1/11-7 8-123 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P6 - 5484 572/9

Я. Ваврыщук, В.А. Морозов, Т.М. Муминов, В.И. Разов, Я. Сажинский

ИЗМЕРЕНИЕ ВРЕМЕН ЖИЗНИ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ С ЭНЕРГИЕЙ 155,8 И 227 КЭВ В ЯДРЕ ¹⁵⁵ ТЬ⁹⁰

1970

P6 - 5484

Я. Ваврыщук, В.А. Морозов, Т.М. Муминов*, В.И. Разов**, Я. Сажинский

ИЗМЕРЕНИЕ ВРЕМЕН ЖИЗНИ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ С ЭНЕРГИЕЙ 155,8 И 227 КЭВ В ЯДРЕ ¹⁵⁵ТЬ⁹⁰

Направлено в ЯФ

* Самаркандский государственный университет.

** Дальневосточный государственный университет

(Владивосток).

ز . جو

Ваврышук Я., Морозов В.А., Муминов Т.М., Разов В.И., P6-5484 Сажинский Я.

Измерение времен жизни возбужденных состояний с энергией 155,8 и 227 кэв в ядре $^{15}_{65} {\rm Tb}_{90}$

Методом задержанных е -гамма совпадений измерены периоды полураспада возбужденных состояний с энергией 155,8 и 227 кэв в ядре ¹⁵ Tb. Рассчитаны внутренний квадрупольный момент и параметр деформации основного состояния ядра ¹⁵⁵Tb.

основного состояния ядра то Определены факторы запрета по одночастичной модели, по модели Нильссона и по модели Нильссона с учётом сверхтекучей поправки для переходов, разряжающих состояние 227 кэв.

Препринт Объединенного института адерных исследований. Дубна, 1970

P6-5484

Vavryschuk Ya., Morosov V.A., Muminov T.M., Razov V.I., Sazhinsky Ya.

Measurement of Half-Lives of the Excited States with the Energy of 155.8 and 227 keV in the ¹⁵⁵₆₅Tb₉₀ Nucleus

The half-lives of 155.8 and 227 keV excited levels of the 155Tb nucleus were measured by the e - y delayed coincidence method.

memoa. Intrinsic quadrupole moment and the deformed parameter of the ground state of the ¹⁵⁵Tb nucleus were calculated.

the ground state of the indicated where the single-particle mo-The hindrance factor is determined for the single-particle model, for the Nilsson model and for the Nilsson model with the superfluid correction for the transitions discharging the 227 keV state.

Preprint. Joint Institute for Nuclear Research. Dubna, 1970

Введение

В данной работе методом задержанных е – у – совпадений измерены периоды полураспада возбужденных состояний с энергией 155,8 и 227 кэв, принадлежащих ¹⁵⁵ Tb₉₀.

Период полураспада состояния 155,8 кэв измерен нами впервые, значение периода полураспада состояния 227 кэв уточнено. По значениям приведенных вероятностей для переходов внутри ротационной полосы основного состояния ¹⁵⁵Ть рассчитаны внутренний квадбз 90 рассчитаны внутренний квадрупольный момент, параметр деформации и магнитный момент ядра. Для переходов, разряжающих состояние 227 кэв, подсчитаны факторы запрета по одночастичной модели, по модели Нильссона и по модели Нильссона с учётом сверхтекучих поправок.

Экспериментальная часть

Для измерений нами использовался препарат ¹⁵⁵₆₆Dy₈₉, полученный после 40 мин накопления повторным выделением из фракции гольмия. Гольмиевая фракция получалась в реакции глубокого расшепления танталовой мишени при облучении ее протонами с энергией $E_p = 660$ Мэв на синхроциклотроне ОИЯИ с последующим хроматографическим разделением продуктов реакции. Кроме изотопа ${}^{155}_{65}$ Dy₇₀, в источнике могли присутствовать изотопы диспрозия с A от 153 до 157, но они не мешали измерениям вследствие малого выхода этих изотопов.

