A-623

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

aaephdix RP®eaej

AABORATOPHS

Дубна.

225

P 6-5794

5/11-71

Б.Амов, Ц.Вылов, М.Еникова, Ж.Желев, Н.А.Лебедев, И.Пенев, В.И.Фоминых, Е.Херрманн

НОВЫЕ СВЕДЕНИЯ ОБ УРОВНЯХ ¹³²Ва, ВОЗБУЖДАЕМЫХ ПРИ РАСПАДЕ 132 132m La И La

1971

P6-5794

Б.Амов, Ц.Вылов, М.Еникова, Ж.Желев, Н.А.Лебедев, И.Пенев, В.И.Фоминых, Е.Херрманн

НОВЫЕ СВЕДЕНИЯ ОБ УРОВНЯХ ¹³² Ва, ВОЗБУЖДАЕМЫХ ПРИ РАСПАДЕ 132 132m La И La

Направлено в "Известия АН СССР"

£Б obseetű JEHA

Амов Б., Вылов Ц., Еникова М., Желев Ж., Лебедев Н.А., Р6-5794 Пенев И., Фоминых В.И., Херрманн Е.

Новые сведения об уровнях ¹³²Ва, возбуждаемых при распаде

Исследовались спектры конверсионных электронов, гамма-лучей и гамма-гамма совпадений при распаде¹³² La. На основе полученных результатов уточнена схема возбужденных состояний¹³² Ba. Введены новые уровни, и приписаны квантовые характеристики ряду уровней схемы. Обращает на себя внимание существование множества уровней отрицательной четности при энергии выше 2 Мэв. Предполагается, что это нейтронные квазичастичные состояния, одна из компонент которых является "аномальной" (1^π << 11/2⁻⁻ вместо h11/2).

Препринт Объединенного института ядерных исследований. . Дубна, 1971

Amov B., Vylov Ts., Enikova M., Zhelev Zh., P6-5794 Lebedev N., Penev I., Fominykh V., Herrmann E.

New Information of ^{132}Ba Levels Excited in the Decay of ^{132}La and ^{132}mLa

Spectra of conversion electrons, of γ -rays and of $\gamma\gamma$ -coincidences from the decay of ^{132}La were investigated. Basing on the obtained results the scheme of ^{132}Ba excited states was made more accurate. New levels were introduced and quantum characteristics were ascribed to a number of the scheme levels. The fact of existence of a great number of levels of negative parity at the energy above 2 MeV attracts ones attention. They are supposed to be neutron quasiparticle states, one of their components being "anomalous" ($1^{\pi} < 11/2^{-}$ instead of h11/2).

Preprint. Joint Institute for Nuclear Research. Dubna, 1971

Изучению схемы распада ${}^{132}La - {}^{132}Ba$ посвящен ряд работ /1-8/. Наиболее детально она исследована в /7/ и/8/, однако спектр конверсионных электронов был мало изучен, а многие из идентифицированных гамма-переходов не были размещены в схеме распада.

Позже, в работе⁽⁹⁾, было сообщено об открытии изомера ¹³² La ($T_{\frac{1}{2}} = 25$ мин). Пекер⁽¹⁰⁾ интерпретировал основное ($l^{\pi} = 2^{-}$) и изомерное ($l^{\pi} = 6^{-}$) состояния ¹³² La как "аномальные" двухкомпонентные состояния конфигурации $p(d\frac{5^{+}}{2})n(\frac{9^{-}}{2})$, "при распаде которых заселяются некоторые уровни ¹³²Ba аналогичной природы (например, $n(d3/2^{+})n(9/2^{-})$). "Аномальное "состояние $9/2^{-}$ (вместо $h 11/2^{-}$) в соседних нечетных ядрах встречается как изомерное^(11,12) и, вероятно, является деформированным состояние $9/2^{-}/514/$. Это повышает интерес к дальнейшему исследованию схемы распада ¹³² La.

