Uzh AH ULCP., cep. puz., 1971, T. 30, ~ 17, c. 22 Ut-20 H-175 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 1368/2.

P6-5618

Е.Наджаков, Б.Бочев, Ц.Венкова, В.Михайлова, М.Михайлов, Т.Куцарова, Г.Радонов, Р.Калпакчиева.

ИЗОТОПЫ ВОЛЬФРАМА HOBME

P6-5618

Е.Наджаков, Б.Бочев, Ц.Венкова, В.Михайлова, М.Михайлов, Т.Куцарова, Г.Радонов, Р.Калпакчиева.

НОВЫЕ ИЗОТОПЫ ВОЛЬФРАМА

Направлено в"Изв. АН СССР"

1. Введение

Настоящая работа является продолжением программы изучения далеких от полосы стабильности нейтронодефицитных изотопов на ускорителях тяжелых ионов ОИЯИ, при выполнении которой раньше были найдены новые изотопы вольфрама и рения $^{1,2,3,4'}$. Известно много изотопов тантала $^{5'}$, однако их структура изучена недостаточно хорошо. С другой стороны, изотопы гафния хорошо исследованы. Поэтому проникнуть далеко от полосы стабильности для вольфрама представлялось вполне реальным. Систематика периодов полураспада – см., например, $^{5'}$ – показывает ожидаемые периоды порядка минут, что на пределе возможностей быстрой радиохимии. Область возможных поисков видна из табл. 1. Известные изотопы 173 W /16,5 мин/ и 172 W /6 мин/ описаны только в двух работах (первый в $^{\prime 6'}$, второй в $^{\prime 7'}$) и также представляют интерес для исследования.

2. Методика

Использовались следующие реакции составного ядра с испарением нейтронов:

на ускорителе У-300 ЛЯР в Дубне. Применялась толстая мишень (6-9 мг.см⁻², наклон 45[°]) из окиси обогащенных (до 92-95%) изотопов выбиралась в интервале гадолиния. Энергия ионов ²² Ne и ²⁰ Ne 145-155 Мэв. При использовании толстой мишени, как следует из расчетов по методу, описанному в , из составного ядра испаряются х = 4 - 8. Это приводит к образованию изотопов нейтроны с числом ¹⁵⁵ Gd и ²² Ne . с A = 172-168 для А = 173-169 для С А= 171–167 для ¹⁵⁵Gd и ²⁰Ne , при-¹⁵⁶ Gd ²⁰ Ne и и на единицу больше, чем чем возможно и появление изотопа с 🛛 🗛 максимальное А, с меньшим выходом. Ток ионного пучка достигал 40 мка, время облучения ≈ 30 мин.

Радиохимически чистый вольфрам обычно выделялся через 20-30 минут после конца облучения по методу, описанному в^{/2/}. В некоторых опытах для идентификации изотопов по генетической связи с дочерними изотопами с периодами полураспада до 24 часов изучался весь выделенный вольфрам в течение нескольких суток. В других опытах применялся известный метод "накопления" и выделения дочерних препаратов тантала из вольфрама через определенные интервалы времени. В опытах третьего типа использовался предложенный нами метод "вилка" (см. ^{/8/}).

Все препараты изучались на германиевом гамма-спектрометре с 4096 -канальным анализатором при разрешении до 4 кэв и чувствительном объеме до 30 см³, калиброванном по энергии и абсолютной

эффективности. При обработке спектров определялись энергии пиков E_{γ} и абсолютные интенсивности гамма-лучей J_{γ} препаратов, как описано в $^{/8/}$. Всего было обработано порядка 230 в среднем 2000 – канальных спектров для разных препаратов в 8 опытах (2 – с 155 Gd и 22 Ne, 4 – с 156 Gd и 20 Ne и 2 – с 155 Gd и 20 Ne). Для каждого пика с энергией E_{γ} строилась кривая распада и определялись период полураспада $T_{1/2}$ и интенсивность в конце облучения, в некоторых случаях для двух компонент с разными $T_{1/2}$ и J_{γ} .

3. Идентификация известных изотопов

Она проводилась, как и в ^{/8/}, путем сравнения с литературными данными значений периодов полураспада, энергий Е_у и относительных интенсивностей Ј_у гамма-лучей.

А = 174 не наблюдается.

