15/11-H B-123 объединенный институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P6 -5526 740/2-71

Я Ваврыщук, А.Ф. Новгородов, В.А. Морозов, Т.М. Муминов, В.И. Разов, Я. Сажински

ВЫВОДЫ О СТРУКТУРЕ СОСТОЯНИЙ GA ИЗ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ВРЕМЕН ЖИЗНИ

1970

* Самаркандский государственный университет.

Дальневосточный государственный университет (Владивосток).

Correnoument ingitity ! RESPHAK DECECHORANTI ENERNOTENA

Направлено в ЯФ

ВЫВОДЫ 153 О СТРУКТУРЕ СОСТОЯНИЙ Gd ИЗ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ВРЕМЕН ЖИЗНИ

Я.Ваврыщук, А.Ф. Новгородов, В.А. Морозов, Т.М. Муминов*, В.И. Разов**, Я. Сажински

P6 - 5526

В данной работе методом задержанных У-У- и с-У -совнадений измерены периоды полураснада возбужденных состояний с энергией 41, 109, 129 кэв в ядре ¹⁵³ Gd. Значение периода полураснада с энергией 109 кэв определено внервые. Значения Т1, для уровней 41, 129 кэв согласуются с результатами работы ///.

По экспериментальным значениям периодов полураснада подсчитаны приведенные вероятности переходов типа М1 и Е2 внутри ротационной полосы, откуда по соотночениям обобщенной модели получены значения внутренных квадрупольных моментов, данные о гиромагнитных отпощениях коллективного и внутреннего движений в ядре ¹⁵³Gd

Проволится обсуждение результатов в рамках одночастичной модели Цильссона •

Carl California

Экспериментальная часть

Измерения проводились с источником радноактивного изотона¹⁵³ Tb, полученным при облучений в течение 2-х суток мишени из Eu (¹⁵¹ Eu – – 98%) альфа-частицами с эпергией 40 Мэв (J _{пучка} = 5 мка) на циклотроне АН КазССР в Алма-Ате. К началу измерений в источнике присутствовали изотопы ¹⁵² Tb и ¹⁵⁴ Tb , но их примесь была невелика (< 4%), кроме этого, эти изотопы не мешали измерениям вследствие большой разницы в энергиях изучавшихся нами состояний.

Периоды полураспада состояний с энергиями 41,6 и 109,8 кэв были измерены на многоканальном анализаторе с преобразователем $t \rightarrow \Lambda$, созданным на базе магнитного бета-спектрометра типа спектрометра Герхольма⁽²⁾, в режиме задержанных $e - \gamma$ -совпадений. Энергетическое разрешение спектрометра в данном опыте было равно $R \cong 1,5\%$. Методика измерений была следующей: с помощью магнитного бета-спектрометра выделялись конверсионные электроны с энергией $E_e = 33,2$ кэв (L - 41,6); $E_e = 59,6$ кэв (K - 109,8) и $E_e = 79,2$ кэв (K 129,2+ + L 87,6); гамма-кванты регистрировались в диапазоне от 200 до 900 кэв с помощью пластического сцинтилятора и фотоумножителя XP-1020.

Для каждого исследуемого каскада снимались кривые мгновенных совпадений на источнике ⁶⁰ Со , изготовленном электролитическим способом.

Период полураспада состояния 129,2 кэв определялся на установке для измерения времен жизни методом задержанных у-у -совпадений. Измерения производились по следующей методике: в одном из каналов выделялись гамма-лучи с энергией 87 кэв, в другом - с энергией 105 кэв. Для данного каскада при тех же условиях Снималась кривая. мгновенных совпадений от источника

Кривые задержанных совладений, участки слектров конверсионных электронов, участок спектра гамма-лучей с выделенными на нем окнами, а также фрагментами схемы распада ¹⁵³ Тв представлены на рис.1,2. Кривая совладений (L - 41,6) состоит из экспоненциальной и мгновенной частей. Присутствие последней обусловлено совладениями электронов Оже с гамма-квантами, разряжающими вышележащие состояния (T₁ \leq 0,1.10⁻¹⁰ сек). Экспоненциальная часть кривой относится к распаду состояния 41,6 кэв.

