10/1-71

А–9Ү/ объединенный институт ядерных исследований

X

NUCENC

H

Дубна.

147

P6-5674

В.П. Афанасьев, В.С.Бутцев, И.И.Громова, В.Г.Калинников, Н.А.Тихонов

ИССЛЕДОВАНИЕ

РАСПАДА НУКЛИДОВ НЕОДИМА И ПРАЗЕОДИМА С МАССОВЫМ ЧИСЛОМ А = 138

P6-5674

В.П. Афанасьев, В.С. Бутцев, И.И. Громова, В.Г. Калинников, Н.А. Тихонов

ИССЛЕДОВАНИЕ РАСПАДА НУКЛИДОВ НЕОДИМА И ПРАЗЕОДИМА С МАССОВЫМ ЧИСЛОМ А = 138

Направлено в "Известия АН СССР"

Officialisment freezeway supple descederate BUE MACTERA

Введение

В данной работе представлены результаты изучения нуклидов неодима и празеодима с А =138, составляющего часть программы исследования свойств нейтронодефицитных ядер с числом нейтронов, близким к

N =82.

Идентификация изотопа ¹³⁸ Nd ($T_{\frac{1}{2}}$ =5,2±0,1 час^{/1/}) выполнена в реботах^{/1,2,3/}. Было показано, что при его распаде возбуждается состояние с энергией 326 кэв (J^{π} =1⁺). Джулиан и Фесслер^{/4/} ввели дополнительно три возбужденных состояния с энергиями 193,6; 199,0 и 540,5 кэв.

В работах $^{/1,2,3/}$ были изучены гамма-лучи, электроны внутренней конверсии и позитронное излучение 138 Pr (T $_{\frac{1}{2}}$ =1,50±0,15 мин, Q₆₊=4437±10 кэв $^{/2,3/}$) и предложена схема возбужденных состояний 138 Св (уровни787,1(2⁺), 1473,8(0⁺) и 1510 кэв (2⁺)).

Уровни ядра ¹³⁸ Се возбуждаются также при распаде ¹³⁸ P_r ($T_{\frac{1}{2}}$ = 2,1 час, Q_{β} +=4800±20 кэв^{/5/}). Наиболее полная схема распада предложена в работах^{/5,6/}.

Следует отметить, что достоверная идентификация переходов ¹³⁸ Nd + Pr была затруднена, поскольку использовавшиеся ранее

в нашей работе^{/1,2,3,6/} препараты содержали, кроме¹³⁸ Nd (5,2 час), также изотоп¹³⁹ Nd, имеющий близкий период полураспада (5,5 час). Подобная ситуация существовала и при исследовании¹³⁸ Pr из-за присутствия в препаратах изотопа¹³⁷ Pr (T_{1/2} =1,3 час). Использование в настоящей работе сепарированных по массам изотопов неодима и празеодима позволило преодолеть отмеченные трудности.

Условия эксперимента

Изотопы.¹³⁸ Nd , ¹³⁸ Pr и ¹³⁸ Ргполучались в реакции глубокого отщепления 'Gd (Е_р =660 Мэв). Мишень весом 2 г облучалась 2 часа на внутреннем пучке синхроциклотрона ОИЯИ. Редкоземельные элементы – - продукты реакции – были выделены химически и затем разделены по фракциям хроматографическим методом ^{/7/}. Для исследования гамма-изпучения препаратов неодима и празеодима было выполнено их разделение по массам на электромагнитном масс-сепараторе ^{/8/}. Изучение электронов внутренней конверсии (ЭВК) неодима и празеодима производилось с источниками из неразделенных фракций.

Измерения спектров гамма-лучей выполнены на спектрометре с Ge(Li) -детектором. В работе использовались два детектора коаксиального типа с объемами 10 и 30 см³ и с разрешающей способностью. соответственно 3,5 и 5,5 кэв при энергии гамма-лучей $E_{\gamma} \approx 1$ Мэв. ЭВК исследовались на магнитных бета-спектрометрах с двойной фокусировкой пучка на угол $\pi\sqrt{2}$ и $2\pi\sqrt{2}$ с приборной разрешающей способностью соответственно 0,12% и 0,20%. Источники для бета-спектрометров приготавливались электролитическим осаждением активности на золотую фольгу толщиной ≈ 5 мкм.