Измерения проводились на многоканальном временном анализаторе с преобразователем "время-амплитуда", созданным на базе магнитнопинзового бета-спектрометра типа спектрометра Герхольма ^{/1/} в режиме задержанных с – у -совпадений. Разрешающая способность спектрометра в данном опыте была равна R = 3% при светосиле η = 4%. Для измерения периодов полураспада состояний 155,8 и 227 кэв в гамма-канале был взят участок энергетического спектра 250 + 900 кэв.

С помощью магнитного бета-спектрометра выделялись электроны с энергией E_e = 38 кэв (K - 90,4 + электрон Оже) и электроны с энергией E_e = 175 кэв (K - 227 кэв). Для каждого исследуемого каскада снимались кривые мгновенных совпадений на источнике ⁶⁰ Со.

Кривые распада, связанные с совпадениями ($E_{e} = 38$ кэв, $E_{\gamma} = 250 + 900$ кэв) и ($E_{e} = 175$ кэв, $E_{\gamma} = 250 + 900$ кэв), участки спектров конверсионных электронов и фрагмент схемы распада

¹⁵⁵ Dy₈₈ приведены на рисунке. Присутствие мгновенной части 66 распада состояния 155,8 кэв обусловлено совпадениями электна совпадения и совпадения и совпадениями совпадени совпадениями совп

-4

ронов Оже с гамма-переходами с вышележащих состояний (T_{1/2} ≤ ≤ 0,1.10 сек). Экспоненциальная часть этой кривой обусловлена совпадениями (К-90,4) (Е_γ = 250 + 900 кэв). Обработка экспериментальных кривых проводилась по методу наименьших квадратов (для экспоненциальной кривой) и по методу моментов. При этом получено:

$$T_{1/2} = (1,16\pm0,07).10^{-9}$$
 сек для уровня 155,8 кэв
 $T_{1/2} = (3,06\pm0,22).10^{-10}$ сек для уровня 227 кэв.

Погрешность определения $T_{1/2}$ включает в себя, кроме статистической ошибки, ошибку калибровки временного анализатора.

Анализ результатов эксперимента

При анализе экспериментальных результатов мы исходили из схемы распада ${}^{155}_{66}$ Dy₈₉, предложенной в работе /2/. Данные об интенсивностях и мультипольностях гамма-переходов, разряжающих состояния 155,8 и 227, взяты нами из работ Звольского /3/, Гнатовича и др. /4/.

а) Уровень 155,8 кэв

Уровень 155,8 кэв принадлежит к ротационной полосе основного состояния ядра ${}^{155}_{65}$ Tb ${}_{90}$ (инерционный параметр $A = \frac{h^2}{2J} = 13,29 \text{ k}_{9B}^{/4/}$). Данное состояние разряжается двумя переходами с $E_{\gamma} = 90,4$ кэв и Е_γ = 155,8 кэв, первый из которых представляет смесь мультипольностей М1 + 5% Е2 ^{/4/},второй - чистый переход типа Е2 ^{/4/}. Парциальные периоды полураспада были рассчитаны нами по формулам

$$T_{1/2}^{\gamma}(E2) = T_{1/2} (1 + a_{tot}) (1 + \delta^{-2}) R_{1}^{-1}$$

$$T_{1/2}^{\gamma}(M1) = T_{1/2}(1 + a_{tot})(1 + \delta^2) R_i^{-1}$$

Здесь $a_{tot} = [a(M1) + \delta^2 a(E2)] \frac{1}{1+\delta^2}$ - полный коэффициент внутренней конверсии, рассчитанный по таблицам ^{/5/} с учётом вклада от К-L-M- оболочек. R_i^{-1} - коэффициент разрядки уровня по данному переходу, определенный нами как

$$R_{i}^{-1} = 1 + \delta_{mi} \Sigma - \frac{I_{n}^{\gamma}(1 + a_{tot}^{m})}{I_{i}^{\gamma}(1 + a_{tot}^{i})}$$

где δ_{mi} - символ Кронекера; $\delta_{mi} = \{ \begin{array}{cc} 0 & m = i \\ 1 & m \neq i \end{array} ; I^{\gamma}$ - относи-

тельная интенсивность соответствующего гамма-перехода.