4

and the second states of the second second

문학교학 수 있는 것은 문학 영향이 있는

Мгновенная часть кривой совпадений (К - 109) - у обусловлена вкладом от совпадений (К -103) - у (Т½ ≅ 0,25·10⁻¹⁰сек верхний предел периода полураспада состояния 212 кэв). Экспоненциальный склон получается в результате совпадений (К -109) - у .

Обработка экспериментальных кривых проводилась по методу наименьших квадратов (для экспоненциальной кривой) и по методу моментов. При этом получено:

> T $\frac{1}{2}_{\frac{1}{2} \rightarrow \text{ксп}} = (4,11\pm0,24)\cdot10^{-9}$ сек для уровня 41,6 кэв, T $\frac{1}{2}_{\frac{1}{2} \rightarrow \text{ксп}} = (1,97\pm0,23)\cdot10^{-9}$ сек для уровня 109,8 кэв, T $\frac{1}{2}_{\frac{1}{2} \rightarrow \text{ксп}} = (2,84\pm0,21)\cdot10^{-9}$ сек для уровня 129,2 кэв.

Погрешность определения Т 1/2 включает в себя, кроме статистической ошибки, ошибку калибровки временного анализатора.

Анализ результатов эксперимента

а) Уровень 41,6кэв

При анализе экспериментальных результатов мы исходили из данных работ^{/4,5/}, согласно которым переход с возбужденного состояния 41,6 кэв в ядре ¹⁵³ Gd представляет смесь мультипольностей: MI + E2. Принимая таким образом мультипольность переходов, мы подсчитали парциальные периоды полураспада и приведенные вероятности по следующим формулам:

$$T^{\gamma}_{\frac{1}{2}}$$
 (E2)= $T^{\gamma}_{\frac{1}{2}}$ (I+ a_{tot}) (1- δ^{-2});

(1)

$$T_{\frac{1}{2}}^{\gamma}$$
 (M1) = $T_{\frac{1}{2}}^{\gamma}$ (1 + a_{tot})(1 + δ^{2}); (2)

B(E2)<sub>$$\ni \kappa c \pi = \frac{56,3}{T_{\frac{1}{2}}$$
 (E2)cek E_{γ} k $\ni B$ (e² $\delta a \rho H^2$); (3)</sub>

$$B(M1)_{\Im KC\Pi} = \frac{3.96 \cdot 10^{-5}}{T_{\frac{1}{2}}} (M1) \operatorname{cek} E_{\gamma \ K \Im B} (\frac{eh}{2m,c})^{2}; \qquad (4)$$

где
$$a_{tot} = \frac{1}{1+\delta^2} (a(M1) + \delta^2 a(E2)) - (4a)$$

полный коэффициент внутренней конверсии с учётом вклада на К,- L,-М -оболочках .

В работах Харматца^{/4/} и Вильского^{/5/} предполагается, что уровень 41,6 кэв принадлежит к ротационной полосе основного состояния ¹⁵³ Gd. Исходя из этого, по известным формулам

(5)

$$Q_0 = \sqrt{\frac{16\pi}{5}} \frac{B(E2) \Rightarrow \kappa c}{\left[C_{j_1 \dots j_2}^{j_1 \dots j_1}\right]^2} \quad \text{faps}$$

$$\delta = \sqrt{1 + \frac{2 \cdot 10^2 \cdot Q_0^{\Im KC}}{1,44 \cdot Z \cdot A^{1/3}}} - 1$$
(6)

(Z - заряд ядра, А - атомный номер ядра) определены значения внутреннего квадрупольного момента ${f Q}_0^{
m > KC}$ и параметра деформации основного состояния ядра ¹⁵³₆₄ Gd ₈₉.

По значению В(М1) для состояния 41,6 кэв найдена величина

$$g_{K} - g_{R} = \pm \sqrt{\frac{4 \pi}{3}} \cdot \frac{(I+1)(2I+3) B(M1)}{K^{2} (1+K+I) (I-K+1)} \frac{eh}{2m e}$$
 (7)

Величина гиромагнитного отношения коллективного движения определяется в обобщенной модели как $g = \frac{Z}{\Lambda}$ и равна 0,417 для ядра 153 Gd $_{89}$. Согласно работе $^{/7/}$ значения g_{R} у ядер с $\Lambda \stackrel{2}{=} 153$ лежат в пределах 0,31 <u>< g < 0,47</u>. Принимая g_R =0,39<u>+</u>0,08, мы подсчитали значения гиромагнитного отношения внутреннего движения

g_K

Граничные значения магнитного момента µ о основного состояния ротационной полосы с моментом I_о оценены по формуле

$$\mu_{0} = \frac{I_{0}}{I_{0} + 1} \left(g_{K} I_{0} + g_{R} \right).$$
(8)

Результаты вычислений по формулам (1)-(8) представлены в табл. 1.