2. Результаты измерений

Результаты исследования гамма-лучей и электронов внутренней ¹³⁸Nd и ^{138m,g} Pr представлены в табл. 1 и 2. На рисунках конверсии 1 и 2а,б приведены участки спектров гамма-лучей ¹³⁸Nd и ¹³⁸ g Pr . Отдельные конверсионные линии ¹³⁸Nd изображены на рис. 3. Использование масс-сепарированных препаратов позволило достоверно идентифицировать ряд гамма-переходов ¹³⁸ Nd + ¹³⁸ Pr . Определение разности энергий Е_к-Е_L или Е_v-Е_к дало возможность установить заряд ядра, в котором конвертируют переходы. При идентификации гамма-пе-¹⁸⁸ Pr мы приняли во внимание также тот факт, что разность реходов ¹⁸⁸Pr (~1 Мэв). Полученные данные об ¹³⁸Nd и невелика масс интенсивностях гамма-лучей и ЭВК позволили установить коэффициенты внутренней конверсии (КВК) некоторых переходов и определить тип их мультипольностей.

К распаду ¹⁸⁸ **P**r отнесены ранее неизвестные гамма-переходы 635,7; 1238,9 и предположительно 447,7 кэв. Не обнаружены гамма-переходы с интенсивностью более 0,5% на распад в области энергий **E**_y = 1,24-2,5 Мэв.

3. Схема распада ¹³⁸ Nd → ¹³⁸ Pr

На основании данных об энергиях, интенсивностях и мультипольностях переходов предлагается схема распада ¹³⁸ Nd (рис. 4). Точные значения энергий переходов позволили дополнительно ввести уровень 326,94 кэв, близкий к ранее известному 325,76 кэв $^{/3,4/}$. Вероятности заселения уровней ¹³⁸ Pr электронным захватом установлены из баланса интенсивностей гамма-переходов. Интенсивности гамма-переходов (в % на распад ¹³⁸ Nd) определены из сравнения их с интенсивностью гамма-перехода 788,7 кэв (3,15% на распад ¹³⁸ Pr). Значение разности масс ¹³⁸ Nd и ¹³⁸ Pr принято равным 1133 кэв по Леви $^{/9/}$.

Возбужденным состояниям¹³⁸ Pr приписаны квантовые характеристики на основании мультипольностей гамма-переходов и величин log ft соответствующих бета-переходов¹³⁸ Nd (1^{*π*} =0⁺).

Для интерпретации уровней ¹³⁸ Pr воспользуемся представлениями модели оболочек. Основному состоянию ¹³⁸ Pr ₇₉ (1⁺) соответствует конфигурация $p(d_{5/2})$, $n(d_{3/2})$. При такой конфигурации становятся понятными вероятности бета-переходов между основными состояниями ¹³⁸ Nd \rightarrow ¹³⁸ Pr и ¹³⁸ Pr \rightarrow ¹³⁸ Ce (превращение $p(d_{5/2}) \rightarrow$ $\rightarrow n(d_{3/2})$).

В схеме уровней ¹³⁸ Pr имеются еще два состояния с квантовыми характеристиками $J^{\pi} = 1^{+}$. Однако не представляется возможным в рамках модели оболочек сконструировать двухчастичную конфигурацию, с помощью которой интерпретировались бы имеющиеся два "аномальных" состояния с $J^{\pi} = 1^{+}$.

Уровни ¹³⁸ Рг с отрицательной чётностью также невозможно описать в рамках двухчастичной модели. Лишь одно состояние с $J^{\pi} = 2^{-1}$ можно отождествить с конфигурацией $p(g_{7/2})$, $n(h_{11/2})$, которую, по-видимому, следует приписать уровню 194,2 кэв. Схема уровней Мейер не позволяет конструирование двухчастичных состояний с $J^{\pi} = 1^{-1}$.