По значению $T_{1/2}$ (E2) для перехода с E_{γ} = 90,4 кэв нами определено значение вероятности E2 -перехода по формуле

B(E2) =
$$\frac{56.3}{T_{1/2}^{\gamma}(E2)} e^{2} b^{2}$$
.

Откуда по известным формулам /6/

$$Q_0 = \sqrt{\frac{16\pi}{5}} \frac{B(E2)}{\left[C_{ji m_1}^{ji m_2} 20\right]^2}$$

(здесь С^{ји м}1²⁰ - коэффициент Клебша-Кордона) и

$$\delta = \sqrt{1} + \frac{2.10^2 \ Q^0}{1,44 \ Z \ A^{2/3}} - 1$$

определены значения внутреннего квадрупольного момента Q_0 ^{ЭКСП.} и параметра деформации δ основного состояния ядра $^{155}_{65}$ Tb $_{90}$. По значению $T_{1/2}$ (M1) для перехода E_{γ} = 90,4 кэв определено значение B (M1) ЭКСП.

B(M1)
$$_{\Im KC\Pi_{\bullet}} = \frac{3.96.10^{-5}}{T_{1/2}^{\gamma} (M1) E_{\gamma}^{3}} \left[\frac{eh^{*}}{2mC} \right]$$

откуда найдена величина /6/

$$g_{K} - g_{R} = \pm \sqrt{\frac{4\pi}{3}} \frac{(I+1)(2I+3)}{K^{2}(I+1+K)(I+1-K)} \begin{bmatrix} -\frac{e\hbar}{1} \\ -2mC \end{bmatrix}$$

Величина гиромагнитного отношения коллективного движения g_R определяется в обобщенной модели как $g_R \leq \frac{Z}{A}$ и равна 0,42 для ядра ${}^{155}_{65}$ Tb₉₀. Из данных работы ${}^{/7/}$ значения g_R у ядер с A =155 лежат в пределах 0,27 $\leq g_R \leq$ 0,47. Принимая g_R = 0,36±0,08, мы определили значение гиромагнитного отношения внутреннего движения $-g_K$, По формуле для расчёта магнитного момента основного состояния ротационной полосы с моментом I_0 ${}^{/6/}\mu_0 = \frac{I_0}{I_0 + 1} \begin{bmatrix} g_K I_0 + g_R \end{bmatrix}$ нами оценены граничные значения магнитного момента μ_0 .

Результаты вычислений, сделанных по приведенным выше формулам, сведены в табл. 1

-	-		
Γa	бли	ца	I

Значения	1	$\Gamma_{1/2}$, В (ъL) ^{экс}	^{п.} ; Q	ЭКСІ	ι; δ	эксп.	μo	эксп.
μ ₀ τeop.	для	пере	ходов	разря	жающи	x coc	тояни	e 155,8	кэв	

	155	TL
в ядре	65	10.9

Е уровня (кэв) 155,8
^Е у. (кэв) 90,4 155,8
^{эксп.} (1,16 <u>+</u> 0,07).10 ⁻⁹
$I_i K_i^{π_i} [Nn_z \Lambda] \Sigma_i$ 7/2 3/2 ⁺ /411/ [†]
$I_{f} K_{f}^{\pi f} [N_{n_{Z}} \Lambda] \Sigma_{i} 5/2 3/2^{+} /411/t \qquad 3/2 3/2^{+} /411/t$
σL M1 + 5% E2 E2
δ ² 0,053 1
a _{tot} 2,393 0,136
R ⁻¹ 1,032 <u>+</u> 0,26 32,6 <u>+</u> 8,2
B(E2) _{эксп.} (е ² барн. ²) 1,08 <u>+</u> 0,27 0,15 <u>+</u> 0,04
$(-eh_{-})^{2}$ B(M1) _{9KCII} , 2mc (2,2+0,55),10 ⁻³
Q эксл. (барн) 7,15 <u>+0</u> ,88
δ _{эксп.} 0,24 <u>+</u> 0,03
$g_{K_1} \xrightarrow{3KC\Pi} g_{K_1} = 0,752$ $g_{K_2} \xrightarrow{3KC\Pi} = +0,032$
$\mu_{0} \qquad [\frac{e\hbar}{2mC}] \qquad 0,9\pm0,2 \geq \mu_{0} \geq 0,049\pm0,012$
$\frac{\mu_0}{\mu_0} \left(\frac{e\hbar}{2mc}\right)^{/8,9/} $ 0,75