1. Экспериментальная методика

Изотоп ¹³² La получался при облучении гадолиниевой мишени протонами (E_p = 660 М эв) на синхроциклотроне ОИЯИ в течение 2-4 часов. Исследовалась фракция лантана, хроматографически выделенная через 2-4 часа после конца облучения мишени. Для исследования гамма-лучей

при распаде изомера ^{132 m} La мишень облучалась 15 минут, а фракция лантана выделялась через 15 минут после конца облучения методами быстрой радиохимии^{/13/}.

Гамма-спектр изучался на спектрометрах с *Ge(Li)*-детекторами с чувствительными объемами 10,25 и 40 см³ и разрешением 4 + 5 кэв.

Гамма-гамма совпадения изучались с помощью двухмерного анализатора на базе ЭВМ "Минск-2"^{/14/} и двух *Ge(Li)* -детекторов с чувствительным объемом 30 см³. Измерялись одновременно спектры совпадений с гамма-квантами 7 переходов (см. табл. 2) и 5 "задающих окон" в соседстве с фотопиками этих переходов, что позволило учесть совпадения с комптоновским соном.

Спектр конверсионных электронов исследовался на магнитном бетаспектрометре с двойной двукратной фокусировкой на угол $\pi\sqrt{2}$ и низкофоновой системой регистрации электронов ^{/15/}. Разрешающая способность прибора была 0,2-0,3% при светосиле $\approx 0,15\%$ от 4π .

2. Экспериментальные результаты

Часть спектра конверсионных электронов представлена на рис. 1. В табл. 1 даны интенсивности конверсионных электронов l_k и экспериментальные значения коэффициентов внутренней конверсии а ряда кэксп. /16/ а переходов. Последние нормированы к теоретическому значению a_k перехода 464 кэв при предположении, что его мультипольность E2. При вычислении a_k приняты средние значения интенсивностей гаммалучей l_γ , взятые из данных наших измерений и работ 71/48/, причем предпочтение отдавалось нашим результатам.

В работе^{/7/} определены a_k и мультипольности 10 самых интенсивных переходов. Наши результаты, помимо этих данных, содержат также сведения о 18 других переходах. Среди них обнаружен переход с энергией

1503 кэв, который не наблюдается в гамма-спектре, и поэтому можно утвє ждать, что его мультипольность *Е0*.

На рис. 2 показана часть спектров гамма-гамма совпадений, а относительные интенсивности гамма-гамма совпадений $l_{\gamma\gamma \, 3\kappa cn.}$ приведены в табл. 2. Они выражены в единицах интенсивностей гамма-лучей одномерного спектра l_{γ} . Для сравнения в таблице даны расчётные значения интенсивностей совпадений, соответствующие схеме распада, изображенной на рис. 3.

Данные о гамма-гамма совпадениях в работе В основном согласуются с нашими результатами; не подтверждены лишь совпадения у 1046 с у 567. Получена новая количественная информация о переходах 479, 540, 1046 и 1534 кэв, на основе которой введены новые уровни. В случае совпадений у 540 с у 663 l уузксп. < l , следовательно, переход 540 кэв был неправильно размещен в схеме /7,8/. При совпадении у1534 $l_{\gamma\gamma}$ а при $\gamma 1534$ с $\gamma 464$ $l_{\gamma\gamma}$ эксп. = l_{γ} (табл. 2). y 567 Следовательно, только часть интенсивности линий 1534 ков обусловлена переходом между уровнями (3) 2566 кэв и (2) 1031 кэв. С другой стороны, мультипольность этого перехода должна быть Е1, а из значения а, (табл. 1) следует мультипольность типа Е2(М1). По-видимому, это два перехода разных мультипольностей - Е1 и Е2(М1). Второй из них интенсивнее первого и дает вклад в совпадениях только с переходом 464 кэв. Получена также качественная информация о совпадениях ряда слабых переходов.

