F1-941

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

111 Martin

Дубна

P6-5151

В.П. Афанасьев, И.И. Громова, Г. Исхаков, В.В. Кузнецов, М.Я. Кузнецова, Н.А. Лебедев

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ¹⁴⁷ Gd, 147 ВОЗНИКАЮЩИЕ ПРИ РАСПАДЕ ¹⁴⁷ Tb

P6-5151

f

В.П. Афанасьев, И.И. Громова, Г. Исхаков, В.В. Кузнецов, М.Я. Кузнецова, Н.А. Лебедев

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ¹⁴⁷ G d , ВОЗНИКАЮЩИЕ ПРИ РАСПАДЕ ¹⁴⁷ T b

Направлено в ЯФ

\$423/2 mp

1. Введение

В^{/1/} имеется указание на существование ¹⁴⁷ Тb с периодом полураспада 24 мин. До недавнего времени других сведений о свойствах 147 Ть в литературе не имелось. Настоящая работа выполнена с целью получения ¹⁴⁷ Tb информации о распаде и о возбужденных состояниях ¹⁴⁷ Gd. В исследованиях использовался моноизотоп ¹⁴⁷ Тb , полученный с помощью масс-сепаратора . В период проведения исследований гаммаизлучения при распаде¹⁴⁷ Ть нам стало известно о результатах работы в которой также исследовалось гамма-излучение при распаде ¹⁴⁷ Tb. Авторами обнаружены гамма-лучи с энергиями 118,5<u>+</u>0,3, 139,4<u>+</u>0,5 и 694,4<u>+</u>0,5 кэв и позитроны с интенсивностью $\approx 5\%$ на распад ¹⁴⁷Tb; основному состоянию ¹⁴⁷ Tb с $T_{\frac{1}{2}} = 1,61\pm0,17$ час приписаны спин и чётность I^π = 5/2; кроме того, указано на существование изомерного состояния ¹⁴⁷ Tb с I > 11/2 и Т 1/2 = 2,5+0,1 мин. Схема возбужденных состояний¹⁴⁷ Gd , возникающих при распаде наблюдавшихся изомеров ¹⁴⁷ Ть в /3/ не дана.

2. Экспериментальная методика и результаты

Тербий-147 был получен в реакции расщепления ядер тантала при облучении протонами с энергией 660 Мэв на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Из мишени тантала химическим путем^{/4/} выделялся элемент тербий. Последующее разделение тербия по изотопам проводилось на масс-сепараторе^{/2/} Отдела ядерной спектроскопии и радиохимии.

Гамма-излучение ¹⁴⁷ Ть исследовалось с помощью Ge(Li) -детекторов с чувствительными объемами ≈ 10 см и ≈ 30 см и амплитудного анализатора АИ-4096. Полуширина фотопика для гамма-лучей с энергией 1153,0 кэв составляла 3,6 и 5,5 кэв для первого и второго детектора, соответственно. Спектр гамма-лучей, измеренный с помощью Ge(Li) -детектора с чувствительным объемом ≈10 см³, представлен на рис. 1. Видно, что в исследуемом спектре проявляются слабо даже самые интенсивные гамма-лучи соседних изотопов¹⁴⁹ Tb ,¹⁵⁰ Tb и ¹⁵¹ Ть . В гамма-спектре присутствуют также гамма-лучи дочернего ¹⁴⁷ Gd, который накапливался за время от момента химического выделения тербия до начала измерения. Присутствие в спектре исследуемого источника гамма-лучей, возникающих при распаде¹⁴⁷ Gd, позволило рассчитать доли гамма-лучей на распад материнского ¹⁴⁷ Tb . Для определения интенсивности гамма-лучей в процентах на распад 147 Ть и его периода полураспада спектр гамма-лучей измерялся по два раза в каждом из двух проведенных опытов. При расчете, согласно работе , принималось, что интенсивность гамма-лучей ¹⁴⁷ Gd с энергией 229,2 кэв составляет 62% на распад. В результате получено, что интенсивность гамма-лучей с энергией 1153,0 кэв составляет (75,0+7,6)% на распад ¹⁴⁷ Tb .