<u>A = 173.</u> Результаты приведены в табл. 2,3. Для ¹⁷⁸ W (16,5 мин) нет данных об энергиях переходов, с которыми можно было бы проводить сравнение. ¹⁷⁸ Ta /3,7 час/ и ¹⁷⁸ Hf /23,6 час/ наблюдаются в вольфрамовых и танталовых препаратах (приведены суммарные таблицы данных для разных препаратов и опытов). Эти изотопы не наблюдаются в опытах с ¹⁵⁵ Gd и ²⁰Ne , наблюдаются только в некоторых опытах с ¹⁵⁶ Gd и ²⁰ Ne и во всех опытах с ²⁰ Ne , как и должно быть <u>А = 172.</u> Результаты показаны в табл. 4. Для ¹⁷² W /6 мин/ энергии переходов неизвестны. Наблюдается ¹⁷² Ta /44 мин/. Для него найдены относительные интенсивности гамма-переходов. Изотопы с

A = 172 наблюдаются иногда в опытах с 155 Gd и 20 Ne и всегда - во всех остальных опытах.

<u>A = 171</u>, Результаты приведены в табл. 5. Для ¹⁷¹ W литературных данных нет. Для ¹⁷¹ Та /25 мин/ неизвестны энергии переходов. Наблюдается ¹⁷¹ Нf /11 час/ во всех препаратах и опытах.

<u>A = 170.</u> Результаты приведены в табл. 6,7. Для ¹⁷⁰ ₩ данных нет. Наблюдаются ¹⁷⁰ Та /7 мин/ и ¹⁷⁰ Нf /12,2 час/ во всех препаратах и опытах.

Изотопы с А < 169 не наблюдаются.

Везде ошибки в⁶ определении Е_у составляют <u>+</u> 1 кэв, а на перекрывающихся пиках – до <u>+</u> 2 кэв, в Ј_у на интенсивных пиках – 20%, на слабых – до 50%.

4. Идентификация новых изотопов

Она проводилась: 1/ по убыванию активностей дочерних изотопов в последовательно выделяемых по методу химии "накопление" танталовых препаратах, 2/ по убыванию активностей дочерних изотопов в последовательно выделяемых по методу химии "вилка" вольфрамовых препаратах, 3/ по возрастанию активностей дочерних изотопов в вольфрамовых препаратах – там, где это возможно наблюдать.

Подтверждение данных об известных изотопах и применение этих данных для проверки используемой методики

<u>A = 173.</u> Данные, полученные в результате использования двух химических методов, показаны на рис. 1. Средневзвешенное значение для периода полураспада ¹⁷³ W, найденное путем химических определений, равно 15 ± 2 мин, что подтверждает данные о существовании этого изотопа и значении периода полураспада для него 16,5 ± 0,5 мин Одновременно проверена и эффективность использованной химической методики.

<u>A = 172.</u> Результаты химических определений показаны на рис.2. На рис. 5 видно и возрастание активности ¹⁷² Та. Из этих данных

получаем для периода полураспада ¹⁷² W значение 6,5 ± 1,0 мин. Это подтверждает существование этого изотопа и значение $T_{\frac{1}{2}}$ 6 ± 2 мин ⁷⁷.

Новые изотопы

<u>A = 171.</u> Результаты химических определений показаны на рис.3. Из них заключаем,что наблюдаем новый изотоп ¹⁷¹ W с T $\frac{1}{12}$ = = 9,0 <u>+</u> 1,5 мин. Интересно отметить, что по систематике ^{/5/} ожидается значение периода полураспада \approx 4 мин.

<u>A = 170</u>, Результаты химических определений приведены на рис.4. Для A = 170 наблюдается и возрастание активности ¹⁷⁰ Та (рис. 5/). На основании этих данных мы заключаем, что найден новый изотоп ¹⁷⁰ W с T_{1/2} = 4 ± 1 мин. (по систематике / 5/ ожидается значение ≈ 2 мин).

Авторы благодарны Г.Н. Флерову за предоставление времени на ускорителе и внимание к работе, Ю.Ц. Оганесяну и его группе за поддержку и интерес, а также С. Илиеву и М. Джаровой за помощь при проведении опытов и обработке результатов.