На основании энергетических соотношений и баланса интенсивностей гамма-переходов введены дополнительно уровни с энергиями 2236,8(1⁺,2⁺), 2906,3(1⁺, 2⁺), 3028,2 (1⁺, 2⁺) и предположительно 2470,4 кэв (рис. 5). Их квантовые характеристики предложены на основании вероятностей бета-переходов ¹³⁸ Pr (1⁺). Наши данные подтверждают существование уровня 1510,9 кэв (2⁺)^{/3/} и уточняют интенсивности гамма-переходов, которыми он высвечивается. Джулиан и Фесслер^{/4/} также подтверждают его существование. По-видимому, тот же уровень (E =1,51 Мэв)

• 6

возбуждался в реакциях 10,11 . Уровни ¹³⁸ Се с энергиями 1545 (2⁺) и 2046 кэв (2⁺) $^{12/}$ (или 2058 кэв $^{11/}$), которые ввел Сакаи на основании изучения реакции ¹³⁹ La (p, 2 n), не подтверждаются нашими данными о распаде ¹³⁸ Pr (1⁺).

Рассмотрение нижних возбужденных состояний ¹³⁸Се по вибрационной модели выполнено в работах ^{/2,3,13/}. В частности, такая модель предсказывает для параметра $X = \frac{B(E0, 0^{+} \rightarrow 0_g^+)}{B(E2, 0^{+} \rightarrow 2_g^+)}$ у ядер данной области значение $\approx 0,04-0,06$. Из наших результатов следует $X_{3KCR} = 0.28 \pm \pm 0.04$.

5. Схема распада ¹³⁸^mPr→ ¹³⁸Сс

Предлагаемая нами схема распада изомерного состояния ¹³⁸ Pr (Т _{1/2} =2,1 час) приведена на рис. 5. В схеме размешены ранее неизвестные гамма-переходы 635,7 и 1238,9 кэв. Размешение перехода 635,7 кэв подтверждает существование уровня 2764,8 кэв, введенного в^{/14/} на основании наблюдения совпадений (у 389)(у 546) . Тем самым не подтверждается уровень 2371,8 кэв^{/6/}.

Возбужденным состояниям ¹³⁸ Се с энергиями 2217,4 и 2764,8 кэв мы приписываем квантовые характеристики J^{*n*} =5 и 7 соответственно, исходя из мультипольностей гамма-переходов и величин logft бета-переходов из ¹³⁸ Pr (8⁻).

Систематика свойств чётно-чётных ядер с N =80 указывает на то, что состояния с высокими спинами следует рассматривать как коллективные или двухнейтронные.

Уровень 2129,2 кэв (7) по двухчастичной модели является нижним состоянием мультиплета $n_1(d_{3/2})^{-1}$, $n_2(h_{11/2})^{-1}$. Состояние 1826,5 кэв (4⁺) в работе^{/5/} рассматривается как двухквазинейтронное состояние конфигурации $n_1(d_{3/2})^{-1}$, $n_2(g_{7/2})^{-1}$. Вероятность ЕЗ -пе-

рехода 302,7 кэв между этими уровнями, близкая к одночастичной, подтверждает их природу.

Уровень 2217,4 кэв (5), возможно, является нижним состоянием мультиплета $n_1(h_{11/2})^{-1}$, $n_2(s_{1/2})^{+1}$. Однако нельзя полностью исключить вклад в это состояние конфигурации $n_1(h_{11/2})^{-1}$, $n_2(d_{3/2})^{-1}$.

Вероятность бета-перехода (log ft = 5,6) на уровень 2129,1 кэв (7) позволяет достоверно установить квантовые характеристики изомерного состояния $J^{\pi} = 8^{-1} p(d_{5/2})$, $n(h_{11/2})$ /15/.

В заключение можно сделать некоторые выводы о свойствах изучавшихся в работе ядер.

