

2857/2-71

23/vin-71.

P6 - 5879

С. Хойнацки, Т. Морек, <u>Л.К. Пекер,</u> Т. Кэмписты, К. Петрозолин

ИССЛЕДОВАНИЕ Возбужденных уровней ядер 194рь и 196рь

P6 - 5879

С. Хойнацки, Т. Морек, Л.К. Пекер, Т. Кэмписты, К. Петрозолин

ИССЛЕДОВАНИЕ Возбужденных уровней Ядер **194рь и 196рь**

γ

Хойнацки С., Морек Т., Пекер Л.К., Кэмписты Т., Р6-5879 Петрозолин К.

Исследование возбужденных уровней ядер 196 Рь и 194 Рь

Уровни четных изотопов свинца исследовались при распаде изотопов висмута, полученных в реакциях ¹⁸¹ $Ta({}^{22}Ne, zn){}^{203-zBi}$ и ${}^{181}Ta({}^{20}Ne, zn){}^{201-xBi}$. В результате проведенных измерений у -спектров и у-у -совпадений нами предложены схемы уровней ${}^{196}Pb$ и ${}^{194}Pb$.

Сообщения Объединенного института ядерных исследований Дубна, 1971

Chojnacki S., Morek T., Peker L.K., Kempisty T., P6-5879 Petrozolin K.

Investigation of Excited Levels of 196 Pb and 194 Pb Nuclei

Levels of even-even lead isotopes were investigated at the decay of bismuth isotopes produced in reactions¹⁸¹ $Ta(^{22}Ne, xn)$ $^{203-x}Bi$ and $^{181}Ta(^{20}Ne, xn)$ $^{201-x}Bi$. The level schemes of ^{196}Pb and ^{194}Pb were assumed on the basis of the measurements of gamma-spectra and gamma-gamma coincidences.

Communications of the Joint Institute for Nuclear Research. Dubna, 1971

1. Введение

Исследование уровней "полумагических" ядер позволяет получать сведения о квазичастичных нейтронных или протонных состояниях и тем самым об особенностях остаточного взаимодействия нейтронов или протонов в ядрах. К таким ядрам относятся и четные изотопы Pb, поэтому. их возбужденные уровни оказались объектом многочисленных экспериментальных и теоретических исследований. К настоящему времени в ядрах свинца с $A \ge 198$ при распаде ядер висмута и в ядерных реакциях помимо уровней с I = 2 + ; 4 + выявляются уровни типа I = 5 - ; $7 - ; 9 - \frac{44}{7}$ (табл. 3), которые было принято интерпретировать как двухнейтронные уровни типа $n_1(i_{13/2})n_2(I)$, где I = p 3/2; p 1/2;

f 5/2, а также ряд других уровней. Однако до сих пор не было никаких сведений об уровнях более легких изотопов ¹⁹⁶ РЬ и ¹⁹⁴ РЬ.

В настоящей работе впервые предприняты поиски уровней ядер, возбуждающихся при β⁺-ε распаде ^{196,194} Вi . Отметим, что до сих пор эти изотопы Вi были известны только как а – излучатели.

В ряде теоретических работ было предсказано, что в легких изотопах *Pb* с A ≤ 200 уровень с *I* = 9- должен лежать ниже уровня с *I* = 7- и вследствие этого быть долгоживущим изомерным состоянием. В настоящей работе предприняты поиски таких состояний и показано, что период их полураспада *T* ½ < 2 мин. Это позволяет судить о том, что уровни с *I* = 9- лежат не ниже, а выше уровня с *I* = 7-.

Нейтронодефиц. ные изотопы висмута были получены в реакциях ¹⁸¹Ta (²⁰Ne, xn) ^{201-x}Bi ¹⁸¹ Ta (22 Ne. xn) $^{203-x}$ Bi и Мишени (металлические фольги толщиной ≈3 мг/см²) облучались на выведенном пучке тяжелых ионов циклотрона У-300. Были измерены функции возбуждения. Массовое число ядер - продуктов реакции - опредеу - переходов с изменением энергии лялось по изменению выходов падающих тяжелых ионов, а также по данным о периодах полураспада у- линий. При поисках изомеров в изотопах свинца наблюдаемы**х** облучались довольно толстые мишени (≈0,1 мм) из вольфрама с естественным изотопным составом. Это обеспечивало получение сразу нескольких изотопов исследуемого элемента. Усложнение у - спектров в этом случае не мешает обнаружению изомерных состояний, так как у - переходы между уровнями с 1 = 4+; 2+; 0+, которые должны сопровождать распад этих изомеров, хорошо известны. После облучения источники через 2 мин. переносились к детектору. Измерения у-спектров проводились на Ge(Li)- детекторе объемом 13 см³ с разрешением 4,5 кэв. Измерялись также спектры у-у - совпадений. Для этого применялась схема совпадений /6/; в качестве детекторов использовались кристалл Ge(Li) объемом 13 см³ и кристалл NaJ(Ti) размером 2" x 2".

Эксперимент

3. Результаты измерений

а) ¹⁹⁶ Ві и ¹⁹⁴ Ві. .