б) Уровень 109,7 кэв

При определении мультипольности переходов, разряжающих состояние 109,7 кэв, нами использовались данные $^{/4,5/}$ об электронах внутренней конверсии. Мультипольность перехода с энергией 109,7 кэв - М1, переход с энергией 68,2 кэв - смешанный: (М1 + Е2) (δ^2 =0,28). Тогда парциальные периоды полураспада определяются из выражений T_{14}^{γ} (Е2) = T_{14}^{γ} (1 + a_{rot}) (1 + δ^{-2}) R_{1}^{-1} ; (9)

$$T_{\frac{1}{2}}^{\gamma} (M1) = T_{\frac{1}{2}}^{\gamma} (1 + a_{tot})(1 + \delta^{2}) R_{1}^{-1} ; \qquad (10)$$

 a_{tot} определяется по (4a); $R_{i}^{-1} = 1 + \sum_{n=1}^{j} \frac{I_{n}^{\gamma}(1 + a_{n}^{tot})}{I_{i}^{\gamma}(1 + a_{i}^{tot})} \delta_{n1} - \kappa o \ni \phi$ -

фициент разрядки уровня по і -переходу ($\delta_{ni} = \{ \begin{matrix} 0, , & i = n \\ 1, & i \neq n \end{matrix} \}$; - относительная интенсивность соответствующего гамма-перехода.

Приведенные вероятности B(E2) и B(M1) определялись по формулам (3)-(4) соответственно.

Исходя из наших данных (Q ^{экс}, δ _{экс}) можно предположить для состояния 109,7 кэв конфигурацию 5/2⁻[523]↓ , что не противоречит данным работ^{/4,8/}.

В таком предположении были определены приведенные вероятности переходов между состояниями $5/2^{-}[523]_{+}3/2^{-}[521]^{+}$ по модели Нильссона ^{/9/}. Было проведено сравнение экспериментальных В (Е2) экс и В(М1) экс с одночастичными оценками по Мошковскому, а также по модели Нильссона и определены факторы запрета: F_{M} (М1); F_{M} (Е2) ; F_{N} (М1) ; F_{N} (Е2). Результаты расчётов приведены в табл. 2. Переходы типа М1 между состояниями $5/2^{-}[523]_{+} - 3/2^{-}[521]^{+}$ запрещены по асимптотическому квантовому числу Λ ($\Delta\Lambda = 2$), однако эти правила строго выполняются для сильно деформированных ялер

($\delta =0,240,3$), когда запрет по одному из квантовых чисел приводит к задержке дипольного перехода примерно в 10² раз на единицу запрета по сравнению с одночастичными оценками. Для M1 -перехода с энергией 109 кэв должна быть задержка 10⁴, а наблюдаемый запрет 10².Отклонение от правил отбора подтверждает предположение о том, что в слабо деформированных ядрах правила отбора по асимптотическим квантовым числам выполняются лишь приближенно.

Наблюдающееся ускорение М1 -перехода можно объяснить вращательными примесями, возникающими вследствие взаимодействия Кориолиса. Оператор этого взаимодействия смешивает состояния со спинами, отличающимися на единицу (ΔK= 1). В случае перехода 5/2-[523]↓→3/2-[521]↑ амплитуда примеси вращательного уровня 5/2-, основанного на уровне 3/2 [521]↑, находится из соотношения

(11)

$$a = -\frac{\hbar^2}{21} \frac{\langle \Omega \mid \hat{J}^+ \mid \Omega - 1 \rangle \langle K \mid I^- \mid K - 1 \rangle}{\Lambda E}$$

5/2⁻ 523 | \hat{J}^+ | 3/2⁻ 521 > = -1,1 ; <5/2 | \hat{I}^- | 3/2 > = $\sqrt{5}$; \hat{T}_h /2J = 8,32 _{K > B} ; $\Delta E = 68,2_{K > B}$.