По величине Q_0 нами была определена вероятность E2-перехода с энергией $E_{\gamma} = 65,4$ кэв, разряжающего первое состояние ротационной полосы основного состояния ядра $^{155}_{65}$ Tb₉₀. С помощью B(E2) для этого перехода оценен период полураспада $T_{1/2}$ состояния $5/2 \ 3/2^+/411/1$ $E_{\gamma} = 65,4$ кэв: $T_{1/2} = (3,35) \times 10^{-9}$ сек.

б) Состояние 227 кэв 5/2 5/2⁻/532 / t

Период полураспада состояния 227 кэв в ядре $^{155}_{65}$ Tb₉₀ был определен в работах /3,10,11/. Полученное нами значение T_{1/2} находится. в лучшем согласии с данными работ /10,11/.

Мультипольность переходов, разряжающих состояние 227 кэв 5/2⁺/532/↑→ 3/2⁺/411 /↑, определена в работе ^{/4/} как Е1. Таким образом, принимая мультипольность типа Е1 для переходов с энергией 161,4 и 227 кэв, мы рассчитали экспериментальные значения парциальных периодов полураспада: T_{1/2}(E1).

Пользуясь значениями $T_{1/2}$ (E1) эксп. для переходов 161,4 и 227 кэв, мы рассчитали факторы запрета по Мошковскому: $F_{M} = \frac{B(E1)_{M}}{B(E1)}$; (значения $B(E1)_{M}$ получены эксп.

с учетом статистического множителя S₁ (I₁ L I₁) и "эффективного" заряда ϵ_i):

по Нильссону: $F_N = \frac{B(E1)_N}{B(E1)_n};$ эксп.

по Нильссону с учетом сверхтекучей поправки РХ

 $F_{N} R_{N}^{\gamma}$.

При расчётах этих величин значения В (Е1)_N и R_N взяты из /8/ таблиц

Значения B(E1)
$$\stackrel{\text{эксп.}}{=} F_{M1}F_N F_N F_N R_N^{\gamma}$$
 приводятся в. таб. 2.

Таблица 2

Значения В(Е1)^{эксп.} и факторы запрета для вероятностей электромагнитных переходов, разряжающих состояние 5/2 5/2^{-/}532 / [†] 227 кэв в ядре ¹⁸⁵/₁₆₅ Tb₉₀

Е уровня (кэв)		227
E _{y(kəb})	161,4	227
Т _{1/2} эксп. (сек)	(3,06	<u>+</u> 0,22).10 ⁻¹⁰
$I_{i} K_{i}^{\pi i} [Nn_{z} \Lambda] \Sigma_{i}$	5/2 5	5/2 /532/↑
$I_{t} K_{t}^{\pi i} [Nn_{z} \Lambda] \Sigma_{t}$	5/2 3/2 ⁺ /411/↑	3/2 3/2 ⁺ /411/†
σL	E1	El
a tot	0,08	0,033
R_{i}^{-1}	58 <u>+</u> 34	1,017 <u>+</u> 0,62
B(E1) ^{эксл.} / е ² барн ²	/ (5,5 <u>+</u> 3,3).10 ⁻⁸	(1,18 <u>+</u> 0,70).10 ⁻⁴
F _M	(1 <u>+</u> 0,6).10 ⁴	(6,5 <u>+</u> 3,4).10 ²
F _N	(7,6 <u>+</u> 4,5)	(3,5 <u>+</u> 2,2).10 ⁻¹
F _N R ^γ _N	(6,8 <u>+</u> 4,0)	$(3,2\pm1,91).10^{-1}$

Переходы типа El между состояниями 5/2⁻/532/↑→ 3/2⁺/411/↑ запрещены по асимптотическому квантовому числу n_z (Δn_z = 2). Из систематики экспериментальных значений вероятностей El -переходов (ΔK = 1) известно, что запрет по одному из асимптотических квантовых чисел приводит к задержке вероятностей E1 -переходов примерно в 10² раз на единицу запрета по сравнению с одночастичными оценками.

