15/11-71 C341.26 B-123 СООБШЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P6 - 5518 741/2+71 and the second second

Я. Ваврыщук, Н.В. Виноградова, В.А. Морозов, В.И. Разов, Я. Сажински, Х. Фуя, В. Жук

ИССЛЕДОВАНИЕ УРОВНЕЙ ¹⁵⁵ Gd методом задержанных совпадений и угловых гамма-гамма корреляций

1970

XIGNGET

P6 - 5518

Я. Ваврыщук, Н.В. Виноградова, В.А. Морозов, В.И. Разов^{*}, Я. Сажински, Х. Фуя, В. Жук

ИССЛЕДОВАНИЕ УРОВНЕЙ ¹⁵⁵ Ga методом задержанных совпадений и угловых гамма-гамма корреляций

Дальневосточный государственный университет (Владивосток)

Ядро¹⁵⁵ Gd расположено в области деформированных ядер 150≤А ≤180. Исследование свойств уровней ¹⁵⁵ Gd очень интересно с точки эрения проверки положений обобщенной/1/ и сверхтекучей моделей/2/.

В настоящей работе методом задержанных у-у -совпадений измерены значения периодов полураспада уровней с энергией 86,5 и 105,3 кэв. Методом угловых гамма-гамма корреляций измерены коэффициенты A₂, A₄ углового распределения каскадных гамма-квантов:

86,5 - (148,6; 180,1; 239,4; 281,1; 340,8) кэв

и

105,3 - (161,3; 163,3; 220,6; 321,8) кэв.

По эначениям A₂ и A₄ определены спины уровней с энергией. 86,5; 105,3; 235,2; 266,6; 268,6; 326,0; 367,7; 427,4 кэв и мультипольности наиболее интенсивных гамма-переходов между этими уровнями. Подсчитаны парциальные периоды и приведенные вероятности переходов, разряжающих состояния с энергией 86,5 и 105,3 кэв.

Определены факторы запрета по Мошковскому, по модели Нильссона и по модели Нильссона с учётом сверхтекучей поправки.

Экспериментальная методика и результаты

Измерения проводились с моноизотопом ¹⁵⁵ Тb, полученного из материнского гольмия. Гольмий образовывался в результате реакции глубокого расщепления при облучении танталовой мишени протонами (E_p = 660 Мэв) на синхроциклотроне Лаборатории ядерных проблем ОИЯИ в течение 2-х часов. Из облученной мишени путем хроматографического разделения выделялась фракция гольмия, из которой, спустя 30-40 часов, получался ¹⁵⁵ Тb . Для измерений источник в жидком виде помещался в пластмассовую ампулу (d = 5 мм, h = 12 мм).

Периоды полураспада уровней 86.5 и 105.3 кэв измерялись на установке для измерения времен жизни возбужденных состояний ядер методом задержанных совпадений в режиме двухмерного временного анализа/3/. Метолика измерений была следующей: в одном из каналов выделялись гамма-кванты с энергией в диапазоне от 140 до 270 кэв. Гамма-лучи с энергиями 86,5; 105,3; 148,6; 182; 262 кэв выбирались по методу "цифровых" окон/4/ с помощью осциллографа со световым карандашом/4/. Накопление информации происходило на ЭВМ "Минск-2". В результате измерений было получено пять временных спектров, обусловленных совпадениями у -квантов "окна" (140 + 270 кэв) с Е_у- (86,5; 105,3; 148: 180: 262) кэв. Кривые мгновенных совпадений от источника ²² Na набирались в тех же условиях. На рис. 1 представлены распада уровней 86,5 и 105,3 кэв, фрагмент схемы раскривые пада и участки спектров у -лучей 155 Tb . Измерение периода полураспада уровня 105,3 кэв проводилось при обращенных, в сравнении с опытом для уровня 86,5 кэв, каналах "старт" и "стоп".