Период полураспада ¹⁴⁷ Ть, определенный по спаду интенсивности гамма-лучей с энергиями 119,7; 139,8; 694,5; 1153,0 кэв, равен 1,7<u>+</u>0,1 час.

Энергии и интенсивности гамма-лучей, сопровождающих распад ¹⁴⁷ Ть, представлены в таблице 1.

Интенсивность рентгеновского излучения при распаде¹⁴⁷ Ть не определялась из-за возможного искажения за счёт примеси соседних изотопов тербия и дочернего¹⁴⁷ Gd, с одной стороны, и из-за плохо определенной эффективности регистрации гамма-лучей с энергией меньше 60 кэв, с другой. Интенсивность гамма-лучей с энергией 1660 кэв, по-видимому, завышена из-за вклада интенсивности от фотопика двойного вылета из детектора аннигиляционных гамма- квантов при регистрации гамма-лучей с энергией 2684 кэв.

Из табл. 1 видно, что кроме гамма-лучей, указанных на рис. 1 при распаде ¹⁴⁷ Ть наблюдались также гамма-лучи с энергиями 1949, 2564 и 2684 кэв.

Указанные в таблице погрешности в определении интенсивностей гамма-лучей включают статистическую ошибку и ошибку, обусловленную погрешностью в определении эффективности регистрации гамма-лучей детекторами. Ошибка в определении эффективности принята равной 10% для всей области энергий. Кривая эффективности регистрации гаммалучей детекторами в зависимости от энергии определялась экспериментально с использованием источников ²⁴¹ Am ^{/6/}, ¹⁶⁹ Yb ^{/7/}, ²²⁶ Ra ^{/8/}, ²⁴ Na^{/9/} и ⁵⁶ Co^{/10/}.

Сравнение полученных результатов с данными работы^{/3/} указывает, что в цитируемой работе были обнаружены лишь интенсивные гаммалучи, возникающие при распаде¹⁴⁷ Тв в области энергий до 1 Мэв. Однако вызывает удивление тот факт, что авторы^{/3/} не обнаружили самый интенсивный переход с энергией 1153,0 кэв.

4

Та	блица	1
----	-------	---

Энергии и относительные интенсивности гамма-лучей

при распаде ¹⁴⁷Тb

Е _γ (кэв)		I _у (% на распад ¹⁴⁷ ТЬ)	
		Настоящая работа	Работа/3/
1.	119,7 <u>+</u> 0,5	6,7 <u>+</u> 0,7	5,1 <u>+</u> 1,0
2.	139,8 <u>+</u> 0,5	33,7 <u>+</u> 3,4	24 <u>+</u> 3
3.	183,5 <u>+</u> 1,0 ^{a)}	0,45 <u>+</u> 0,11	-
4.	259,5 <u>+</u> 0,5 ⁶⁾	2,5 <u>+</u> 0,4	-
5.	347,4 <u>+</u> 0,5 ^{a)}	2,6 <u>+</u> 0,4	· -
6.	407 , 4 <u>+</u> 0,5	1,6 <u>+</u> 0,3	-
7.	511	10, 1 <u>+</u> 1, 1	-
		(I _{β+} ≕ 5,6 <u>+</u> 0,6)	
8.	547 ,2<u>+</u>0, 5	1,8 <u>+</u> 0,2	-
9.	554,9 <u>+</u> 0,5	3,8 <u>+</u> 0,4	-
).	694,5 <u>+</u> 0,5	30,6 <u>+</u> 3,1	32 <u>+</u> 4
1.	<u>9</u> 36,0 <u>+</u> 0,5 ^{a)}	1,7 <u>+</u> 0,4	-
2.	1153,0 <u>+</u> 0,5	75,0 <u>+</u> 7,6	-
3.	1293,0 <u>+</u> 0,5	2,7 <u>+</u> 0,4	-
1.	1629 <u>+</u> 1 ^{a)}	2,4 <u>+</u> 0,4	_
5.	1660 <u>+</u> 1 ^{a)}	2,7 <u>+</u> 0,5	-
3.	1949 <u>+</u> 1 ^{a)}	1,5 <u>+</u> 0,4	-
7. :	2564 <u>+</u> 1 ^{a)}	1,7 <u>+</u> 0,6	-
3. :	2684 <u>+</u> 1 ^{a)}	3,4 <u>+</u> 0,7	-

а) Переходы не размещены в схеме распада.

