

В.С. Бутцев, Ц. Вылов, В.Г. Калинников, Н.А. Тихонов, Э. Херрманн

О РАСПАДЕ ¹³⁹ N d

XX

P 6- 5673

В.С. Бутцев, Ц. Вылов, В.Г. Калинников, Н.А. Тихонов, Э. Херрманн

О РАСПАДЕ ¹³⁹Nd

Направлено в Изв. АН СССР (сер. физ.)

Введение

Исследуемые в работе ядра изотопов Nd , Pr и Cc с нечётным A (≈ 140) имеют число нейтронов, близкое к "магическому" N =82. Структура "магических" ядер данной области, таких как $\frac{139}{57}La_{82}$, $\frac{141}{59}Pr_{82}$, качественно неплохо описывается некоторыми конкретными моделями /1,2/. Их уровни с $E \leq 2$ Мэв рассматриваются как возбужденные состояния протонной системы ядра.

В изучавшихся нами ядрах нужно ожидать, помимо состояний отмеченного типа, также уровни, обязанные возбуждению и нейтронной системы ядра. В связи с этим ядро ¹³⁹Pr представляется интересным с точки эрения идентификации в нем протонных и нейтронных уровней, а также коллективных возбуждений типа колебаний чётно-чётного остова плюс одночастичное состояние неспаренного нуклона.

Осуществлению этой работы способствовало то обстоятельство, что материнское ядро¹³⁹ Nd имеет два долгоживущих состояния с различными спинами и чётностями, *β*-распад которых приводит к возбуждению уровней¹³⁹ Pr различной природы.

Хотя исследованию распада ¹³⁹ Nd посвящен ряд работ $^{/3-7/}$, в которых изучались γ -лучи, позитроны, наиболее интенсивные конверсионные электроны, $\gamma - \gamma$ -совпадения, времена жизни некоторых состояний

¹³⁹ Pr, тем не менее некоторые вопросы оставались невыясненными. Во-первых, существовали некоторые затруднения в идентификации γ -переходов ^{139 m}Nd (5,53 час), поскольку в исследованных препаратах присутствовал также изотоп с близким периодом ¹³⁸Nd (5,2 час). Во-вторых, не был известен мультипольный состав гамма-излучения, что не позволяло приписать возбужденным состояниям ¹³⁹ Pr квантовые характеристики. В-третьих, отсутствовали достоверные данные о β^+ -излучении, необходимые для конструирования схемы ⁵распада. Наконец, представлялось интересным более подробное рассмотрение М4-изомерии в данной области ядер.

Настоящая работа была предпринята для решения перечисленных Задач.

1. Условия эксперимента

Радиоактивные ядра ¹³⁹ Nd получались в реакции глубокого отшепления при облучении гадолиниевой мишени на внутреннем пучке протонов синхроциклотрона (Е_р = 660 Мэв, ток 2мка). Из облученной в течение двух часов мишени (вес 2 г) хроматографическими методами ^{/8/} выделялась фракция неодима. Затем производилось разделение фракции по изобарам на электромагнитном масс-сепараторе ^{/9/}.

¹³⁹gNd получались двумя способами. В одном из них Препараты ^{139m,5}Nd разделялись по эффекту Сцилларда-Чалмерса изомеры С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСА С ДИЭТИЛЕНТРИАМИНПЕНТАУКСУСНОЙ КИСЛОТОЙ (ДТРА)^{/10/}. В другом – проводилось короткое облучение (≈ 15 мин) і мишени (NH₄) [Gd (ДТРА)] весом 1.5 г на выведенном протонном пучке. Быстрое радиохимическое разделение облученной мишени производилось по методике, подробно описанной в работе . Химически чистая фракция Nd разделялась по изобарам на масс-сепараторе установки ЯСНАПП^{/12/}. Измерения у -спектров выделенных препаратов начинались через ≈ 30 мин после конца облучения.

Для исследования электронов внутренней конверсии и β^+ -изучения ^{139m,g}Nd источники приготовлялись из фракции.

Спектры гамма-излучения измерялись на полупроводниковом Ge(Li)--спектрометре. Нами были использованы два Ge(Li) -детектора коаксиального типа с чувствительными объемами 10 и 30 см³ и с разрешаюшей способностью, соответственно, 3,5 и 5,0 кэв при $E_{\gamma} \approx 1$ Мэв. Конверсионные электроны и β^+ -излучение изучались на магнитных бета-спектрометрах типа $\pi\sqrt{2}$ и $2\pi\sqrt{2}$ с приборной разрешающей способностью 0,12 и 0,20%. Псточники для них приготавливались электролитическим способом на подложке шириной 0,5 мм и толщиной 5 мка.