Значения периодов полураспада были установлены по экспоненциальному спаду и по сдвигу центров тяжести задержанной и мгновенной кривых. Обработка экспериментальных кривых проводилась по методу наименьших квадратов и по методу моментов. Погрешность результатов вычислений включает в себя, кроме статистической ошибки, ошибку калибровки цены канала временного анализатора. В результате получены следующие значения периодов полураспада:

T_{1/2} = (6,71 ±0,13).10⁻⁹ сек для уровня 86,5 кэв,

 $T_{1/2} = (1,26 \pm 0,21).10^{-9}$ сек для уровня 105,3 кэв, что согласуется с результатами измерений, приведенных в работах/5,6/.

Исследование углового распределения каскадных гамма-квантов проводилось для углов 90°; 135°; 180° на автоматизированном спектро-

Таблица І

Экспериментальные значения коэффициента угловых корреляций

Каскад Е у , кэв	A2	A ₄
<u>(</u> - 148,6	-0,011 ± 0,013 (-0,003 ± 0,018)	$\begin{array}{r} -0,013 \pm 0,050 \\ (-0,04 \pm 0,04) \end{array}$
- 180,1	-0,214 <u>+</u> 0,006 (-0,195 <u>+</u> 0,019)	+0,09 <u>+</u> 0,015 (+0,03 <u>+</u> 0,03)
86,5 - 239,4	-0,042 <u>+</u> 0,026	
- 28I,I	-0,209 <u>+</u> 0,039	+0,01 <u>+</u> 0,06
340,8	$+0,182 \pm 0,017$ (+0,129 $\pm 0,024$)	- (-0,027 <u>+</u> 0,048)
(- I6I,3	-0,151 <u>+</u> 0,045	
- 163,3	+0,075 <u>+</u> 0,019	
05, 3 - (161, 3) - (163, 3)	+0,019 <u>+</u> 0,006	0,000 <u>+</u> 0,016
- 220,6	+0,029 ± 0,022	$-0,030 \pm 0,056$
- 262,4	-0,133 <u>+</u> 0,007 (-0,122 <u>+</u> 0,010)	+0,006 <u>+</u> 0,020 -
\- 321,8	+0,091 ± 0,030	

метре для измерения угловых гамма-гамма и е -гамма корреляций/7/ в двух энергетических диапазонах одновременно. Регистрация γ -квантов осуществлялась Ge(Li) детектором с эффективным объемом V эфф = 50 см³ при энергетическом разрешении 4,5 кэв для γ -линий 1170 кэв ⁶⁰ Co и кристалла NaJ(Tl) 6 40 x 40 мм. Положение подвижного детектора NaJ(Tl) менялось циклическим образом (90° - 135° - 180°; 180° - 135° - 90°; 90°). Центровка источника проверялась перед опытом и контролировалась в течение эксперимента. Точность центровки не хуже 1,5%. Одиночный спектр ¹⁵⁵Gd и спектры совпадений (за вычетом фона) с гамма-лучами 86,5 и 105,3 кэв для диапазона от 140 до 340 кэв изображены на рис. 2.

Коэффициенты углового распределения рассчитывались по методу наименьших квадратов с учётом поправок на телесный угол и эффективность детекторов. Полученные таким образом эначения коэффициентов углового распределения A_2 и A_4 каскадных гамма-квантов в ¹⁵⁵ Gd приведены в табл. 1. Значения A_2 и A_4 в скобках приводятся из работы/8/ для сравнения.

Анализ результатов эксперимента

При анализе результатов измерений угловых корреляций каскадных переходов в¹⁵⁵ Gd мы использовали данные работ/9,10/ о мультипольностях наблюдавшихся каскадов.

Спины уровней 86,5 и 105,3 кэв установлены в работах/8,11,12/: соответственно 3/2, 5/2. Мультипольность переходов 86,5 и 105,3 кэв типа Е1 /14/.

Уровень 427,3 кэв. Корреляции каскадов (86,5 - 340,8) (105,3 - 321,8) кэв позволили установить для этого уровня спин 3/2.

Уровень 367,7 кэв. В работе^{/8/} для этого уровня приводятся два возможных значения спина: 1/2 и 5/2. Корреляция каскада (281,1 – 86,5) исключает спин 5/2. Корреляция каскада (262,4 – 105,3) подтверждает значение спина 1/2. Последнее значение подтверждается результатами измерений Тьома^{/12/} по (d,t) , (d,p) реакциям.