В нечётно-нечётном ядре¹³⁸ Pr идентифицировано несколько состояний, которые однозначно описываются в рамках модели оболочек как двухквазичастичные. Однако нужно отметить, что ряд состояний с

J^π =1⁺ и некоторые состояния с отрицательной чётностью не представляется возможным описать в рамках указанной модели.

Уровни ¹³⁸ Се в области энергий возбуждения $E \ge 2$ Мэв можно интерпретировать как двухквазинейтронные состояния. Нижние уровни ¹³⁸ Се удобно рассматривать как имеющие вибрационную природу. Несколько необычным с такой точки эрения оказывается величина параметра $X = \frac{B(E0)}{B(E2)}$ для уровня $J^{\pi} = 0^{+\prime}$.

Указанные факты представляют определенный интерес и требуют теоретического рассмотрения.

Авторы выражают благодарность В. Боновой за помощь при обработке экспериментальных результатов.

-8

- K. Gromov, I. Demeter, Sch. Schelev, V. Kalinnikov, Kim En Su, N. Lebedev, F. Molnar, V. Morosov, G. Pfrepper, V. Khalkin, E. Herrmann, D. Khristov, Nucl. Phys., 88, 225 (1966).
- К.Я. Громов, А.С. Данагулян, Л.Н. Никитюк, В.В. Муравьева, А.А. Сорокин, М.З. Шталь, В.С. Шпинель. ЖЭТФ, <u>47</u>, 1644 (1964).
- В.С. Бутцев, Ж.Т. Желев, В.Г. Калинников, А.В. Кудрявцева, Я. Липтак, Ф. Молнар, У. Назаров, Я. Урбанец. Препринт ОИЯИ, Р6-3541, Дубна, 1967.
- 4. G. M. Julian, T.E. Fessler, BAPS, ser. II, 14, 569 (1969).
- 5. M. Fujioka, K. Hisatake and K. Takahashi. Nucl. Phys., <u>60</u>, 294 (1964).
- Р. Бабаджанов, Я. Врзал, К.Я. Громов, Я. Липтак, В.А. Морозов, Ф.Н. Мухтасимов, Я. Урбанец. Изв. АН СССР, сер.физ., <u>31</u>, 1724 (1967).
- 7. F. Molnar, A. Horvath and V.A. Khalkin. J. of Chromatography, <u>26</u>, 225 (1967).
- В.П. Афанасьев, А.Т. Василенко, И.И. Громова, Ж.Т. Желев, В.В. Кузнецов, М.Я. Кузнецова, Д. Мончка, Ю. Поморски, В.И. Райко, А.В. Ревенко, В.М. Сороко, В.А. Уткин. Сообщение ОИЯИ, 13-4763, Дубна, 1969.
- 9. J. Riddell. AECL-339 (1957).
- G. Bruge, A. Chaumeaux, Ha Duc Long and J. Picard. Contributions Int. Conf. on Properties of Nuclear States. Montreal, Canada, 1969, p. 270.
- 11. M. Sakai, M. Ishihara, J. Gono and N. Yoshikawa. INS, Report, 246, Tokyo, 1970.

 M. Sakai. In "Future of nuclear structure studies," Vienna, 1969, p. 57.
 В.Г. Калинников. Автореферат диссертации ОИЯИ, 6-4388, Дубна, 1969.
 Н. Nakayama, K. Hisatake and M. Fujioka. J. Phys. Soc. of Japan. 24, 623 (1968).

15. К. Александер. Препринт ОИЯИ, Р6-3785, Дубна, 1968.

Рукопись поступила в издательский отдел 10 марта 1971 года.

