре¹⁵⁵ Gd для уровня с энергией 86,5 кэв, период полураспада которого равен 6,7 нсек, коэффициент возмущения угловой корреляции равен $G_2 = 0,845$. Поэтому для уровня 108,1 кэв в ¹⁵¹ Gd, период полураспада которого равен 2,6 нсек ^{6/}, вышеуказанное возмущение угловой корреляции не должно быть большим и примесь мультипольности типа E2 для перехода

с энергией 108,1 кэв не доляно значительно отличаться от цифры, приведенной в таблице 2.

В заключение авторы выражают глубокую благодарность К.Я.Громову за постоянное внимание к работе, а также Н.А.Лебедеву и До Ким Тюнг за приготовление радиоактивных источников.

121100

49 - A

Литература

- Э.Божек, Е.Гольчевски, А.З.Хрынкевич, М.Рыбицка, Я.Стычень, С.Шимчик, Р.Кулесса, Б.Стычень. Программа и тезисы докл. XX ежегодн.совещ.по ядерн.спектр.и структ.ядра, ч.І, 106,Ленинград, изд."Наука", 1970.
- B. Harmatz, T.H. Handley, T.W. Mihelich. Phys. Rev., <u>128</u>, 1186 (1962).
- 3. K. Karmicki, H. Niewodniczanski, Z. Stachura, K. Zuber, A.Budziak Report of the Institute of Nuclear Physics, Cracow 481/PL, June (1966).
- 4. К.Вильский, В.В.Кузнецов, О.Б.Нильсен, О.Скилбрайт, В.А.Халкин Ядерная физика, т.6, вып. 4 672 (1967)
- 5. М.Гонсиор, И.И.Громова, Г.И.Исхаков, В.В.Кузнецов, М.Я.Кузнецова, М.Михайлов, А.В.Потемпа, В.И.Фоминых,

Acta Phys. Polonica, 2B No 2 (1971).

- 6. В.А.Морозов, Т.М.Муминов, В.И.Разов. Препринт ОИЯИ, 6-4406, Дубна, 1969.
- Я.Ваврыщук ,В.Жук, Э.Крупа, В.В.Кузнецов, В.А.Морозов, Х.Фуя, А.Халикулов. Тезисы докладов XII совещ. по ядерн.спектр.и теор. ядра, Д6-5783, стр.124,Дубна,1971.
- 8. Б.К.Преображенский, А.В.Калямин, О.М.Лилова. ЖЭТФ,2,1164,(1957).
- В.М.Афанасьев, А.Т.Василенко, И.И.Громова, Ж.Т.Желев, В.В.Кузнецов, М.Я.Кузнецова, Д.Мончка, Ю.Поморски, В.М.Райко, А.В.Ревенко, В.М.Сороко, В.А.Уткин. Препринт ОИЯИ, 13-4763, Дубна, 1969.
- Я.Ваврыщук, В.Жук, Э.Крупа, В.И.Разов, Я.Сажински, М.Суботович,
 В.И.Фоминых. Препринт ОИЯИ, I3-5500, Дубна, 1970.
- II. D.C. Camp, A.L. Van Lehn, Nucl. Instr. Meth., 76, 192 (1969).
- А.Фергюсан. Методы угловых корреляций в гамма-спектроскопии. Атомиздат. М. 1969.
- I3. S. Ofer. Phys. Rev., 114, 870 (1959).
- I4. L.S. Biedenharn, M.E. Rose, Rev. Mod. Phys., 25, 729 (1953).
 I5. S.P. Lloyd. Phys. Rev., 85, 904 (1959).

- 16. L.S.Biedenharn. Nuclear Spectroscopy. Part B, ed. F. Ajzenberg. Selove, p. 732 (1960).
- 17. H.F. Rose, D.M. Brink. Rev. Mod. Phys., 39, No 2, 306 (1967).
- H.W. Taylor, B. Singh, F.S. Prato, R. McPherson. Nuclear Data Tables Section A, <u>9</u>, No 1 (1971).
- 19. T. Badica, N. Deciu. Rev. Roum. Phys., 11, 487 (1966).
- 20. M. Ferentz, N. Rosenzweig, ANL-5324, Tables of the F-Coefficient, 1965.
- 21. Э.Е.Берлович. Изв.АН СССР, сер.физ. 29, 2176 (1965).
- 22. R.G. Arns, M.L. Wiedenbeck. Phys. Rev., 111, 1631 (1958).
- 23. E. Bozek, A.Z. Hrynkiewiez, S. Ogaza. Phys. Lett., <u>41</u>, No 1 (1964).

Рукопись поступила в издательский отдел II октября 1971 года.

	•					·	•		•	•			le le	
	- 												1 °	
	80 N	ίΩ.			• •	. '							•	
	500 604 615	167								୶				40.0
•	TTT	1 82	1000							563		1191,0	6,8±0,1	10,0
	╄┼┨		84 <u>6</u>						ين		<u>.</u>	1103,1	7,3±0,2	0,4
			384,					م	2 2 2 2 2 2	12		0705		0.1
	╞╪╡			0 N				185	18,	┍┲╞═		9795 971,6	~7,6	~2D
		_ <u>+</u> ‰_	╧┿┿┊	25-			– წ	°, 9	1.1	┝╋╋		907,	7,6 ±0,2	2,5
- (⊥	Ň	┥┼┼┼	*^			- 2	-	++	++		839,3	65±01	27,0
		تا : ۲					•					011,0	0,0-0,2	
			┋┋┥┥┥┥	ļ Č	2 2	20	24	┽┼	$\left \right $			691	7,4 ± 0,2	4,2
					80,1	3.4	5					59.75	N80	
- =				H	T	Ħ	Ħ	++				575,3	7,5	4,5
		12	ų į							• •			• • •	
		88	<u> </u>	┫	ł	ĽĻ	₹.	1	¥			395,2	>7,4	<10,
							.							5 <u>1</u>
									•		•			
				ļ	100							1081	69+0	2 221
		-+				Ľ			· ,			100,1	0,0-0,0	
		-+					I		· .			106,1	0,0 - 0,0	

Рис.І. Схема распада ядра 151 т $m{ extsf{b}}$

I7

I9

Рис.4. Графики Арнса-Виденбека для каскадов 479-108

и 731-108 кав.

Рис.5. Графики Арнса-Виденбека для каскада 252-479 кэв.

Рис.6. Графики Арнса-Виденбека для каскадов 444-287 кэв и 192-287 кэв.

Рис.7. Графики Арнса-Виденбека для каскада 252-587 кэв.