уровень 326,0 кэв. Спин уровня 5/2⁻ определен нами из измерений углового распределения каскадов (220,6 - 105,3) кэв и (239,4 -- 86,5) кэв.

Уровень 266,6 кэв. По значению A_2 для гамма-квантов каскада (180,1 – 86,5) кэв спин уровня определяется как 5/2, что согласуется с данными работы/8/. Измерение углового распределения гаммаквантов каскада (161,3 + 163,3 – 105,3) кэв и разложение линии 161,3 + + 163,3 кэв дало возможность подтвердить значение спина 5/2 для этого уровня, а корреляция каскада (163,3 – 105,3) кэв позволила определить спин уровня 268,6 кэв равным 3/2, что согласуется с работой/11/.

Уровень 235,2 кэв. В работе Хрынкевича и др.^{/8/} допускается два возможных спина для этого уровня: 3/2, 7/2. По сравнению с работой/8/ значение A₂ для каскада (148,6 - 86,5) кэв, полученное в наших измерениях с меньшей ошибкой, позволяет высказаться в пользу значения спина 7/2. Результаты анализа приводятся в табл. 2.

Сведения о мультипольностях переходов, разряжающих состояния с энергией 86,5 и 105,3 кэв, позволили нам подсчитать парциальные периоды полураспада и приведенные вероятности этих переходов.

Сравнение экспериментальных значений парциальных периодов полураспада, подсчитанных с учётом коэффициентов внутренней конверсии на К-,L-,М -оболочках/14/, проводилось с расчётами по Мошковскому с учётом статистического множителя.

Зпание квантовых характеристик уровней с энергией 86,5 и 105,3 кэв (соответственно 5/2 5/2⁺ /642/+ ; 3/2, $3/2^+$ /651/* /12/ и характеристики основного состояния $3/2 3/2^-$ /521/+ /12/) дало возможность провести сравнения с моделью Нильссона и с моделью Нильссона с учётом сверхтекучей поправки R_{λ}^{γ} . Результаты анализа данных, полученных при измерении времен жизни, представлены в табл. 3.

Следует отметить, что лучшее согласие с экспериментальными результатами наблюдается при проведении расчётов по модели Нильссона и по модели Нильссона с учётом сверхтекучей поправки.

В заключение авторы выражают благодарность К.Я. Громову за интерес к работе, В.И. Стегайлову за помощь при измерениях.

Литература

- 1. О. Натан, С.Г. Нильссон. Альфа-, бета- и гамма-спектроскопия. Под ред. Зигбана, т. 2, Атомиздат, М., 1969.
- 2. В.Г. Соловьев. Структура сложных ядер. Атомиздат, М., 1966.
- 3. В.А. Морозов, В.И. Разов, В.И. Фоминых, В.М. Цупко-Ситников. Препринт ОИЯИ, Р13-5485, Дубна, 1970.
- 4. Ф. Дуда и др. Препринт ОИЯИ, 10-4236, Дубна, 1969.
- 5. K. Löbner, S. Malmskog. Nucl. Phys., 80, 505, 1966.
- 6. А. Хрынкевич и др. Phys. Lett., 80, 372, 1966.
- 7. Я. Ваврыщук и др. Препринт ОИЯИ, 13-5500, Дубна, 1970.
- 8. А. Хрынкевич и др. Препринт ОИЯИ, Е-3906, Дубна, 1968.
- 9. М., Фингер и др. Препринт ОИЯИ, Е-2908, Дубна, 1966.
- 10. J.Kormisko et al. Nucl. Phys., <u>A102</u>, 253 (1967).
- 11. P. Tiom, B. Elbek. Math. Fys. Medd., <u>36</u>, 8 (1967).
- 12. R. Sheline. Nuclear Structure, Dubna, p. 71, 1968.
- 13. B. Harmatz et al. Phys. Rev., <u>128</u>, 1186 (1962).

14. Nuclear Date. vol. 4, No1-2 (1968).

Рукопись поступила в издательский отдел 16 декабря 1970 года.