В табл. З даны интенсивности некоторых гамма-переходов, относящиеся к моментам времени $t_0 = 30$ мин и $t_0 > 3$ час после конца облучения мишени, т.е. до и после распада изомера ¹³²mLa. Сравнение этих интенсивностей дает возможность оценить чистый вклад распада изомера в интенсивности соответствующих переходов ¹³²Ba - $\delta l'$ (см. табл. 3). Значения $\delta l'$ выражены в единицах интенсивности перехода 135 кэв, происходящего в ядре ¹³²La ^{/9/} (рис. 4).

3. Обсуждение схемы возбужденных уровней 132 Ва

На рис. З дана схема возбужденных уровней ¹³² Ва, исправленная и дополненная на основе наших результатов, а на рис. 4 – предполагаемая схема распада изомера ^{132 m} La.

На основе мультипольности переходов (табл. 1) и значений log ft. нами приписаны квантовые характеристики (четность и спин) ряду введенных ранее уровней ^{/7/}. Это уровни положительной четности: 1685 кэв, l = 2 или 3; 1728 кэв, l = 2,3 или 4 (l = 4 более вероятно из-за заселения уровня при распаде изомера – рис. 4) – и уровни отрицательной чётности: 2854, 3217, 3423 и 3492 кэв, l = 2 или 3 (переходы не идут на основное состояние); 3155, 3562, 3633 и 3662 кэв, l = 1или 2 (переходы идут на основное состояние).

Результаты гамма-гамма совпадений (табл. 2) подтверждают /7/ введенные ранее // уровни, за исключением уровней 1546, 1667 и 2077кэв, и дают основания ввести новые уровни.

Предполагаемый уровень 1503 кэв, $l^{\pi} = 0^+$, вводится на основе перехода 1503 кэв с вероятной мультипольностью *E0*. Обнаружен еще слабый переход с энергией 472 кэв (рис. 1), который можно разместить между уровнями 1503 и 1031 кэв. Согласно теории Давыдова-Чабана /17/ энергия второго 0^+ состояния в этом ядре ≈ 1600 кэв, что в границах допустимого согласуется с нашими предположениями. Нет данных о существовании других 0^+ состояний, нап имер, 0^+ уровня двухфононного триплета. Следует отметить, что спин и природа основного состояния 132 La не благоприятствуют заселению 0^+ состояний ¹³² Ba

Уровень 1511 кэв, $l^{\pi} = 3^+$ или 4^+ , введен на основе гаммагамма совпадений. Спин l = 3 мы считаем более вероятным. Согласно Сакаи^{/18/}, этот уровень можно интерпретировать как второй член квазигамма-вибрационной полосы (K=2), основанной на уровне 1031 кэв ($l^{\pi} = 2^+$). Отношения приведенных вероятностей переходов при разрядке уровней этой полосы равны:

$$\frac{(BE2; 3^+ - 2\frac{1}{2})}{(BE2; 3^+ - 2\frac{1}{4})} = 30 \text{ M} \qquad \frac{(BE2; 2\frac{1}{2} - 2\frac{1}{4})}{(BE2; 2\frac{1}{2} - 0^+)} = 40.$$

В соседнем ядре ¹³⁴ Ва значения этих отношений больше (70 и 180). Это согласуется с тем, что ¹³² Ва ближе к деформированной области бариевых ядер.

Выводы о двойной линии 1534 кэв (§2) дают основание ввести предполагаемый уровень 1998 кэв. По разности энергий можно разместить еще два перехода, разряжающие этот уровень: 966 и 1998 кэв. Вероятные значения спина и чётности могут быть 1⁺ или 2⁺.

