C 413 B + C 448 3-426

152/1-71

P6 - 5410

Т.С. Зварова, И. Звара

ГАЗОХРОМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ НЕЛЕТУЧИХ ХЛОРИДОВ МЕТАЛЛОВ С ПРИМЕНЕНИЕМ ПАРОВ ХЛОРИСТОГО АЛЮМИНИЯ В КАЧЕСТВЕ ЭЛЮЕНТА

P6 - 5410

Т.С. Зварова, И. Звара

ГАЗОХРОМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ НЕЛЕТУЧИХ ХЛОРИДОВ МЕТАЛЛОВ С ПРИМЕНЕНИЕМ ПАРОВ Хлористого Алюминия в качестве элюента

Как было показано в наших работах $^{/1,2/}$, возможно осуществить газохроматографическое разделение хлоридов лантанидных и актинидных элементов при невысокой температуре (< 250°), если использовать в качестве газа-носителя смесь инертного газа с парами хлористого алюминия. Метод основан на том, что Al_2Cl_6 реагирует с хлоридами редкоземельных элементов с образованием газообразных комплексов $^{/3,4/}$, транспортируемых газом-носителем. Избыток Al_2Cl_6 препятствует диссоциации нестойких комплексных молекул, а также динамически модифицирует поверхность колонки $^{/5/}$.

Настоящая работа посвящена изучению возможности применения аналогичной методики для хроматографирования элементов некоторых других групп периодической системы, образующих только нелетучие хлориды (температура кипения или возгонки > 500°C). Экспериментальная часть подробно описана в работе /1/. Опыты проводились на стеклянной капиллярной колонке, имеющей длину 2,5 м или 10 м и внутренний диаметр 1 мм, или на колонке длиной 30 см. внутренним диаметром 4 мм и с насадкой из стеклянных шариков. В качестве инертного газа-носителя применялся гелий с расходом 7 мл/мин для капиллярной колонки и 22 мл/мин для насадочной. Упругость пара Al₂Cl_e составляла <u>></u> 150 мм рт.ст. Введение пробы (и синтез комплексов) достигалось быстрым нагревом лодочки с препаратом хлоридов до 500°. Хроматограмма снималась путем отбора конденсата хлористого алюминия порциями на выходе из колонки с измерением их радиоактивности или колориметрическим анализом. Были проведены опыты с 19 элементами. Использованные радиоизотопы и их свойства приведены в таблице. На капиллярной колонке работали, как правило, с микрограммовыми или меньшими количествами радиоэлементов.

Колонка с насадкой за счет большой мощности по сравнению с капиллярной позволяла хроматографировать миллиграммовые количества веществ. Это было использовано для работы со стабильными соединениями в количествах до 5 мг.

Результаты

²² Na (т.кип. NaCl 1465°). При работе со стеклянной лодочкой происходит необратимое взаимодействие натрия со стеклом. Поэтому применялась лодочка из платины, с которой натрий при 500° возгонялся. Однако транспортировать соединение не удалось: натрий снова необратимо реагировал с поверхностью стеклянной трубки вблизи лодочки. Трубку не удавалось дезактивировать даже в случае применения концентрированной плавиковой кислоты.

⁸⁶ Rb (т. кип. RbCl 1381⁰). Рубидий возгонялся с платиновой лодочки, но высаживался на стыке зоны 500⁰ с термостатом хроматографической колонки (230⁰). В отличие от натрия рубидий легко смывался с трубки 6 N HCl.

¹³⁴ Cs (т. кип. CsCl 1300°). С платиновой лодочки цезий возгонялся, однако высаживался на стенках трубки после зоны 500° аналогично рубидию. Увеличение температуры на колонке до 300° не повлияло на распределение радиоактивности.

Си (т. кип. CuCl₂ 665[°]). 5 мг Cu хроматографировалось на насадочной колонке со временем удерживания 6 минут. Препарат готовился выпариванием 0,5 мл раствора Cu(NO₈)₂, содержащего 10 мг Cu/мл, в стеклянной лодочке с повторным упариванием остатка с концентрированной соляной кислотой. Порции конденсата растворялись, добавлялся KJ, и по окраске выделяющегося иода измерялась хроматограмма меди.

¹¹⁰ Ад (т. кип. АдСІ 1564⁰). Наблюдалось небольшое уменьшение радиоактивности на лодочке, однако она обнаруживалась сразу за лодочкой на стенках трубки.

⁴⁵ Са (т. кип. СаСl₂ 1600⁰). Возгонялся с лодочки, но в конденсатах на выходе из колонки при температуре 244⁰ после 35 минут опыта не наблюдался. Дезактивация аппаратуры по участкам показала, что радиоактивность обнаруживается перед хроматографической колонкой и, возможно, в начале ее.