2. Экспериментальные результаты

Полученные нами сведения о гамма-лучах и электронах внутренней конверсии ^{139m,g}Nd приведены в таблицах 1 и 2. Для иллюстрации на рис. 1 и 2 представлены гамма-спектр ^{139m}Ndи участки гаммаспектра ^{139g}Nd . Отдельные конверсионные линии ¹³⁹Nd изображены на рис. 3.

Из соотношения интенсивностей L-линий перехода 113,88 кэв и отношения K : L_{I+II} :L_{III} перехода 231,15 кэв установлен их мультипольный состав, что дало возможность определить коэффициенты внутренней конверсии (a_k) для большинства переходов ^{139m}Nd и сделать выводы о типах их мультипольностей.

С течением времени в источнике происходило накопление активности ¹³⁹Се . Сравнивая интенсивности К-линий 165,84 кэв ¹³⁹Се (17% на распад) и 231,15 кэв ^{139m}Nd , мы нашли полную интенсивность перехода 231,15 кэв (14,3<u>+</u>1,4)%.

В гамма-спектре ^{139m}Nd проявились также наиболее сильные линии ^{139 g}Nd . Это позволило нам определить интенсивности гамма-переходов ^{139g}Nd в % на распад.

Таблица I

Гамма-лучи и конверсионные электроны, сопровождающие распад ^{139m}Nd(5,53 час)

	• • • • • • • • • • • • • • • • • • •				
Е, кэв	J _{T отн}	_0бо- лочка	Je- oth	<i>б</i> к эксп	Вывод о мультипольн.
92,91 <u>+</u> 0,07	2,9 <u>+</u> 0,6	K	190 <u>+</u> 20	1,45 <u>+</u> 0,43	MI;E2;MI+E2
101,20 <u>+</u> 0,10	0,50 <u>+</u> 0,15	K	35 <u>+</u> 7	I,53 <u>+</u> 0,73	MI;E2;MI+E2
II3,87 <u>+</u> 0,05	113 <u>+</u> 13	К	4450 <u>+</u> I50	0,86 <u>+</u> 0,13	(97,4 <u>+</u> 0,3)%MI+
•	•	LI	685 <u>+</u> 25	1	+(2,6 <u>+</u> 0, 3)%E2
		Li	73 <u>+</u> 7	€ Ministrations (sectors and	4 ¹
		L	42 <u>+</u> 4		
		И	119 <u>+</u> 6		
		N+0	24,0 <u>+</u> 2,5	n - Frank State (1997) 1 19 - Angel State (1997) - Angel State (1997)	· · · · · · · · · · · · · · · · · · ·
147,9 <u>+</u> 0,1	I,77 <u>+</u> 0,23	K	29 <u>+</u> 8	0 , 36 <u>+</u> 0,14	E2;11; MI+E2; E2+111
151,4 <u>+</u> 0,2	≼ 0,2	K K	4,I <u>+</u> I,2	≥0 , 45	statis <mark>⊷</mark> e st
172,1 <u>+</u> 0,2	≤ 0,2	К	5,3 <u>+</u> I,6		
209,65 <u>+</u> 0,07	5,1 <u>+</u> 0,5	К	38 <u>+</u> 4	0,163 <u>+</u> 0,033	Ш; Ш+Е2
2I4,6 <u>+</u> 0,I	I,4 <u>+</u> 0,2	К	6,0 <u>+</u> 1,3	(9,4 <u>+</u> 3,4).10 ⁻²	E2; MI+E2
231,15 <u>+</u> 0,05	2,3 <u>+</u> 0,2	К	≡ 1000	≡9,5	14
	•	L+L <u>=</u>	251 <u>+</u> 21		: •
	•	L	141 <u>+</u> 17		
	•	М	96 <u>+</u> 16		
•		N+0	29 <u>+</u> 4		
254 .6<u>+</u>0, I	3,4 <u>+</u> 0,4	К	I3 <u>+</u> 2	(8,35 <u>+</u> 2,50).10 ⁻²	MI;E2;E2+MI
302,7 <u>+</u> 0,4	1,60 <u>+</u> 0,25	1 . –	-	-	
340,5 <u>+</u> 0,I	I,72 <u>+</u> 0,25	К	3,9 <u>+</u> 0,5	(4,9 <u>+</u> 1,2).10 ⁻²	Ш+(E2)
362,42 <u>+</u> 0,08	6,6 <u>+</u> 0,5	ĸ	5,6 <u>+</u> 0,9	(1,85 <u>+</u> 0,50).10 ⁻²	E2
403 , 75 <u>+</u> 0,08	6,8 <u>+</u> 0,6	ĸ	10 <u>+</u> 1,5	(5,2 <u>+</u> 0,8).10 ⁻²	MI