¹⁹⁶Ві был получен в реакциях ¹⁸¹Та (²² Ne, 7 п) ¹⁹⁶Ві и ¹⁸¹Та (²⁰ Ne, 5 п) ¹⁹⁶Ві при энергии ионов ²² Ne – 150 Мэв и ²⁰ Ne – 110 Мэв. Определенный иами период полураспада этого изотопа

 $T_{\frac{1}{2}} = 4,6 \pm 0,5$ мин. Обнаруженные γ -линии в β - распаде ¹⁹⁶Ві и их интенсивности приведены в таблице 1. Измерения $\gamma - \gamma$ - совпадений показали, что переходы 372 кэв, 688 кэв и 1048,5 кэв образуют каскад. Учитывая их интенсивности, можно построить фрагмент схемы уровней ¹⁹⁶РЬ, показанный на рис. 1.

¹⁹⁴ Ві был получен в реакциях ¹⁸¹ Та (22 Ne, 9 n) ¹⁹⁴ Ві и ¹⁸¹ Та (20 Ne, 7 n) ¹⁹⁴ Ві при энергии ионов ²² Ne – 175 Мэв и ²⁰ Ne – 145 Мэв соответственно. Обнаружены четыре γ – перехода (показаны в таблице 2), распадающиеся с $T_{1/2} = 2,0 \pm 0,3$ мин. Найденный нами период полураспада отличается от величины $T_{1/2} = 62$ сек, полученной в работе ^{/5/}, в которой изучался а – распад ¹⁹⁴ Ві . Измерения

у-у - совпадений показали, что переходы 965 кэв, 575,4 кэв и 280 кэв составляют каскад. Учитывая их интенсивности, можно построить фрагмент схемы уровней ¹⁹⁴Pb , приведенный на рис. 1.

б) Поиски изомеров в ядрах 200-194 Pb .

Были предприняты поиски предсказанных в работе /7/ долгоживущих изомерных состояний с / =9-. Вследствие большого значения их спина тяжелые ионы - наилучший инструмент для возбуждения таких уровней. Ионами ¹⁸0 и ¹⁶0 мы облучали мишень из вольфрама с естественным изотопным составом, что обеспечивало получение нужных . Факт получения этих изотопов проверялся по извест-РЬ изотопов у - переходам, сопровождающим β - распад Pb . Через ным 2 минуты после облучения начинались измерения, так что можно было наблюдать периоды полураспада с Ту = 2 мин + несколько дней. Результаты опытов были отрицательны, ожидаемых долгоживущих изомеров в 194-200 мы не нашли. В работе /8/ автор заметил в $\beta = pac =$ паде 200 Ві - переходы с Ти = 11 часов и высказал мнение, что они возникают при распаде изомерного состояния 200 Pb I = 9-. Для проверки этого предположения мы исследовали распад 200Ві , полученного в реакции ест P; + ¹¹B , но изомерный уровень не был обнаружен. После окончания работы нам стало известно о подобных поисках /9/ изомера в 200 РЬ . Эти результаты хорошо подтверждают наши данные.

4. Обсуждение

Для получения сведений о спинах и четностях найденных нами уровней ^{194,196} РЬ рассмотрим данные об уровнях более тяжелых изотопов ¹⁹⁸⁻²⁰⁰ РЬ, приведенные в таблице 3 и на рисунке 1.

Видно, что энергия рассматриваемых уровней плавно меняется с изменением числа нейтронов в ядре. Эта плавность позволяет экстраполировать кривые в область с **N** = 114,112. На основании такой экстраполяции может быть сделано заключение, что верхний уровень каскада в

¹⁹⁶ Pb - 2109 кэв вероятнее всего, имеет I = 7-, а в ядре ¹⁹⁴ Pb -1817 кэв I = 5-. Нижние уровни с I = 4+ и I = 5- в ¹⁹⁶ Pb , согласно рис. 1, близки друг другу. Поэтому γ - переход 372 кэв с уровня 2109 кэв I = 7-, скорее всего, идет на уровень с I = 5-, а не I = 4+. В этом случае уровень 1737 кэв имеет I = 5-, γ - переход 372 кэв есть переход типа E2, а γ - переход 688 кэв - типа E3.

Так как в каждом из обоих спектров обнаружено только по три интенсивных γ – линии – члены рассмотренных выше каскадов, наиболее интенсивные β – переходы идут на их верхние уровни. Поэтому можно ожидать, что спин ¹⁹⁴Bi I = 5(6), а ¹⁹⁶Bi I = 7(8). Отрицательный результат поисков долгоживущих изомерных состояний (I = 9-) в