<u>Примечание при корректуре</u>: Нами проведено изучение гамма-гаммасовпадений при распаде ¹³⁸ gPr . Наблюдались совпадения (у 688)(у 789), (у 789)(у 688), (у 789)(у 723), (у 789)(у 1551) и (у 1551)(у 789). Результаты измерений подтверждают предложенную схему уровней ¹³⁸ Се. Таблица 1

Гамма-переходы ¹³⁸ Nd и находящегося с ним в равновесии

¹³⁶ Pr (1,5 мин)

Е _у кэв	J _J , отн	Э _е -, отн	dr эксп.	Тип мультиполь ности
I26,I4 <u>+</u> 0,05 ⁸)	5,5 <u>+</u> 0,6	K 740 <u>+</u> 90 L _I 98 <u>+</u> 20 M 28 <u>+</u> 10	0,40 <u>+</u> 0,10	EI+ ≤ 9%M2
132,73 <u>+</u> 0,05 ^{a)}	7,4 <u>+</u> 0,8	– K 1255 <u>+</u> 185 L _I 142 <u>+</u> 35	0,50 <u>+</u> 0,14	MI,E2,MI+E2
194,21 <u>+</u> 0,05 ^{a)}	15,0 <u>+</u> 2,0	К 480 <u>+</u> 50	0,095 <u>+</u> 0,025	EI+ ≤ 9%M2
199,50 <u>+</u> 0,05 ^{a)}	35,0 <u>+</u> 4,0	к 964 <u>+</u> 100	0,082 <u>+</u> 0,020	EI+ ≤ 8,6M2
2I4,I3 <u>+</u> 0,06 ^{a)}	5 47 0+2 0	К 2I0 <u>+</u> 30	0,069 <u>+</u> 0,0I3	EI+≼ I0,5M2
215,31 <u>+</u> 0,06 ^{a)}	<u> </u>	К 390 <u>+</u> 50	(1,23.10 ⁻¹) ⁰⁾	(MI,E2) ^{d)}
325,76 <u>+</u> 0,05 ^{a)}	158 <u>+</u> 16	K 1600 <u>+</u> 110 L 208 <u>+</u> 32	0,030 <u>+</u> 0,006	E2 + ≼ 50%MI
341,65 <u>+</u> 0,05 ^{a)}	3,8 <u>+</u> 0,9	К 190 <u>+</u> 20	0,12 <u>+</u> 0,06	M2+ ≼ 35%±1
541,0 <u>+</u> 0,3	6,5 <u>+</u> 1,3	К 18 <u>+</u> 8	(8,4+4,2)10-3	E2,MI
	138 _P	<u>г (I,5 мин)</u> → ^{I38}	⁸ Ce_	3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
581,6 <u>+</u> 0,5 B)	0,65 <u>+</u> 0,I5		-	
688,2 <u>+</u> 0,I ^{a)}	34,2 <u>+</u> 2,7	52 <u>+</u> 5	(4,5 <u>+</u> 0,8)10 ⁻³	E2
722,7 <u>+</u> 0,5	2,7 <u>+</u> 0,7	-	(4,3 <u>+</u> 0,7)10 ⁻³) _
(756,3 <u>+</u> 0,5) ^{B)}	≈0,9		•	1
788,7 <u>+</u> 0,1 ^{a)}	≡100	K ≡100	2,97(-3)	E2
I248 <u>+</u> I	≈I,4			
I429,5 <u>+</u> 0,5	2,2+0,4	κ ≤ 5	-	-
1432,6 <u>+</u> 0,5	2,0 <u>+</u> 0,4	K ≤ 5	-	-
1447,3 <u>+</u> 0,3	4,5 <u>+</u> 0,7	K ≤ 5		
1476,9 <u>+</u> 0,2 ^{a)}	<0,5	к зоо <u>+</u> 20 ^д)	>1,81	EO
	and the second sec	$L + M 6I + 9 \frac{\pi}{2}$.*	