б) Фотопики, соответствующие гамма-лучам с энергиями 259,5 кэв
и 1293,0 кэв, обусловлены эффектом суммирования каскадных гаммаквантов (119,7 кэв + 139,8 кэв) и (139,8 кэв + 1153,0 кэв),
соответственно.

7

3. <u>Схема распада</u>¹⁴⁷ Tb→¹⁴⁷ Gd и обсуждение <u>результатов</u>

На рис. 2 представлен вариант схемы распада¹⁴⁷ Tb→¹⁴⁷ Gd. Наблюдение в спектре гамма-лучей¹⁴⁷ Tb фотопиков, обусловленных эффектом суммирования каскадных гамма-лучей (119,7+139,8) и (139,8+1153,0) кэв, позволило однозначно ввести уровни с энергиями 1153.0; 1292.8 и 1412,5 кэв ядра¹⁴⁷ Gd.

В схеме распада не размещен ряд переходов, суммарная интенсивность которых не превышает 20%.

Гамма-лучи с энергией 1153,0 кэв эначительно интенсивнее всех других гамма-лучей, возникающих при распаде ^{14,7} Тb, поэтому естественно предположить, что переход с энергией 1153,0 кэв отвечает за разрядку первого возбужденного уровня в ядре ¹⁴⁷ Gd .

На схеме распада (рис. 2) приведены также проценты заселения уровней ¹⁴⁷ Gd при бета-распаде ¹⁴⁷ Tb и соответствующие значения lg fr. Очевидно, что при составлении баланса интенсивностей были трудности из-за незнания мультипольности переходов с энергиями 119,7 и 139,8 кэв. В проведенном расчёте принято, что мультипольности переходов с энергиями 119,7 и 139,8 кэв типа M1 и E2, соответственно.

Предполагая, что гамма-лучи с энергией 511 кэв обусловлены аннигиляцией позитронов, мы определили долю последних на распад ¹⁴⁷ Ть . При расчёте интенсивности позитронов использовался коэффициент счёта аннигиляционных гамма-квантов 1,8, который получен экспериментально при измерении спектра гамма-лучей при распаде ⁵⁶ Co /10/. Интенсивность позитронов составляет (5,6±0,6)% на распад

Известно, что при распаде $\frac{145}{63}$ Eu $_{82}$ /11/ 75% позитронного распада ведет к заселению основного состояния 145 Sm и только 25% -

к заселению первого возбужденного уровня с энергией 894 кэв (3/2). Исходя из баланса интенсивностей переходов в ¹⁴⁷ Gd₈₃ и наблюдаемого заселения уровней ${}^{145}_{62}$ Sm при позитронном распаде 145 Eu, можно предположить, что при распаде ¹⁴⁷ Tb → Gd основная доля позитронных распадов ведет к заселению основного состояния Gd . Предполагая, что при позитронном распаде¹⁴⁷ Ть заселяется только основноное состояние ¹⁴⁷ Gd, мы оценили энергию бета-распада ¹⁴⁷ Tb . Из полученного при этом предположении отношения K/β⁺ < 5,0 следует, что граничная энергия позитронов для разрешенного бета-перехода должна быть больше 1500 кэв, следовательно, разность масс ¹⁴⁷ Tb - ¹⁴⁷Gd будет больше 2500 кэв. С другой стороны, наблюдение гамма-лучей с энергией 2684 кэв указывает, что разность масс¹⁴⁷ Tb – ¹⁴⁷ Gd больше 2700 кэв. При расчёте значений lg fr величина разности масс ¹⁴⁷ Ть - ¹⁴⁷ Gd принята равной 4060 кэв /12,13/

. . .

Как указывалось выше, в работе не было обнаружено гаммалучей с энергией 1153,0 кэв (I = 75% на распад ¹⁴⁷ Ть). Этот факт и явился, по-видимому, причиной ошибочных выводов о квантовых характеристиках основного состояния ¹⁴⁷ Ть и о значении разности Macc 147 Tb - 147 Gd.