⁹⁰ Sr (т. кип. SrCl₂ 1250⁰). Опыты проводились при температуре колонки 300⁰. Поведение ⁹⁰ Sr подобно поведению кальция.

¹⁴⁰ Ва (т. кип. ВаСl₂ 1830⁰). Легко возгоняется и хроматографируется. При 190⁰ на капиллярной колонке длиной 2,5 м время удерживания равно 3 минутам.

⁶⁵ Zn (т. кип. ZnCl₂ 732[°]). Возгонка с лодочки начинается уже при температуре 250[°]. Хроматография проводилась при 166[°] на 10-метровой капиллярной колонке. Время удерживания 2 минуты.

¹⁰⁷Cd (т. кип. CdCl₂ 967[°]). Хроматографировался при 235[°] на капиллярной колонке, время удерживания значительно превышает время удерживания цинка в более мягких условиях (166[°]).

¹¹⁴^тIn (т. возг. InCl₃ 498[°]). Хроматографировался на 10-метровой капиллярной колонке при 197[°] со временем удерживания < 2 минут.

¹⁹⁹ Tl (т. кип. TlCl 806[°]). Хроматографировался (см. ниже: разделение продуктов ядерных реакций).

 C_r (т. кип. C_rCl_2 1308[°]). В условиях опытов на насадочной колонке (температура на лодочке 500[°], на колонке 230[°], исходный раствор содержал C_r^{+3}) летучесть не обнаружена.

Мп (т. кип. МпСl₂ 1190⁰). Азотнокислый раствор марганца (5 мг Mn) после упаривания на лодочке обрабатывался концентрированной соляной кислотой. После 35 минут опыта на насадочной колонке при 230⁰ марганец в конденсате хлористого алюминия не был найден.

⁶⁰ Со (т. кип СоСІ₂ 1049[°]). На капиллярной колонке длиной 2,5 м при температуре 230[°] кобальт хроматографируется со временем удерживания 4 минуты.

Ni (т. кип. NiCl₂ 993[°]). На насадочной колонке проводились опыты с 2 мг никеля в виде NiCl₂. После 23 минут опыта при 230[°] никель в конденсате не был обнаружен.

¹⁰⁰ Rh (т. кип. RhCl₄ 800[°]). Хроматографировался (см. ниже: опыты по разделению продуктов ядерных реакций).

4

¹⁰¹ Pd (т. кип. PdCl₂ ≈ 1200⁰). Хроматографировался (см. ниже: опыты по разделению продуктов ядерных реакций).

На основании данных экспериментов с отдельными элементами проводились опыты по разделению смесей элементов. Различие в поведении шелочноземельных и редкоземельных элементов было успешно использовано для выделения дочернего ⁹⁰ У из препарата ⁹⁰ Sr отгонкой комплекса иттрия парами Al_2Cl_6 . В случае пары ¹⁴⁰Ba – – ¹⁴⁰ La барий при 190⁰ быстро выходит из колонки, в то время как лантан в силу большого времени удерживания в этих условиях остается на входе в колонку.

На рис.1 показано разделение смеси цинка и индия, на рис.2 – разделение смеси индия с тербием. Хроматограмма смеси трех соседних элементов – индикаторных количеств цинка и кобальта с миллиграммовым количеством меди – показана на рис.3.

Выполнены опыты с некоторыми реальными смесями радиоизотопов, синтезированных в опытах на ускорителе. На рис. 4 показано разделение радиоизотопов галлия и таллия, полученных при облучении мишени из золота на медной подложке альфа-частицами. Интересно, что порядок вымывания не соответствует температурам возгонки трихлоридов этих элементов ($G_{a}Cl_{8} - 201^{\circ}$, $TlCl_{8} - 155^{\circ}$). По-видимому, в условиях опыта термически нестойкий $TlCl_{8}$ переходит в TlCl, имеющий температуру возгонки 806°, и летучесть таллия обусловлена взаимодействием $TlCl_{6}$ с $Al_{2}Cl_{6}$. $G_{a}Cl_{8}$, как более устойчивый, очевидно, хроматографируется в виде трихлорида, что и обусловливает его малое время удерживания даже при столь низкой температуре на колонке, как 160° .

На рис. 5 показано разделение смеси элементов, образующихся при облучении ниобиевой фольги ионами неона-22. Продукты ядерных реакций отделялись от вещества мишени за счет отдачи и последующего торможения их и адсорбции в газовом объеме за мишенью. Азотной кислотой обмывались металлические стенки этого объема, и после упаривания и обработки концентрированной HCl остаток использовался для хроматографирования. Как видно из рисунка, палладий, индий и радий проходят через колонку с небольшим временем удерживания. Вместе с ними быстро вымываются ниобий и молибден, которые сами по себе образуют достаточно летучие хлориды и оксихлориды (NbCl₅ – т.кип. 254[°], NbOCl₃ – т.возг. 330[°], MoCl₅ – т.кип. 268[°]). Элементы Ru , Tc , Ag остались на лодочке.