194-200 РЬ, в свою очередь, свидетельствует о том, что в этих ядрах I = 9- находятся выше уровня с I = 7- и могут разряжатьуровни с ся на них быстрым Е2-переходом. На рисунке 3 представлены данные об уровнях РЬ, полученные в результате расчетов /1-3/ в предположении, что это чисто нейтронные уровни. Из рисунка видно, что указанные расчеты в общих чертах передают характер зависимости энергии уровней от числа нейтронов. Наибольшие расхождения наблюдаются для уровня с / = 5-. Кроме того, видно, что, согласно расчетам, уровень I = 9- опускается ниже уровня с I = 7-, тогда как на опыте С не имеет места. Следует заметить, что при теоре-200-198 Ph это в тическом анализе уровней изотопов свинца с – А < 204, до сих пор не учитывалась воэможность возбуждения протонных уровней из заполненz = 82, так как считалось, что они должны лежать очень ной оболочки высоко, подобно протонным уровням 208 рв и 206 рв типа р, (h 9/2) I = 5-. Мы хотим обратить внимание на то, что в p,(s1/2) c легких изотопах свинца протонные состояния, по-видимому, играют большую роль в формировании свойств низких уровней.

Чтобы продемонстрировать это, напомним, что нижний протонный уровень ²⁰⁶Pb (рис. 2) 3403 кэв с I = 5- сильнее всех других (lg ft = 6,3) заселяется при β - распаде ²⁰⁶Bi [$I = 6 + p(h_{9/2})$. $n(p_{3/2} + f_{5/2})$]. Так как однократно-запрешенный β - переход на него типа $p(s_{1/2}) \rightarrow n(p_{3/2})$, в этой области ядер он отличается максимальной вероятностью (и малым эначением lg ft).

Соответственно γ – переход типа E1, связывающий этот протонный уровень с I = 5- с нижним уровнем I = 4+, после γ – перехода $4 + \rightarrow 2$ + и $2 + \rightarrow 0$ + – самый интенсивный в γ – спектре ²⁰⁶ BI. Нижние уровни с I = 5- в ²⁰⁴ Pb, ²⁰² Pb и ¹⁹⁴ Pb обладают такими же особенностями заселения и разрядки (рис. 2,3). Потому уровни с I = 5- в ¹⁰⁴ Pb, ²⁰² Pb, ²⁰⁴ Pb, а также аналогичные уровни в ^{196,198,200} Pb, по-видимому, содержат значительную примесь протонных состояний типа $p_1(h_{9/2})p_2(s_{1/2})$.

Авторы выражают благодарность академику Г.Н. Флерову за интерес к работе, Р. Броде и А. Гольчевскому – за помощь в измерениях, а также группе эксплуатации циклотрона 1-300, обеспечившей хорошую работу ускорителя.

Литература

1. L.S. Kisslinger, K.A. Sorensen, Mat.Fys, Medd, Dan. Vid, Selsk., 32, No 9 (1960).

2. R.Arvieu, M.Veneroni, Phys.Lett., 5, 142 (1963).

3. A. Plastino, R. Arvieu, S.A. Moszkowski. Phys. Rev., <u>145</u>,837 (1966).

4. A. Hanser Preprint KFK 876 (1968).

5. Н.И. Тарантин, А.П. Кабаченко, А.В. Демьянов. Препринт ОИЯИ, P15-4706, Дубна (1969).

6. T.Walczak et al.JINR Preprint 13-4025 Dubna (1968).

7. Л.К. Пекер. Изв. АН СССР, т. 34, №4, стр. 879

Л.К. Пекер. Тезисы XX совещания по ядерной спектроскопии и структуре атомного ядра, стр. 165, Л., 1970.

8. J.M. Wyckoff. Phys.Rev., <u>159</u>, 953 (1967).
9. R.E. Doebler et al. Phys.Rev., C.V. 2. No 6 (1970).

Рукопись поступила в издательский отдел

21 июня 1971 года.

Таблица I. Г-переходы в ¹⁹⁶ Рь.

Е кэі	137,6	336,8	372.0	688.0	1048,6
Ir	10 <u>+</u> 2	16 <u>+</u> 2	46 <u>+</u> 5	62 <u>+</u> 5	100

Таблица 2.

7 -переходы в ¹⁹⁴ РЬ.

Е кэв	280.0	575,4	595,3	965.0
Ir	70 <u>+</u> 5	87 <u>+</u> 8	23 <u>+</u> 2	100

Рис. 1. Схемы уровней легких четных изотопов свинца.

Рис. 2. Часть схемы уровней четных изотопов свинца.

Таблица З.

I Ядро	2+	4+	5-	7-	9-
206 Pb	803,3		3404	2200,3	2658,5
²⁰⁴ Pb	899,3	127 3,9	2257,7	[>2186]	2185,6
²⁰² РЬ	960 , 7	1382,9	2040,4	[>2170]	2169,7
²⁰⁰ рь	1026,5	I488 , 8	1908,6	2153,8	[>2154]
¹⁹⁸ РЬ	1063,5	1625,9	1823 , 6	2141,6	[>2142]
¹⁹⁶ Pb	1048,6	-	1746	2109	[>2109]
¹⁹⁴ Pb	965	1540 , 4	1820	-	-

Энергии уровней четных изотопов свинца

Рис. 3. Сравнение экспериментально наблюдаемых и рассчитанных теоретически /2/ уровней четных изотопов свинца.