продолжение	Tao	лицы	I
-------------	-----	------	---

	•				
			про	одолжение таблицы	I
^Е ј , кэв	Ј _{ј, отн} .	Обо- лочка	Ј _{е-отн} .	<i>а</i> к эксп.	Вывод о мультипольн.
I	2	3	4	5	6
424,3 <u>+</u> 0,I	2,15 <u>+</u> 0,25	К	3,0 <u>+</u> 0,6	(3,0 <u>+</u> 1,0).10 ⁻²	MI+(E2)
475,5 <u>+</u> 0,4	I,75 <u>+</u> 0,25	-	-		-
547,65 <u>+</u> 0,10	6,7 <u>+</u> 0,5	К	4,9 <u>+</u> 0,5	(1,53 <u>+</u> 0,38).10 ⁻²	MI;(M3)
572,3 <u>+</u> 0,2	2,20 <u>+</u> 0,35	К	I,5 <u>+</u> 0,5	(1,5 <u>+</u> 0,75).10 ⁻²	MI;(E3)
601,2 <u>+</u> 0,4	I,60 <u>+</u> 0,25	-	-		-
673,3 <u>+</u> 0,3	I,76 <u>+</u> 0,20	К	0,5 <u>+</u> 0,1	(6,2 <u>+</u> 2,0).10 ⁻³	MI;E2;MI+E2
701,2 <u>+</u> 0,1.	II,8 <u>+</u> I,2	К	4,0 <u>+</u> 0,4	(7,4 <u>+</u> I,5).10 ⁻³	MI+(E2)
708,I <u>+</u> 0,I	74,8 <u>+</u> 3,2	K	60 <u>+</u> 6	(1,75 <u>+</u> 0,25).10 ⁻²	M2
		· L	8,2 <u>+</u> 0,8		
		M + N	2,30 <u>+</u> 0,35		
738,2 <u>+</u> 0,2	≡100	K	18,8 <u>+</u> 1,9	(4,1 <u>+</u> 0,4).10 ⁻³	E2+ €45%MI
		่ <i>L</i>	2,2 <u>+</u> 0,25		
· · · ·		M + N	0,50 <u>+</u> 0,08	•	
796,5 <u>+</u> 0,3	II,9 <u>+</u> 1,2	K	0,5 <u>+</u> ∪,I	(9,2 <u>+</u> 3,0).10 ⁻⁴	. EI
802,0 <u>+</u> 0,3	19,8 <u>+</u> 2,0	К	2,4 <u>+</u> 0,3	(2,65 <u>+</u> 0,60).10 ⁻³	E2+≰I5%MI
		L	0,30 <u>+</u> 0,08		
809,6 <u>+</u> 0,3	18,0 <u>+</u> 1,8	К	0,90 <u>+</u> 0,14	(1,05 <u>+</u> 0,25).10 ⁻³	EI
		L	0,12 <u>+</u> 0,03		
822,I <u>+</u> 0,3	4,9 <u>+</u> 0,6	к	I,23 <u>+</u> 0,24	(5,5 <u>+</u> 1,7).10 ⁻³	E3 •
		L^{\cdot}	0,17 <u>+</u> 0,04		an an an taon an an an An an an an Anna
827,8 <u>+</u> 0,3	29,3 <u>+</u> I,5	К	3,I <u>+</u> 0,5	(2,3 <u>+</u> 0,5).10 ⁻³	E2
		L	0,38 <u>+</u> 0,06	an a	
852	€0,5	-	• • • • •	-	-
894,8 <u>+</u> 0,4	I,00 <u>+</u> 0,16	К	0,25 <u>+</u> 0,07	(5,5 <u>+</u> 2,4).10 ⁻³	MI (E3)
9 00,0 <u>+</u> 0,4	I,10 <u>+</u> 0,20	ĸ	0,25 <u>+</u> 0,07	(5,0 <u>+</u> 2,3).10 ⁻³	MI (13)
910,1 <u>+</u> 0,3	2 I ,6<u>+</u>I ,I	. К	2,40 <u>+</u> 0,30	(2,4 <u>+</u> 0,4).10 ⁻³ .	E2+ ≼ 45%MI
	•	L	0,30 <u>+</u> 0,06		
982,2 <u>+</u> 0,2	74,8 <u>+</u> 2,2	к	2,55 <u>+</u> 0,30 0,30+0,06	(7,4 <u>+</u> I,I).10 ⁻⁴	EI