Литература

- 1. I. Demeter, Kim Hon Sil, E. Nadjakov, N.G. Zaitseva. Physics Letters, <u>19</u>, 47 (1965).
- И. Деметер, Н.Г. Зайцева, Ким Хон Сил, Е. Наджаков. Ядерная физика, <u>4</u>, 231 (1966);
 Preprint JINR, E-2360, Dubna, 1965.
- E. Nadjakov, N. Nenov, D. Hristov, G. Pfrepper, N.G. Zaitseva.
 C.R. Acad. Bulg. Sci., <u>20</u>, 533 (1967);
 Препринт ОИЯИ, Р-2910, Дубна, 1966.

- 4. Е. Наджаков, Б. Бочев, Г. Пфреппер, Х. Райчев, Т. Куцарова,
 Н. Ненов, В.И. Фоминых, М.И. Фоминых, С. Бакарджиев. Препринт ОИЯИ-4006, Дубна, 1968.
- 5. Р. Арльт, 3. Малек, Г. Музиоль, Х. Штрусный. Изв. АН СССР, сер. физ., <u>33</u>, 1232 (1969); Препринт ОИЯИ, Р6-4234, Дубна, 1968.
- 6. A. Santoni, A. Caruette, J. Valentin. J. de Physique, <u>24</u>, 407 (1963).
- Р. Арльт, З. Малек, Г. Музиоль, Х. Тыррофф, Х. Штрусный. Программа и тезисы докладов <u>19</u> ежег. сов. по ядерной спектроскопии, Ереван, 1969, ч. 1, стр. 124.
- 8. Е. Наджаков, Б.Бочев, Ц. Венкова, З. Шегловски, Т. Куцарова,
 Р. Калпакчиева. Новые изотопы иридия. Препринт ОИЯИ, Р6-5617, Дубна, 1967.
- Б. Бочев, И. Звольски, Е. Наджаков, Н. Ненов. Программа и тезисы докладов 19 ежег. сов. по ядерной спектроскопии, Ереван, 1969, ч. 1, стр. 124.
- C.M. Lederer, J.M. Hollander, I. Perlman. Table of Isotopes.
 6-th ed., New York, 1968.
- 11. J. Valentin, D.J. Horen, J.M. Hollander. Nuclear Physics, <u>31</u>, 353 (1962).
- 12. J. Gizon, A. Jourdan, M. Peyrard, J. Valentin, J. de Physique, 28, 249 (1967).
- 13. B. Harmatz, T.H. Handley, Nuclear Physics, 81, 481 (1966).
- 14. J.P. Husson, J. de Physique, 28, 271 (1967).

Рукопись поступила в издательский отдел 12 февраля 1971 года.

Таблица 1 Цепочки распада изотопов исследуемой области

Таблица 2 ¹⁷³ Та. Т ¼ = 3,5 ± 0,3 час /наши данные/, Т ½ = 3,7 час /10/, а) - ссылка ^{79/}.

¹⁷³Ta

НАШИ ДАННЫЕ		ДАННЫЕ (а)		
E _y [keV]	Ey [keV] Jye		Jye	
162	360	162	370	
172	540	170	5 8 0	
181	100	181	100	
702	80	702	100	

Таблица З наолица 3 ¹⁷³ Шf. $T_{1_2} = 24 \pm 2$ час /наши данные/, $T_{1_2} = 23,6$ час /10/, (b) - ссылка /11/ в обработке /4/, */ - мешает ¹⁷¹ Шf.

173 Hf

НАШИ ДАННЫЕ		∆АННЫЕ (b)	
E _{je}[keV]	J _ð e i	E, [keV]	Jyr
123	224	123,6	221
135	13	134,9	13,6
137	_*)	139,6	27
295	100	296,7	100
306	17	306,4	15,6
311	311 26		25,8

Таблица 4 ¹⁷² Hf . $T_{\frac{1}{2}} = 46 \pm 4$ мин /наши данные/, $T_{\frac{1}{2}} = 44$ мин /10/, (c) – ссылка /5/, (d) – ссылка /10/.

172 _{Ta}

НАШИ ДАННЫЕ		∆АННЫЕ (с)		∆AHHЫE(d)	
E _y [keV]	٦ ^٩	E _ø [keV]	J a	E _ð [keV]	Jø
90	40	95	-	92	-
115	4	—		115	ĺ
` —			+	155	
207	14	-		208	
214	100	214		_	
—				270	_

Таблица 5 /10/ ¹⁷¹ Нf . $T_{\frac{1}{2}} = 12 \pm 2$ час /наши данные/, $T_{\frac{1}{2}} = 11$ час , (е) - ссылка /12/, *) - часть всей интенсивности, остальная часть приписана ¹⁷⁰ Нf . **) - возможно, скрывается в пике 113 кэв, ***) - возможно, включает часть интенсивностей неполностью разрешенных пиков 188 и 197 кэв.