Ур а вень (кэв)	Спин	Переход Е (кэв)	8	Мультипольность		
				Наша работа	padora /13/	
86,5	5/2	86,5		EI	EI	
105,3	3/2	105,3		EI	EI	
235,2	7/2	148,6	-0,124 +0,025	MI+I,5% E2	MI+ I,6%E2	
266,6	5/2	161,3 180,1	+0,238 <u>+</u> 0,108 +0,163 ⁺⁰ ,028 -0,021	_MI+5,6% E2 MI+2,7% E2	MI+ 12% E2 MI+ 5% E2	
268,6	3/2	163,3	-0,138 ^{+0,006} -0,07	MI+I,9% E2	MI+ I,3%E2	
326	5/2	220,6 239,5	-0,155 +0,057 -0,052 -0,287 +0,063 -0,062	MI+2,4% E2 MI+8,2% E2	IM -	
367,7	I/2	262,5 281,1	+0,092 +0,009 -0,012 -	MI+ 0,8% E2 E2	MI E2	
427,4	3/2	340,8 320,8	-0,062 +0,024 -0,026 -0,105 +0,052 -0,042	MI+ 0,4%E2 MI+ 1,1% E2	MI	

таблица 2 Значения спинов уровней, б, мультипольностей переходов в ¹⁵⁵Gd

Таблица 3

Значения $T_{I/2}^{3kcn}$, B (oL)^{3kcn}, B (oL); F_M; F_N; F_NR, для переходов в ядре ¹⁵⁵Gd

Едь кэв	86	,5	105,3				
T _{I/2} Cer	(6,7I <u>+</u> 0,I	3).10 ⁻⁹	$(1,26 \pm 0,21) .10^{-9}$				
Е С кав	86,5	26,5	105,3	45,3	18,75*		
$I_i K^{\mathbb{T}}[Nn\Lambda]_i Z_i$	5/2 5/2+ [642]\	3/2 3/2+ [651]				
IrKf[NnzA]f4	3/2 3/2 521}	5/2 3/2 [52]	3/2 3/2 521)	5/2 3/2 5 21]	5/2 5/2 * [642]		
er	EI	EI	EI	EI	E2	MI ,	
R_i^{-1}	I,009	IIO	I,9 °	3I,3 °	2,2		
Tall (GL) CER	9,17.10 ⁻⁹	2,17.10 ⁻⁶	3,10.10 ⁻⁹	5,67.10-8	6,63.10 ⁻⁵	3,96.10-6	
B(GL) ^{SKC}	7,4.10 ⁻⁷ e ² 8	109.10 ⁻⁷ ε ² δ	I,22.10 ⁻⁶ e ² 8	8,31.10 ⁻⁷ e ² δ	0,36 e2 82	1,51.10-3	
Fm	8,3.10 ³	3,56.10 ³	8,0.10 ²	3,62.10 ³	6,0.10 ⁻³	8,2.10-4	
B(GL)N	7,7.10-6-8	3,2.10-625	2,43.10-6	1,6.10-625	1,82.10 ⁻³ e ² 5 ²	7,0.10 ⁻⁴ *	
FN(OL)	10,2	29,3	2,0	2,0	5,1.10-3	0,5	
FN RX	2,7	7,7	0,04	0,04	3,6.10-4	0,3	

UMA KOH S 10ипп/кан -103 748 760 118,0 105,3 3/2+ 80 52+ 202 86,5 имп/канал 60 05,3 18.0 20 40 60 80 100 120 875 10 60 80 100 120 Каналы καμαποί (x-87) 1557B え 155 64 ad 91 (x-105) 155 TB (x-130-200(x=B)) (8-150+280, (K)) Т,=(6,71±0,13) ^{1/2} ×10⁻⁹ сек 8 10-10³+10² =(*1,26±0,21)×* 10^{2} 1/2 × 10 " Cer ΔT=1,46 HCer ∆T = 0,452 нсек канал 10 10 30 20 50 40 60 70 80 4Ò 120 160 200 номер канала Рис. 1. Кривые распада уровней ¹⁵⁵ Gd с энергией 86,5; 105,3 кэв.