Уровень 2026 кэв, $I^{\pi} = 4^{-}$ или 5⁻, введен на основе гамма-гаммасовпадений. Интенсивности совпадений между переходами 540 кэв и 479, 567, 663, 899 и 1046 кэв (табл. 2) можно объяснить только введением новых уровней 1511 кэв и 2026 кэв. На основе баланса энергий и интенсивностей переходов между ними размещен переход 515 кэв. Существование этих уровней подтверждается также результатами распада изомера ^{132 m} La (табл. 3, рис. 4).

Из мультипольностей переходов 515 и 540 кэв, связывающих уровень 2026 кэв с уровнями 1511 и 2566 кэв, следует, что спин рассматриваемого уровня l = 4 более вероятен. Нельзя полностью исключить и значение спина l = 5. На это указывает, например, низкое значение log ft при распаде изомера (рис. 4), но, с другой стороны, это может быть объяснено заселением уровня 2026 кэв посредством разрядки вышележащих уровней.

Следует отметить, что уровни коллективной природы слабо заселяются при распаде ¹³² La.Это проявляется в высоких значениях log ft (рис. 3). По-видимому, то же самое имеет место и при распаде изомерного состояния. Мы ожидали интенсивного заселения уровня со спином $1^{\pi} = 6^+$ основной квазиротационной полосы ¹³²Ba. Из сравнения с соседними ядрами и по формуле Еджири⁽¹⁹⁾ его энергия должна быть в гра-

ницах 750 + 850 кэв. Но нами, а также и в работе¹⁹¹ не был обнаружен такой переход. В таком случае непонятно заметное заселение уровня 1127 кэв, $l^{\pi} = 4^+$, этой полосы (табл. 3). Возможно, что уровни 1127 кэв, $l^{\pi} = 4^+$, и 1728 кэв, $l^{\pi} = 4^+$, заселяются посредством предполагаемого уровня 2118 кэв и переходов 991 и 390 кэв (рис. 4).

Обращает на себя внимание тот факт, что при энергии возбуждения выше 2 М эв встречается множество уровней отрицательной чётности. О природе некоторых из них Пекером ^{/10/} высказано мнение, что это "аномальные" двухкомпонентные состояния конфигурации $n(d3/2^+)n(9/2^-)$. Уровни 2566 кэв, $l^{\pi} = 3^-$, и 2842 кэв, $l^{\pi} = 5^-$, он считает мультиплетом этой конфигурации.

Наши результаты не подтверждают существования уровня 2842 кэв. Из табл. З видно, что распад изомера ^{132 m}La не дает заметного вклада в интенсивности переходов 540 и 2102 кэв, разряжающих уровень 2566 кэв. Этого не должно быть, если переход 285 кэв связывает уровни 2842 и 2566 кэв.

Вместо уровня 2842 кэв вторым членом мультиплета конфигураций $n(d3/2^+)n(9/2^-)$ можно считать введенный нами уровень 2026 кэв, $1^{\pi} = 4^-$ или 5⁻. С уровнем 2566 кэв он связан интенсивным переходом 540 кэв мультипольностью *M1 (E2<<M1)*,а при распаде изомера он заселяется интенсивнее других.

Таким образом, можно качественно объяснить природу и других уровней отрицательной четности ¹³² Ва. По-видимому, это нейтронные квазичастичные состояния, одна из компонент которых является "аномальной" (1^π << 11/2⁻).

"Аномальную" компоненту (например, 9/2⁻ вместо $h ll/2^{-}$) можно объяснить ^{/10/} либо деформацией, либо трехквазичастичным состоянием конфигурации (h ll/2)^{-3,5} (с сеньорити $\nu = 3$),либо связью квазичастиц с фононами. В данном случае второе предположение менее вероятно, так как из него следует, что рассматриваемые уровни ¹³² Вачетырехква-

зичастичные. Но если это так, трудно объяснить их раэрядку посредством *E1* переходов на коллективные уровни. Вероятнее считать эту компоненту деформированным состоянием, например 9/2⁻/514/. Если учесть еще связь с коллективными движениями, например вращение с кориолисовой связью, можно объяснить некоторые свойства уровней отрицательной четности ¹³² Ва

Возможно проявление изомерии, связанной с некоторыми из этих состояний, что требует дальнейших исследований, например измерения времен жизни этих уровней.