171	He
	Πŧ.

НАШИ ДАННЫЕ		<u>ланные (е)</u>		
E, [keV]	Jye	Eze [keV]	Ĵℊ⊾	
100	142*1	99,1	140	
113	75	113,2	90	
_	_ **)	117,5	57	
123	1000	122,1	1000	
137	470	137	450	
144		144,3	73	
147	230	147,1	1 8 0	
	_	188,4	55	
192	132****	193	107	
		197	71	
269	172	269,1	175	
295	700	295,7	640	
305	115	306,5	92	
347	800	347,5	810	
469	840	469,6	850	
662	1520	6623	1400	
1072	2000	1070,1	2200	
		and the second s		

Таблица б

1¹⁷⁰ Та . $T_{\frac{1}{2}} = 8.0 + 1.5$ мин /наши данные/, $T_{\frac{1}{2}} = 7$ мин /5/ (с) – ссылка /5/, *) – авторы /5/ ставят принадлежность к ¹⁷⁰ Та под сомнение.

¹⁷⁰Ta

НАШИДАННЫЕ		∆АННЫЕ(с)	
E _♂ [keV]	E _ð [keV] J _ð		Jy
101	1	101	1
221	1,12	221	1,15
-			

Таблица 7 ¹⁷⁰ Hf . $T_{\frac{1}{2}} = 12 \pm 2$ час /наши данные/, $T_{\frac{1}{2}} = 12,2$ час /10/, (f) - ссылка /13/ в обработке /4/, (g) - ссылка /14/ в обработке /4/, *) - часть всей интенсивности, большая часть приписана ¹⁷¹ Hf , **), ***) - малая часть всей интенсивности, основная часть принадлежит ¹⁷¹ Hf .

170 _H ,	
--------------------	--

				·····	
НАШИ ДАННЫЕ		ΔAHHUE(f)		ДАННЫЕ(g)	
E _s e[k=V]	Ĵ	E _g [keV]	Jæ	E _g [keV]	J.
100	~ 55 *)	98,5 99,5	71 33	99	55
123	~220 ^{**)}	19,5 120	12 270	120	160
162	197	162,6 164,7	1 8 495	164	257
207	40	208,1 209,2	78 24	208	40
347	~ 41***)	-	-	348	9
482	14	482,0	-	481	29
		502	18	501	22
540	13	540, 7	19	541	27
572	100	573,0	100	572	100
620	124	620,7	122	620	94

173 5 2 102 12,5min 162 keV ¹⁷³<u>Ta</u> (B[']) 15min 172 keV 173<u>Ta</u> (B) 5 18min 123 keV 173 Hf (H) 2 19min 295keV¹⁷³Hf (H) 10 5 162 кеV 173 <u>То</u>(Н) 14 min 2 172 keV 173 Tg(H) 13 min 10 [min] 40 50 30 20 10 0

¹⁷³w

Рис. 1. Распад ¹⁷³ ₩ по убыванию интенсивностей линий дочерних изобаров. / Н / – в химии "накопление", / В / – в химии "вилка", В', В'' – означают разные опыты.

Рис. 2. Распад ¹⁷² W по убыванию интенсивностей линий дочерних изобаров. / H / - в химии "накопление", / В / - в химии "вилка", В', В'' - означают разные опыты, */ - в значение периода полураспада внесена поправка, учитывающая то, что интенсивности дочерних изобаров на рисунке отнесены к концу облучения, тогда как их нужно отнести к концу химического разделения.

Рис. З. Распад ¹⁷¹ W по убыванию интенсивностей линий дочерних изобаров. / Н / – в химии "накопление", / В / – в химии "вилка", В', В' – означают разные опыты.

Рис. 4. Распад ¹⁷⁰ W по убыванию интенсивностей линий дочерних изобаров. / H / - в химии "накопление", / В / - в химии "вилка", В', В'' - означают разные опыты, */ - см. подпись к рис. 2.

Рис. 5. Кривые распада ¹⁷² W и ¹⁷⁰ W, полученные на основании данных по возрастанию интенсивностей линий дочерних изобаров в вольфрамовых препаратах.