				продолжение табли	цы I
I	22	3	4	¢5	6
1006,2 <u>+</u> 0,4	9,1 <u>+</u> 0,7	К	0,30 <u>+</u> 0,06	(7,2 <u>+</u> 2,0).10 ⁻⁴	ы
I0I2,3 <u>+</u> 0,3	7,8 <u>+</u> 0,6	К	0,70 <u>+</u> 0,11	$(1,96\pm0,46).10^{-3}$	E2;(III)
1024,9 <u>+</u> 0,4	4,3 <u>+</u> 0,3	К	0,15 <u>+</u> 0,03	(7,6 <u>+</u> 2,0).10 ⁻⁴	EI
1075,2 <u>+</u> 0,3	9,9 <u>+</u> 0,7	К	0,27 <u>+</u> 0,05	(6,0 <u>+</u> 1,5).10 ⁻⁴	EI
1105,3 <u>+</u> 0,3	7,7 <u>+</u> 0,6	Я	0,45 <u>+</u> 0,09	(1,3 <u>+</u> 0,35).10 ⁻³	
II65,8 <u>+</u> U,5	0,98 <u>+</u> 0,15	. – *	_ *_*	· · · · · · · · · · · · · · · · · · ·	1
1219,6 <u>+</u> 0,4	4,7 <u>+</u> 0,5	К	0,15 <u>+</u> 0,04	(7,0 <u>+</u> 2,7).10 ⁻⁴	EI
I226,7 <u>+</u> 0,4	3,8 <u>+</u> 0,4	К	0,30 <u>+</u> 0,08	(I,7 <u>+</u> 0,6).10 ⁻³	MI;(M1+E2)
1234,6 <u>+</u> 0,5	I,2 <u>+</u> 0,2	К	0,07 <u>+</u> 0,02	(1,3 <u>+</u> 0,5).10 ⁻³	E2;(E2+MI)
I245,7 <u>+</u> 0,5	0,82 <u>+</u> 0,18	К	0,04 <u>+</u> 0,015	(I,I <u>+</u> ^U ,5).10 ⁻³	E2+ ≼ 80%MI
1322,3 <u>+</u> 0,4	⁵ ,3 <u>+</u> 0,5	K	0,10 <u>+</u> 0,03	(4,1 <u>+</u> 1,8).10 ⁻⁴	EI
1344,8 <u>+</u> 0,5	I,3 <u>+</u> 0,4	К	0,04 <u>+</u> 0,015	(6,7 <u>+</u> 4,7).10 ⁻⁴	EI; (E2)
I364,8 <u>+</u> 0,5	0,95 <u>+</u> 0,I5	-	≈0,03	≈6,9.10 ⁻⁴	HI;(E2)
I374,7 <u>+</u> 0,5	I,2 <u>+</u> 0,4	-		-	-
I463,6 <u>+</u> 0,5	0,9 <u>+</u> 0,3			-	_
I470,2 <u>+</u> 0,5	I,65 <u>+</u> 0,40				_
I5I0,5 <u>+</u> 0,5	0,40 <u>+</u> 0,15	 ',	_	-	- <u>-</u> - <u>i</u> .
I680,7 <u>+</u> 0,5	0,9 <u>+</u> 0,2	-		_	_
2060,9 <u>+</u> 0,3	I3,6 <u>+</u> I,4	К	0,12 <u>+</u> 0,02	(I,9 <u>+</u> 0,5).10 ⁻⁴	EI
2085,0 <u>+</u> 0,7	0,15 <u>+</u> 0,06	 *	-	-	tin tanın tanışı Azərbaycan tanışı
2201,2 <u>+</u> 0,8	0,36 <u>+</u> 0,07	-	-	_	