Tогда a = 30.

Приведенная вероятность перехода, с учётом вероятности перехода за счёт примеси, определяется из выражения

$$B(M1; 5/2 \rightarrow 3/2)_{\text{Teop}} = \{B_N (M1, 5/2 \rightarrow 3/2)\}^{\frac{14}{2}} + a [B(M1, 5/2 \rightarrow 5/2)_{3\text{KC}}]^{\frac{14}{2}} \}^{\frac{2}{2}}.$$
(12)

В (M1) - приведенная вероятность перехода, рассчитанная по Нильссо-/9/; В (M1) экс - приведенная вероятность на примесь перехода. По данным табл. 1-2 и по формулам (11)-(12) определены Эначения приведенной вероятности перехода В(M1; 5/2 → 3/2) геор:

B(M1) = 1,04
$$\cdot 10^{-4}$$
 $(\frac{eh}{2m c})^2;$

значение фактора задержки M1 - перехода

$$F_{3a_{I}}(M1) = 1,83.10^{-2}$$

И хотя в расчёте не учтено влияние парных корреляций, можно с полной уверенностью утверждать, что в данном случае переход М1 (Е_γ = = =109,7 кэв) не идет за счёт вращательной примеси.

в) Уровень 129,2 кэв

Мультипольность переходов, разряжающих состояние с энергией /4,5/ 129,2 кэв, известна из работ , как M1 .

Парциальные периоды полураспада и приведенные вероятности переходов были подсчитаны по формулам (10), (4) соответственно. Проведено сравнение Т $\frac{1}{12}$ (М1) экс с одночастичными оценками по Мошковскому, рассчитанными с учётом статистического множителя. Полученные эначения Т $\frac{1}{12}$ (М1); В(М1)экс и факторы запрета для переходов, разряжающих состояние 129,2 кэв (в предположении I^{*π*} = 3/2⁻/1/), приводятся в табл. 3.

Из сравнения экспериментальных приведенных вероятностей с одночастичными оценками по Мошковскому следует, что $F_M (M1)_{129} =$ = 1,1 ·10⁴; $F_M (M1)_{87} = 4,0 \cdot 10^2$. Такая задержка M1 -переходов характерна для K -запрещенных переходов в ядрах с нечётным числом нейтронов /10/.

Следует отметить, что для M1 -переходов, идущих с уровня с энергией 129,2 кэв, наблюдается отклонение от правила интенсивностей.

экс В(М1) ₁₂₉	o o 10−2	$B(M1)_{129}^{\text{Teop}} (3/2 - 3/2)$	15
ЭКС = 4 B(M1) 87	2,7•10 ;	$= \frac{1}{B(M1)_{87}} (3/2 - 5/2) =$	т,Ј

Таким образом, рассмотрение вероятностей переходов с состояний 109,8 и 129,2 кэв в¹⁵³ Gd показало, что выводами обобщенной модели ядра с использованием схемы уровней Нильссона для ядер переходной области с малыми параметрами деформации необходимо пользоваться с большой осторожностью.

В заключение авторы выражают благодарность К.Я. Громову за интерес к работе, В.Г. Картавенко за обсуждения.

Литература

1. В. Андрейчев, Ф. Майлинг, Ф. Стари. Материалы XI совещания по ядерной спектроскопии и теории ядра. Дубна, 1969, стр. 84.

2. В.А. Морозов, Т.М. Муминов. Препринт ОИЯИ, 13-4625, Дубна, 1969.

 Р. Бабаджанов, В.А. Морозов, В.И. Разов. Препринт ОИЯИ, 13-4407, Дубна, 1969.

4. B.Harmatz et al. Phys. Rev., <u>128</u>, 1186 (1962).

5. L. Nielssen et al. Nucl. Phys., A115, 377 (1968).

6. Nuclear Date, vol. 4, No 1-2 (1968).

7. А. Хрынкевич, С. Огаза. Сборн. Структура сложных ядер, стр.272, Атомиздат, М. 1966.

8. P.O. Tjøm et al. Dan. Vid. Selsk. Math. Fys., 36, 8 (1967).

- 9. Р. Бегжанов и др. Численные значения приведенных вероятностей электромагнитных переходов на основе модели Нильссона. Изд. ФАН УЗССР, Ташкент, 1967.
- 10. K.Löbner et al. Nucl. Phys., <u>80</u>, 505 (1966).