Литература

- 1. M.M.Gransden and W.S.Boyle. Phys. Rev., 82, 447 (1951).
- 2. Е.П. Григорьев, С.Л. Захаров, В.О. Сергеев. Изв. АН СССР, сер. физ., 24. 839 (1960).
- 3. W.R.Ware and E.O.Wiig. Phys. Rev., <u>117</u>, 191 (1960).
- 4. C. Gerschel, M. Pautrat, R.A. Ricci, J. Teillac and J. van Horenbeeck. Nuovo Cimento, <u>37</u>, <u>1756</u>(1965).
- 5. G.Julian and S.Jha. Bull, Am. Pys. Soc., <u>10</u>, 82 (1965).
- 6. А.А. Абдуразаков, К.Я. Громов, Т.А. Исламов. Тезисы докладов XV1 совещания по ядерной спектроскопии, Москва, 1966.
- 7. J.Frana, I.Resenka, Z. Plainer, A.Spalek, J.Jursik, M.Vobecky, A.Mastalka and L.Funke, H.Graber, H.Sodan. Nucl. Phys., A94,
- 8. A. Abdul-Malek and R.A. Naumann. Nucl. Phys., A108, 401 (1968).
- 9. C.Gerschel et N.Perrin, C.R. Acad. Sci., 269B, 220 (1969).
- Л.К. Пекер. Изв. АН СССР, сер. физ., <u>34</u>, №10 (1970); Тезисы докладов XX совещания по ядерной спектроскопии, Ленинград, 1970.
- 11. C. Gerschel. Nucl. Phys., A108, 337 (1968).
- 12. C. Gerschel, N. Perrin, L. Valentin. Phys. Lett., <u>33B</u>, 4 (1970).

- 13. G.J. Beyer, H. Groose-Ruyken, V.A. Khalkin and G. Pfepper, J. Inorg. Nucl. Chem., <u>31</u>, 2135 (1969).
- В.С. Александров, Ф. Дуда, О.И. Елизаров, Г.П. Жуков, Г.И. Забиякин,
 Зайдлер, И. Звольски, Е.Т. Кондрат, З.В. Лысенко, В.И. Приходько,
 В.Г. Тишин, В.И. Фоминых, В.М. Цупко-Ситников. Препринт ОИЯИ,
 13-4025, Дубна, 1968.
- 15. А. Шестопалова. Изв. АН СССР, сер. физ., <u>25</u>, 1302 (1961).
- 16. Гамма-лучи. ред. Л.А. Слив, Изв. АН СССР, М.-Л., 1961.
- А.С. Давыдов. Возбужденные состояния атомных ядер, Атомиздат, Москва, 1967.
- 18. M. Sakai. Nucl. Phys., A104, 301 (1967).
- 19. H.Ejiri. Report INSJ. 103, 1967.

Рукопись поступила в издательский отдел

19 мая 1971 года.