1510,5 <u>+</u> 0,3	4,6 <u>+</u> 0,7	_	≈І,І.10 ⁻³ г)	E2,MI(E3)
1551,4 <u>+</u> 0,4	16,5 <u>+</u> 1,7	5,3 <u>+</u> 1,6	(9,5 <u>+</u> 3,8)10 ⁻⁴	E2,MI(E3)
(1806,0 <u>+</u> 1,5)	≈I,2	-	_	_
1894,5 <u>+</u> 1,5	2,55 <u>+</u> 0,65	-		
2115,3 <u>±</u> 0,7	2,35 <u>+</u> 0,70	-	- -	-
2236,8 <u>+</u> 1,0	4,0 <u>+</u> 0,6	_	-	-
2470,4 <u>+</u> 1,0	2,4 <u>+</u> 0,4	·		-
(2644,2 <u>+</u> 0,5)	≈0,5	_		-

- а) Энергии переходов определены по ЭВК с использованием в качестве внутренних реперов К-линий переходов 165,84±0,03 кэв ¹³⁹Се, 145,45±0,02 кэв ¹⁴¹Nd, 708,1±0,1 кэв ¹³⁹Nd, 788,7±0,1 кэв ¹³⁸Pr и 1903,15±0,30 кэв ¹⁴⁰Pr.
- б) При определении дк244,13 предполагалось исходя из схемы распада, что переход 215,31 кав типа МІ или Е2.
- в) Не исключено, что указанные переходы принадлежат 138 Nd.
- г) Коэффициент $d_{\kappa_{1510}}$ определен из данных об $\mathcal{J}_{e_{\kappa}(722)}$, $\mathcal{J}_{e_{\kappa}(1510)}$, $\mathcal{A}_{\kappa_{722}}=(4,3\pm0,7).10^{-3}$ /II/ и наших данных об интенсивностях соответствующих гамма-лучей.
- д) В работе ^{/3/} при обработке экспериментальных результатов вкралась ошибка, что привело к заниженному значению интенсивности ЕО-перехода.

Таблица 2 Гамма∸лучи ¹³⁸ Pr (Т_½ =2,1 час)

^Е ₄ кэв	Ј _{у отн} .	Је отн.	dк эксп.	Тип мультипольн.
302,7 <u>+</u> 0,I	85 <u>+</u> I0	≡ 1000	I,23.10 ^{-I}	≡ E3
390,9 <u>+</u> 0,I	5,8 <u>+</u> 0,6	2,8 <u>+</u> 0,6	(4,8 <u>+</u> 1,5).10 ⁻³	EI
(447,7 <u>+</u> 1,0)	0,8 <u>+</u> 0,2			na an a
511,0 (<u>7</u> =)	30 <u>+</u> 6 ^{a)}			
547,5 <u>+</u> 0,I	4,8 <u>+</u> 0,5	4,5 <u>+</u> 0,9	(0,9 <u>+</u> 0,3).10 ⁻³	E2, MI
635,7 <u>+</u> 0,I	2,3 <u>+</u> 0,3	I,I <u>+</u> 0,5	(4,8 <u>+</u> 2,4).10 ⁻³	E2 (MI)
788,7 <u>+</u> 0,I ⁺⁾	≡ I00	36 <u>+</u> 7	$(3,6\pm0,7).10^{-3}$	Ŀ2
1037,8 <u>+</u> 0,1 ⁺⁾	100 <u>+</u> 6			
1090,3 ⁰)				
I238,9 <u>+</u> I,3	I,I <u>+</u> 0,2			
I340,4 ⁶⁾				
1826,5 ^d)				

а) Значение Ј_а, установлено по интенсивности пика аннигиляции.
б) Пик суммирования находящихся в каскаде гамма-переходов.
+) Значения энергий взяты из работы /4/.

Спектр Гамма-излучения N (5,2 час).

Рис. гий 26. Участок спектра гамма-лучей 1800-2500 кэв. ¹³⁸ Pr (1,5 мин) в области энер-

¹³⁸ Nd Рис. 3. Некоторые линии электронов внутренней конверсии

Рис. 4. Схема распада ¹⁸⁸ Nd (5,2 час).

Рис. 5. Схема уровней ядра ¹³⁸ Се, возбуждаемых при распаде ¹³⁸ F (1,5 мин) и ^{138 m} Pr (2,1 час).