Таблица 2

Гамма-излучение и конверсионные электроны 1398 Nd(29,6 мин)

^Е 7 (кэв)	Ј₇ отн.	∫ _{eκ} *)	<i>d</i> к эксп.	Тип мультипольнос- ти
II3,88	≼3, 6			
I83,5 <u>+</u> 0,2	4,0 <u>+</u> 0,4	5,7 <u>+</u> 1,7	$(4,5+1,8).10^{-1}$	M1,E2
220,9 <u>+</u> 0,3	0,4 <u>+</u> 0,I			
368,0 <u>+</u> 0,3	0,7 <u>+</u> 0,2			
405,0 <u>+</u> 0,I	≡36,4	2,9 <u>+</u> 0,5	(2,5 <u>+0</u> ,7).10 ⁻²	ii I
411,5 <u>+</u> 0,2	0,8 <u>+</u> 0,2		;	
475,5 <u>+</u> 0,3	6,9 <u>+</u> 0,6			
485,0 <u>+</u> 0,4	2,4 <u>+</u> 0,4			
511(7±)	(***20 <u>+</u> 20 م1 = م		N.	
588,8 <u>+</u> 0,3	4,2 <u>+</u> 0,6		1	
621,7 <u>+</u> 0,3	6,4 <u>+</u> 0,7		· · · · · · · · · · · · · · · · · · ·	
669,0 <u>+</u> 0,3	8,0 <u>+</u> 1,0	·		
(696,2 <u>+</u> 0,3)	2,0 <u>+</u> 0,4		6 3	
916,9 <u>+</u> 0,3	8,0 <u>+</u> 0,8	≈0,12	≈4 ,7. 10 ⁻²	.if,(E3)
923,4 <u>+</u> 0,3	7,0 <u>+</u> 0,7	≈0, I2	≈5,4.10 ⁻⁵	1,(四3)
1074,2 <u>+</u> 0,4	I3,3 <u>+</u> 1,4		· · ·	an a
1096,5 <u>+</u> 0,4	2,0 <u>+</u> 0,4	t .	2000 - 1999 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1 - A. A.
I2I3,4 <u>+</u> 0,8	I,7 <u>+</u> 0,5		1. 	÷
1221,2 <u>+</u> 0,8	1,5 <u>+</u> ∪,5			•.
(1233,3 <u>+</u> 0,8)	0,7 <u>+</u> 0,3			•
I246,7 <u>+</u> 0,8	1,0 <u>+</u> 0,4	A Starte Start		
1 3II,8<u>+</u>0, 6	I,6 <u>+</u> 0,4	*.*		14 - 1
I328,8 <u>+</u> 0,6	I,5 <u>+</u> 0,4			
1405,5 <u>+</u> 0,5	3,2 <u>+</u> 0,5			
1449 <u>+</u> 1	0,8 <u>+</u> 0,3		a grade the second	e de la composición d
1463,4 <u>+</u> 0,6	I,7 <u>+</u> ∪,4			ê. ¹
1500,5 <u>+</u> 0,6	I,3 <u>+</u> 0,4			
1532 <u>+</u> I	0,7 <u>+</u> 0,3			

ж) интенсивности электронов внутренней конверсии приведены в единицах таблицы 1.

жж) Интенсивность позитронов найдена из $\mathcal{I}_{\jmath^{\pm}}$.

На рис. 4 показан график Кюри β^+ -спектра пятичасовой активности неодима. Наряду с интенсивной компонентой 3415 кэв ¹³⁸ Pr наблюдается компонента β^+ -спектра ^{139 m}Nd, имеющая E _{гр} =1170±50 кэв с интенсивностью ≈ 2% на распад. Более точно определить ее интенсивность на фоне β^+ -излучения ¹³⁸gPr оказалось затруднительным. Кроме того не исключено, что в интенсивность этой компоненты дают вклад позитроны дочернего ядра ¹³⁹ Pr (T ½ =4,42±0,08 час; E_{гр} =1090±15кэв /13/)

3. Схема распада ¹³⁹ Nd

Экспериментальные данные о гамма-лучах, конверсионных электронах, позитронном излучении, а также $\gamma - \gamma$ -совпадениях ^{/6/} позволили нам предложить схему распада ^{139m,g} Nd (рис. 5). Ранее было известно ^{/3/}, что 5,5-часовое состояние ¹³⁹Nd высвечивается изомерным M4переходом в основное состояние. Интенсивность этого перехода мы установили равной (14,3±1,4)%, а в остальных случаях ^{139m}Nd испытывает $\epsilon + \beta^+$ -распад. Знание интенсивностей гамма-излучения в % на распад дало возможность определить заселенность каждого уровня ¹³⁹Pr .