Таблица I

Еү кэв	IK±AIK	IrtoIr	d _к .10 ⁴ (эксп.)	Мультиполь- ность
464	100	100	100 (Teop.)	E2
L -464	16,0+0,5			
M -464	5,4 <u>+</u> 0,2			
472	<0,2	<0,2		
479	I,8+0,3	2,2 <u>+</u> 0,5	82 <u>+</u> 40	E2,MI
515	I,6+0,2	6,0 <u>+</u> 2,0	27 <u>+</u> 15	EI
540	9,6+0,5	10,4 <u>+</u> 1,2	92 <u>+</u> 18	MI(E2 MI)
L -540	I,3+0,2		the second second	
567	I2,5+0,7	20,0 <u>+</u> 1,0	63 <u>+</u> 6	E2(MI < E2)
L -567	2,0 <u>+</u> 0,3			
663	4,4+0,2	10,6 <u>+</u> 1,0	42 <u>+</u> 7	E2
L -663	0,65+0,05			
697	0,45+0,07	I,0 <u>+</u> 0,2	45 <u>+</u> 18	E2,MI
88I	0,09+0,03	I,0 <u>+</u> 0,2	9 <u>+</u> 5	EI
899	0,38+0,05	4,6+0,6	8,2 <u>+</u> 2,5	EI
1031	I,30+0,10	10,5 <u>+</u> 1,0	12,4 <u>+</u> 2,2	E2,MI
1046	0,70+0,10	3,7 <u>+</u> 0,7	19,0 <u>+</u> 6,0	E2,MI
1221	0,42+0,05	3,1 <u>+</u> 0,4	14,0 <u>+</u> 4,0	E2,MI
1503	0,05+0,0I	< 0,05	>100	EO
1534	0,15+0,02	2,2 <u>+</u> 0,5	(6,8 <u>+</u> 2,5)	(E2,MI)
158I	0,07 <u>+</u> 0,01	I,I <u>+</u> 0,3	6,4 <u>+</u> 2,5	E2,MI
1603	0,10+0,015	3,7 <u>+</u> 0,4	2,7+0,7	EI
1909	0,25+0,03	10,7 <u>+</u> 1,0	2,3 <u>+</u> 0,5	EI
2102	0,12+0,02	7,9 <u>+</u> I,0	I,5 <u>+</u> 0,5	EI
2390	0,013 <u>+</u> 0,005	I,3 <u>+</u> 0,3	I,0 <u>+</u> 0,5	EL
2453	0,006 <u>+</u> 0,003	0,8 <u>+</u> 0,2	0,8 <u>+</u> 0,6	EI
2462	0,011 <u>+</u> 0,005	I,2 <u>+</u> 0,3	I,0 <u>+</u> 0,7	EI
2692	0,006 <u>+</u> 0,002	0,55 <u>+</u> 0,15	I,I <u>+</u> 0,7	EI
2754	0,025 <u>+</u> 0,005	2,0 <u>+</u> 0,5	I,3 <u>+</u> 0,6	EI
2960	0,006 <u>+</u> 0,002	I,0 <u>+</u> 0,3	0,6 <u>+</u> 0,4	EI
3098	0,004 <u>+</u> 0,0015	0,6 <u>+</u> 0,2	0,7 <u>+</u> 0,5	EI
3197	0,007+0,002	I,2+0,3	0,6 <u>+</u> 0,3	EI
3633	0.002+0.0008	0.35+0.I	0,6+0,4	EL

Интенсивность конверсионных электронов и мультипольности некоторых гамма-переходов при распаде ¹³²Lo.