Хотя каждый конкретный случай требует детального изучения, в общем, по-видимому, можно утверждать, что случаи, когда нелетучий хлорид хроматографируется, обусловлены образованием комплексов с Al₂Cl₆. Полученные в настоящей работе данные показывают большие перспективы газохроматографического метода разделения элементов с использованием паров хлористого алюминия в качестве компонента газа-носителя. Как показывают приведенные данные, эта методика позволяет хроматографировать большую часть тех переходных элементов. которые образуют только нелетучие хлориды. В первую очередь это относится к дихлоридам (Zn , Cd , Pd , Cu , Co). Не исключено, что в будущем удастся подобрать условия хроматографирования и некоторых других элементов, которые пока не удалось хроматографировать. Так как большинство переходных элементов, а также непереходные элементы Ш и более высоких групп образуют летучие хлориды, которые хроматографируются в присутствии Al Cl , можно в принципе надеяться на разделение десятков элементов в одном опыте с помощью такой техники, как программирование температуры, или градиенного элюирования.

Авторы благодарят академика Г.Н.Флерова за интерес к работе.

Литература

 T.S. Zvarova, I. Zvara. J. Chromatog., <u>44</u>, 604 (1969).
T.S. Zvarova, I. Zvara. J. Chromatog., <u>49</u>, 290 (1970).
H.A. Øye, D.M. Gruen, J. Am. Chem. Soc., <u>91</u>, 2229 (1969).
D.M. Gruen, R.L. Mc Beth. Inorg. Nucl. Chem. Letters., <u>4</u>, 299(1968).
И. Звара, Ю.Т. Чубурков, Т.С. Зварова, Р. Цалетка. Радиохныня, <u>11</u>, 154 (1969).

6

Таблица

Изотоп	Период полураспада	Характеристика излучения и энергия в Мэв	Источник получения	Удельная активность
²² Na	2,6 г.	y 1,277	коммерческий	без но сит.
⁸⁶ Rb	19 д.	γ 1,081; 0,527	коммерческий	225 мк/г
¹³⁴ Cs	2,2 г.	y 1,377; 0,800; 0,795; 0,604	коммерческий	без носит.
¹¹⁰ Ag	258 д.	y 1,382; 0,945; 0,883 0,759; 0,656	коммерческий	без но сит.
⁴⁵ Ca	163 д.	γ Her β 0,254	коммерческий	13 мк/г
⁹⁰ Sr	28 л.	γ нег β 0,541	коммерческий	без носит.
¹⁴⁰ Ba	13 д.	y 0,537; 0,436; 0,304=, 0,162; 0,132; 0,030	коммерческий	без носит.
O7 Cd	6,7 ч.	γ 0,846; 0,094	Nb+ ²² Ne→ Cd	без носит.
⁶⁷ Ga	78 ч.	y 0,388; 0,296; 0,184;0,092	⁶⁵ Cu(a, 2n) ⁶⁷ G	а без носит.
^{4 m} In	50 д.	y 0,722; 0,566	коммерческий	609 мк/г
^{98m} Tl	1,9 ч.	y 0,635; 0,586; 0,442	¹²⁷ Au(a, 3n) ¹⁹⁸ T	I без носит.
¹⁹⁹ TI	7,4 ч.	γ 0,490; 0,454; 0,332; 0,245; 0,206; 0,157; 0,103	$^{127}Au(a, 2n)^{199}Tl$	без носит.
⁵¹ Cr	28 д.	kx -лучи 0,320	коммерческий	без носит.
⁶⁰ Co	5л.	y 1,3316; 1,1715	коммерческий	без носит.
¹⁰⁰ Rh	20,8 ч.	2,3791; 1,934; 1,557;1,358 0,822; 0,742; 0,533	3; Nb+ ²² Ne→ Rh	без носит.
¹⁰¹ Rd	8.5 ч.	y 1,28; 1,19; 0,72; 0,59; 0,2	$288 \text{ Nb} + \frac{22}{Ne} \rightarrow Pd$	без носит.

Рис. 2. Разделение смеси индий-тербий на 10-метровой капиллярной колонке при 200°, расход гелия 7 мл/мин.

Рис. 4. Разделение галлия и таллия на 10-метровой капиллярной колонке при 180°, расход гелия 7 мл/мин.

Рис. 5. Разделение смеси элементов после облучения ниобиевой фольги ионами неона-22. Капиллярная колонка длиной 10 м, температура 160°, расход гелия 7 мл/мин.