Из баланса интенсивностей видно, что среди уровней ¹³⁹ Pr с энергией <1,5 Мэв наиболее сильно (7,7%) возбуждается уровень 822,0 кэв. Поэтому мы предположили, что позитроны с Е п =1170±50 кэв заселяют данный уровень, чему не противоречит интенсивность этой компоненты (J_p+≈2%). В таком случае полная энергия распада 139 m Nd – 139 Pr Q_В+_{эксп} =3014±50 кэв. Такое значение равна находится в хорошем согласии с систематикой величин $Q_{m{eta}^+}$ -переходов типа $d_{5/2} \rightarrow d_{3/2}$ для ядер-изотонов с N =79 (рис. 6). В предположении разрешенного характера вычислены log ft β-пере-^{139 m}Nd . На основании величин logft , мультипольностей гаммаходов переходов и способов разрядки установлены квантовые хараткеристики возбужденных состояний ¹³⁹ Pr .

Рис. 6. Систематика энергий бета-переходов типа d $_{5,'2} \rightarrow d_{3,'2}'$ для ядер-изотонов N =77,79,81.

Предлагаемая нами схема распада ^{139 в} Nd в основном совпадает со схемой, предложенной Бири и др. ^{/6/}. Дополнительно мы ввели состояние 1532 кэв (предположительно). Более тщательно проведен баланс интенсивностей при распаде ^{139 g}Nd и, в частности, определено отношение $(\epsilon/\beta^+)_{3KC\Pi} = 2,3\pm0,4$ для β^+ -перехода в основное состояние ¹³⁹ Pr . По теории разрешенных переходов отношение $(\epsilon/\beta^+)=2,6$. Для $\epsilon + \beta^+$ -переходов ^{139 g}Nd вычислены log ft . Для четырех гамма-переходов установлены типы мультипольности. Совокупность этих данных позволила приписать некоторым уровням ¹³⁹ Pr квантовые характеристики (см. рис. 5).

5. Дискуссия

Квантовые характеристики изомерного $(11/2^{-})$ и основного состояний ¹³⁹Nd были установлены в ^{/3/}. Они соответствуют одночастичным состояниям 79-го нейтрона h _{11/2} и d _{3/2}. Такие состояния наблюдаются в ряде ядер-изотоновс N =79: ¹³¹Te, ¹³¹Xe, ¹³⁵Ba, ¹³⁷Ce, ¹⁴¹Sm. Приведенная вероятность B(M4)=5,56·10⁻¹⁹⁶ e² cm⁸ для случая ^{139m}Nd очень близка к соответствующим величинам указанных ядер и примерно в 5 раз меньше B(M4)

Не вызывают сомнения квантовые характеристики основного состояния ¹³⁹ Pr : 5/2 (d_{8/2}). Свойства β -перехода между основными состояниями ¹³⁹ Nd и ¹³⁹ Pr (logft , Q_{β^+}) находятся в хорошем соответствии с систематикой данных о бета-переходах типа d $_{5/2} \rightarrow d_{3/2}$ (см. табл. 3 и рис. 6).

Согласно одночастичной модели оболочек, вблизи орбитали d _{8/2} находится орбиталь g_{7/2}. По своим свойствам уровень 113,88 кэв в ¹³⁹ Pr отождествляется с состоянием g_{7/2}. М1- компонента перехода 113,88 кэв оказывается заторможенной примерно в 400 раз, а E2- компонента ускорена в 20 раз, что согласуется с систематикой свойств