Как видно из табл. 2, запрет для вероятностей El -переходов, по оценкам Мошковского, составляет $F_{M} = 1.10^{4}$ для переходов 161,4 кэв и $F_{M} = 6,5.10^{2}$ для перехода 227 кэв. Расчет вероятностей El -переходов по модели Нильссона с учётом сверхтекучей поправки и без нее улучшает согласие теории с экспериментом, хотя остается некоторая заторможенность для данных переходов.

На основе анализа экспериментальных результатов, полученных при измерениях периодов полураспада возбужденных состояний ядра ¹⁵⁵₆₅Tb₉₀, можно сделать следующие заключения:

1. Ядро 155 ТЬ ... является сильно деформированным

$$\delta_{3KCII} = 0.24 \pm 0.03$$
.

2. Из величины деформации δ следует, что основное состояние ядра ¹⁵⁵ Tb₂₀ имеет квантовые характеристики 3/2⁺/411/↑.

3. Уровень 3/2 /411/[†] с Е = 155,8 кэв относится к ротационной полосе основного состояния.

$$A = \frac{h^2}{2J} = 13,29 \text{ k}_{3B},$$

$$Q^{3KC\Pi_{\bullet}} = (7,15\pm0,88) \text{ faph},$$

$$\mu_0^{3KC\Pi_{\bullet}} = (0,8\pm0.1).$$

Значения внутреннего квадрупольного электрического момента Q и магнитного момента для ¹⁵⁵₆₅ Tb₉₀ хорошо описываются обобщенной моделью ядра.

4. Состояния 5/2 5/2 /532/[†] и 3/2 3/2⁺ /411/[†] можно считать одночастичными нильссоновскими состояниями.

В заключение авторы выражают благодарность доктору физико-математических наук К.Я. Громову за интерес к работе.

Литература

- В.А. Морозов, Т.М. Муминов. Препринт ОИЯИ, Р13-3437, Дубна, 1967.
- 2. B.H. Blichert-Toft, E.G. Funk, J,W. Mibelich. Nucl. Phys., A100, 396 (1967).
- 3. И. Звольски. Автореферат диссертации, 1700, Дубна, 1963.
- 4. В. Гнатович, К.Я. Громов, Ф.Н. Мухтасимов. Препринт ОИЯИ, Р2-2729, Дубна, 1966.
- 5. Nuclear Date, vol. 4, No 1-2, 1968.
- 6. Сборник "Гамма-лучи". Изд. АН СССР, гл. 1, 1961.
- 7. А. Хрынкевич, С. Огаза. Сборник Структура сложных ядер, Атомиздат, М., 1966.
- 8. Р.Б. Бегжанов, В.М. Беленький, Р.Х. Сафаров. Численные значения приведенных вероятностей электромагнитных переходов на основе модели Нильссона. Изд. ФАН УзССР, Ташкент, 1967.
- 9. S.G. Nilsson, O. Prior. Mat. Fys. Medd. Dan. Vid. Selsk, <u>29</u>, No 16, (1961). 10.J. Hauser, G. Knissel. Phys. Lett., <u>24B</u> 232 (1967).
- 11. П. Бедросян, А.С. Кучма, В.А. Морозов. ЯФ, 4, 905 (1966).

Рукопись поступила в издательский отдел 27 ноября 1970 года.

Кривые распада состояний с энергией 155,8 и 227 кэв в ядре $^{155}{\rm Tb}$. о - $^{155}{\rm Tb}$. х - $^{60}{\rm Co}$.