Рукопись поступила в издательский отдел 18 декабря 1970 года.

Значения Т _] для уровня	⊼ _{1/2} ; В(σ∠) эксп 41,6 кэв в ядре ¹	Табл .; Q ^{эксп.} , 1 ⁵³ 64Gd ₈₉ .	ица I З ^{эксп.} , µ.
Е ур.кэв		41,6	
Е б _{кэв}		41,6	
Т _{I/2} эксп. сек	(4,11	±0,24).10 ⁻⁹	
$I_i \rightarrow I_f$	5/2		
6L	MI		E2
82		0,067	
Т _{1/2} (SL)сек	4,82.10 ⁻⁸		7,21.10 ⁻⁷
B(σL)эксп.	1,14.10 ⁻² (<u>et</u> 2m () ²	0,63 е ² барн ²
Q эксп.		4,3 барн	
8 эксп.		0,15	
2K-2R	±	0,27	
эксп. Ек	$\mathcal{Z}_{k}^{4=0,66}$ ±0,08;	$g_{\kappa}^{2} = 0, 12 \pm 0$	0,08
Н. эксп.	(0,34 =	≤ Ho ≤ 0,92)	<u>et</u> Zwc

вероятностей эле состояние 5/2 5/	ктромагнитных пере 27/523/4 109,7 кэ	кодов, разряжающих в, в ядре ¹⁵³ Gd 89
Е ур Кэв	109,	3 3 1 2
^Е У кэв	68,2	109,8
^Т I/2 эксп. сек	(1,97 <u>+</u> 0	,23).10 ⁻⁹
Ι, Κ ^{, π;} [Νη _₹ Λ]ζ;	5/2 5 /2	/2 /523/ 🕇
If $K_f^{\pi t}[N n \ge N]_f Z_f$	5/2 3/2-/521/	-3/2 3/2 /521/
٥L	MI + E2	MI
82	0,28	and a second second Second second second Second second
Ri	I4,8	107
Т _{I/2} (E2) сѐк	9,1.10 ⁻⁷	
Т <mark>[/2</mark> (МІ) сек	2,52.107	5,32.10 ⁻⁹
·В(МІ) эксп.	$5.10^{-4} (\frac{oti}{2mc})^2$	5,68.10 ⁻³ (<u>et</u>) ²
В(Е2) эксп.	4,2.10 ⁻² (е 7 барн	7) -
F _m (MI)	2 . 10 ³	2,45.10 ²
Fw(E2)	4,95.10 ⁻²	
F _N (MI)	1,10.10 ⁻²	2,4.10-3
F_N(E2)	2,66.10 ⁻⁵	-

RIG $\mathbf{Q}\mathbf{u}$ ١

Таблица 3

цериод полураспада, значение приведенных вероятностей и факторов запрета для переходов, разряжающих состояние 129,2 казв в ядре ¹⁵³Gd

				e de la seguera de la segue
ур. Е кэв		129,	2	
Еζ	87		I29	9,2
^Т 1/2 се	к (2,84 <u>+</u> 0,2	I).10 ⁻⁹	
$I_i^{\pi} - I_f^{\pi}$	3/2 5/2	-	3/2	-3/2
٥٢	ML		M	
$T_1/2$ (MI) ³	ксп 1,20.10 ⁻⁸		1,9.1	10 -7
В(М1)Эксп.	5,2.10-3 (et	<u>ر)</u> 2	1,51.10	$-4(\frac{et}{zmc})^2$
Rī ¹	I,044		23,4	
F _M (MI)	4,0.10 ²		1,1•10 ⁴	1999 1, 1994 - S. J.
				n an
,	 And Andrew Constraints of the second s		a fanansar	
	n politika (na serie da serie Referencia da serie d Referencia da serie d			
en generale en la secondada de la secondada de En la secondada de la secondada		ر . روح (۱۱۰ - ۱۱۰ - مند		المركزية الإسلامي المركزية المعطمة معهدة المركزية المركزية المركزية المركزية المحطمة معهدة المحطمة المحطمة الم المركزية المركزية الم المركزية المركزية الم