Таблица 3

			N
Распад	Превращение нук- лонов	Q _р (кэв)	^T I/2; log ft
$^{143}_{63}Eu_{80} \rightarrow {}^{143}_{62}Sm_{81}$	$\pi(d5/2) \rightarrow \sqrt{(d3/2)}$	5000 <u>+</u> 200	2,3 <u>+</u> 0,2 мин <i>logft=</i> 5,I
¹⁴¹ ₆₁ Pm ₈₀ → ¹⁴¹ ₆₀ Nd ₈₁	π(d5/2)→ √(d3/2)	3 620	22 <u>+</u> I мин <i>Log</i> ft=5,4
¹³⁹ ₅₉ Pr ₈₀ → ¹³⁹ ₅₈ Ce ₈₁	द(d5/2)→ √(d3/2)	2II0 <u>+</u> 20	4,42 час log ft =5,2
$\stackrel{I43}{}_{62}\text{Sm}_{81} \rightarrow \stackrel{I43}{}_{61}\text{Rm}_{82}$	$\mathfrak{s}(d5/2) \rightarrow \mathfrak{d}(d3/2)^{-1}$	⁻¹ 3520	8,6 мин logft=4,8
$\overset{\mathrm{I4I}}{_{60}}\mathrm{Nd}_{81} \xrightarrow{\mathrm{I4I}}_{59}\mathrm{Pr}_{82}$	$f(d5/2) \rightarrow \sqrt{(d3/2)}$	01 <u>+</u> 0181 ^{I.}	2,42 час logit=5,2
$\stackrel{I39}{58}Ce_{8I} \rightarrow \stackrel{I39}{57}La_{82}$	$\pi(d5/2) \rightarrow \sqrt{(d3/2)}$	-I 104	140 дн logft =5,3
$^{139}_{60}Nd_{79} \rightarrow ^{139}_{59}Pr_{80}$	$\pi(d5/2) \rightarrow \sqrt{(d3/2)}$	^{•I} 2780 <u>+</u> 50	29,8 мин logft=5,I
$\stackrel{137}{_{59}}\text{Pr}_{78} \rightarrow \stackrel{137}{_{58}}\text{Ce}_{79}$	$\pi(d5/2) \rightarrow \forall (d3/2)$	2702 <u>+</u> 10	76,6 мин logft=5,3
$\begin{array}{c} 137\\58 \text{Ce} \\ 79 \xrightarrow{} 57 \text{La } 80 \end{array}$	$\tau(d5/2) \rightarrow \sqrt{(d3/2)}$	^I 1190 <u>+</u> 20	9,0 час legft=5,3

Систоматика данных о бета-переходах ds/2 = d./2

ℓ -запрещенных М1-переходов типа g_{7/2} → d_{5/2} /14/. Расчёты, выполненные Кислингером и Соренсеном /15/ для Е2-вероятностей таких переходов, не дают удовлетворительного согласия с экспериментальными результатами.

При распаде ^{139 m, g}Nd воэбуждается гораздо больше состояний, чем воэможное число одночастичных состояний протонной системы. Поэтому надо предположить, что проявляются и более сложные типы возбуждения, например, разрыв пары нуклонов (при Е ≥ 1,5 Мэв), что может привести к образованию трехчастичных состояний, или коллективное движение чётно-чётного остова ядра плюс одночастичное движение неспаренного нуклона.

Рассмотрим некоторые состояния ¹³⁹ Рг . Прежде всего следует остановиться на свойствах уровня 822,0 кэв. Оказывается, что ЕЗ-переход 822,0 кэв ускорен: В(ЕЗ)_{ехр}/В(ЕЗ)_{в.р.} А.М2-компонента 708,1 кэв заторможена примерно всего лишь в 35 раз. Можно предположить, что это состояние является членом мультиплета [3⁻]d_{5/2}. Уровень такой же природы наблюдается в ядре ${}^{137}_{57}$ La ${}^{/16/}_{50}$. Бета-переходы на эти состояния оказываются сильно заторможенными (log ft = 6,9), что говорит в пользу такой интерпретации.

Также оказывается сильно заторможенным β -переход на уровень 405,0 кэв (3/2⁺) (log ft =6,4). Не исключено, что при этой энергии реализуется одно из состояний мультиплета [2⁺]d_{5/2}. Ближайшее состояние 588,8 кэв могло бы также относиться к указанному мультиплету (или к мультиплету [2⁺] g_{7/2}). Появление состояний такой природы у ядер данной области ожидается, согласно расчётам Кислингера и Соренсена^{/15/}.