е 132 / _

Относительные интенсивности тамма-гамма совлатений п

La La La	ŀ						3	
A Ci	71	I П эксп.	I_{η}^{cxeus}	окно	K3B	I_{f}	IT эксп.	Трсхема
479	2,2	I,6 <u>+</u> 0,8	2,2		494	001	9,2+2,0	66
540	I0,4	9,512,0	6,6	•	479	2,2	I,3±0,7	2,2
567	20,0	19,0 <u>+</u> 3,0	20,0	5 40	567	20,0	2,7 <u>+</u> I,0	I.5
663	10,6	I2,0 <u>+</u> 2,0	10,6		663	10 , 6	4,8 <u>4</u> 1,0	4 , 6
689	0,3	0,2	0,3	$(I_{f} = I0, 4)$	668	4,6	3,7±0,8	4 , 6
697	0 ° I	0,8	0,7		I046	3,7	2,5+0,7	3.7
8I6	0,4	0,4	1		464	IOO	I8,0±3,0	20,0
88I	I,0	- 0,7	I,0	567	479	2,2	I,2 <u>+</u> 0,6	2,2
668	4 *	6,9 <u>+</u> I,5	4 , 6	$(J_{r}=20,0)$	540	10,4	2,1 <u>+</u> 0,6	н 1
046	3,7	4,011,0	3,7	>	I534	2,2	0,5+0,4	
[534	2,2	1,9 <u>1</u> 1,0	2,2		494	001	IL,8 <u>+</u> 2,0	10,6
[58]	1 . 1	I,4±0,7	1	663	540	10,4	3,6 <u>+</u> I,0	4 , 6
603	3,7	4,8 <u>41</u> ,5	3,7	(1,510,6)	8I6 .	4.0	0,5	•
606	I0,7	I0,0 <u>+</u> 2,0	I0,7	•	899	4.6	5,I+I,0	4,6
204I	0,5	0,8	I	668	464	100	6,0 <u>+</u> I,5	4,6
2102	6.7	6,0 <u>1</u> ,5	6.2	$(J_r = 4, 6)$	540	10,4	2,8+0,7	4,6
2390	Ι,3	I,2	Ι,3	•	663	I0,6	4.5+I.0	4 . 6
2754	2,0	2 ° 0	2 , 0	1046	494	100	2,240.7	3.7
360	I,0	0,7	I,0	(11=3,7)	540	10.4	2.I+0.6	3.7
8609	0,4	0,5	0,4	I22I	494	100	4,0 <u>+</u> 1,2	0 ,4
197	0.2	0,8	0,7	$(I_{y=4,0})$	689	0,4	0,4	0 ,4
					98I	0 ' I	1 . 0	0 ' I

Таблица З

	при распаде	132 La + 132 "La	
Е ү кэв	<i>І'±АІ'</i> <i>t</i> о=30 мин	I ± AI to > 3 yac	<u> </u>
135	77 <u>+</u> I0		100
237,6 ^{I)}			8,8
285,0 ^I)		han an an an Ardana. An Arabana 	16,3
390	9 <u>+</u> 2	-	II
464	100	100	50
479	7 <u>+</u> 2	2,2 <u>+</u> 0,5	7
540	8 <u>+</u> 2	10,4 <u>+</u> 1,2	
567	22 <u>+</u> 3	20,0 <u>+</u> 1,0	10
60I	3±I	0,3 <u>+</u> 0,I	3
663	26 <u>+</u> 4	10,6 <u>+</u> 1,0	* 26
697	8 <u>+</u> 2	I,0 <u>+</u> 0,2	9
899	I4 <u>+</u> 2	4,6 <u>+</u> 0,7	I5
99I	5 ± I		6
1031	II <u>+</u> 2	10,5 <u>+</u> 1,0	6
1046	12 <u>+</u> 2	3,7 <u>+</u> 0,7	13
1221	4 <u>+</u> I	3,1 <u>+</u> 0,4	
1603	5 <u>+</u> I	3,7 <u>+</u> 0,4	-
1909	10 <u>+</u> 2	10,7 <u>+</u> 1,0	
2102	7 <u>+</u> 2	7,9<u>+</u>1, 0	-

Интенсивности некоторых гамма-переходов, возникающих

I) Данные об этих переходах взяты из ^{/9/}. 2) $\frac{\delta I'}{I'_{135}} = \frac{I'_{464}}{I'_{35}} \left[\frac{I'}{I'_{64}} - \frac{I}{I'_{464}} \left(1 - \frac{\delta I'_{464}}{I'_{135}} \cdot \frac{I'_{135}}{I'_{464}} \right) \right]$

Рис. 1. Часть спектра конверсионных электронов 132 La

Рис. 2. Часть спектров гамма-гамма-совпадений с задающими окнами: А-540 кэв, В-567 кэв; С - комптоновский фон за линией 567кэв; Д - 663 кэв; Е - комптоновский фон за линией 567 кэв.

Рис. 4. Схема распада ^{132 m} La