Среди уровней ¹³⁹ Pr в области энергий возбуждения > 1,5 Мэв наиболее характерным является уровень 1834,0 (9/2 или 11/2), который заселяется β -переходом с log ft =5,6. Столь низкое значение log ft характерно для β -процессов между членами спин-орби-

тального дублета. Таким дублетом в данной области А являются состояния $p(d_{5/2})$ и $n(d_{3/2})$. Как мы выше отмечали, данные состояния реализуются у ¹³⁹ в м ¹³⁹ Рг , β -переход между которыми имеет log ft =5,1. Тогда остается предположить ^{/6/}, что уровень 1834,0 кэв относится к мультиплету трехчастичных состояний: $p(d_{5/2})^{i}n(d_{3/2})^{1}n(h_{11/2})^{-1}$. На некоторые уровни этого мультиплета (с $J^{\pi} = 9/2^{-}, 11/2^{-}, 13/2^{-}$) будет идти разрешенный распад ¹³⁹ mNd ($J^{\pi} = 11/2$; $p(d_{5/2})^{2a}, n(h_{11/2})^{-3}$).

Вблизи состояния 1834,0 кэв имеется еще несколько уровней с $J^{\pi}=9/2$, 11/2 или 13/2 , β -переходы на которые характеризуются сравнительно небольшими величинами logft . Все эти уровни связаны между собой довольно интенсивными M1+E2 -переходами. По крайней мере, некоторые из них могли бы быть членами указанного мультиплета.

Таким образом, среди уровней ¹³⁹ Pr , возбуждаемых при распаде ^{139 m}. Nd , удается качественно выделить одночастичные, многочастичные и коллективизированные состояния.

Для более тщательного анализа структуры ядра ¹³⁹ Pr требуется привлечение как других экспериментальных методов, так и конкретных теоретических расчётов.

Авторы выражают благодарность В. Боновой и Я. Полаховой за помощь в работе.

Литература

1. B.H. Wildenthal. <u>29B</u>, 274 (1969).

2. N. Freed and W. Miles, Nucl. Phys., A158, 230 (1970).

- 3. К.Я. Громов, А.С. Данагулян, Л.Н. Никитюк, В.В. Муравьева, А.А. Сорокин, М.З. Шталь, В.С. Шпинель. ЖЭТФ, <u>47</u>, 1645 (1964).
- 4. Н.А. Бонч-Осмоловская, Б.С. Джелепов, О.Е. Крафт, Чжоу Юе-ва. Изв. АН СССР, сер.физ., <u>25</u>, 826 (1961).

- 5. J. Gilat, W.J. Treytl. Nucl. Chem. Ann. Rep., 1966, URCL 17299, p. 20.
- D.B. Beery, W.H. Kelly. Wm.C. McHarris. Phys.Rev., <u>188</u>, 1851 (1969).
- 7. K. Hesse, Z. Physick, <u>226</u>, 328 (1969).
- 8. F. Molnar, A. Horvath and V.A. Khalkin. J. of Chromatography, <u>26</u>, 225 (1967).
- В.П. Афанасьев, А.Т. Василенко, И.И. Громова, Ж.Т. Желев, В.В. Кузнецов, М.Я. Кузнецова, Д. Мончка, Ю. Поморски, В.И. Райко, А.В. Ревенко, В.М. Сороко. В.А. Уткин. Сообщение ОИЯИ, 13-4763, Дубна, 1969.
- C.-J. Beyer, H. Grosse-Ruyken, V.A. Khalkin, J. Inorg. Nucl. Chem., <u>31</u>, 1865 (1969).
- C.-J. Beyer, H. Grosse-Ruyken, V.A. Khalkin, G. Pfrepper, J. Inorg. Nucl. Chem., <u>31</u>, 2135 (1969).
- Г. Музиоль, В.И. Райко, Х. Тыррофф. Сообщение. ОИЯИ, Р6-4487, Ду бна, 1969.
- В.С. Бутцев, Ц. Вылов, В.Г. Калинников, Н.А. Тихонов. Пр. и тезисы ежег. совещания по ядерной спектроскопии и структуре атомного ядра, ч.1, стр. 82, "Наука", Ленинград, 1971.
- 14. Э.И. Берлович, Г.М. Букат. Изв. АН СССР, сер.физ., 28, 214 (1964).
- L.S. Kisslinger, R.A. Sorenson. Revs.Mod.Phys., <u>35</u>, 853 (1963).
- J.R. Van Hise, G. Chilosi, N.J. Stone. P'ys. Rev., <u>161</u>, 1254 (1967).

Рукопись поступила в издательский отдел 5 марта 1971 года.