Экспериментальных данных, позволяющих определить квантовые характеристики введенных в схему распада уровней ¹⁴⁷ Gd, нет. Однако можно предположить, что характеристики основного и первого возбужденного состояния ¹⁴⁷ Gd будут такими же как у соседних чётнонечётных ядер с N = 83. На рис. 2 для сравнения со схемой уровней

¹⁴⁷ Gd приведены также первые возбужденные состояния ядер /14/ ¹³⁹ Ba ₈₃ /15/ ¹⁴¹ Ce ₈₃ /16/ ¹⁴³ Nd ₈₃ /17,18/ и 137 /14/ 139 Ва 83 / 58 Се 83 , 50 се 54 Хе 83 / 11,19/ Спин и чётность первого возбужденного состояния $\frac{145}{62}$ Sm 83 / 11,19/ Спин и чётность первого возбужденного состояния – $1^{\pi} = 3/2^{-}$, а для основного состояния – для всех указанных ядер I^{*п*} = 3/2⁻, а для основного состояния -I^π = 7/2⁻. Вероятно, что уровень ¹⁴⁷Gd с энергией 1153,0 кэв также будет иметь спин и чётность 3/2, а основное состояние - 7/2, что согласуется также с предсказанием оболочечной модели ядра.

На основании оценок величин $\ell_{\mathbf{g}} \, \mathbf{f} \, \mathbf{r}$, сравнения с ссседними не-/20,21/ чётно-нечётными ядрами 59 Pr 82 , 61 Pm 82 , 63 Eu 82 а также предсказаний оболочечной модели ядра основному состоянию ¹⁴⁷ Ть следует приписать квантовые характеристики $1^{\pi} = 5/2^{+}(3/2^{+})$.

Ядро ¹⁴⁷ Gd 83 имеет один нейтрон над замкнутой оболочкой N = 82, а 64-й протон замыкает подоболочку 2d_{5/2}. Поэтому можно было ожидать, что предсказания оболочечной модели об энергетических состояниях этого ядра будут лучше соответствовать экспериментальным результатам, чем в случае ядер с большим числом нептронов над замкнутой оболочкой N = 82. В связи с этим исследование возбужденных состояний ¹⁴⁷Gd, а также соседних чётно-нечётных ядер с N = 83, представляет большой интерес. Однако данные, полученные при исследовании лишь гамма-излучения при распаде ¹⁴⁷ Tb, не позволяют пока сделать более определенных выводов о природе возбужденных состояний ¹⁴⁷Gd .

В заключение авторы приносят искреннюю благодарность доктору физико-математических наук К.Я. Громову за постоянный интерес к работе и полезные обсуждения результатов, Р. Арльту, В.И. Фоминых и В.И. Райко за помощь при проведении исследований.

Литература

1. K.S. Toth, J.O. Rasmussen, J. Inorg.Chem., <u>12,</u> 236 (1960). 2. В.П. Афанасьев, А.Т. Василенко, И.И. Громова, Ж.Т. Желев, В.В. Кузнецов, М.Я. Кузнецова, Д. Мончка, Ю. Поморски, В.И. Райко, А.В. Ревенко, В.М. Сороко, В.А. Уткин. Сообщение ОИЯИ, 13-4763, Дубна, 1969.

- Y.Y. Chu, E.M. Franz, G. Friedlander. Phys.Rev.Lett., <u>23</u>,A21, 1969; Phys.Rev., <u>187</u>, 1529 (1969).
- 4. Б.К. Преображенский, О.М. Лилова, А.Н. Добронравова, Е.Д. Тетерин. ЖНХ, <u>1</u>, 2294, 1956.
- М.П. Авотина, Е.П. Григорьев, А.В. Золотавин, В.О. Сергеев, Р. Арльт,
 Г. Музиоль, Х. Штрусный. Известия АН СССР, сер. физ., <u>33</u>, 2042 (1969).
- 6, L.B. Magnusson, Phys. Rev., <u>107</u>, 161 (1957).
- 7. P. Alexander, F. Boehm. Nucl. Phys., <u>46</u>, 108 (1963).
- 8. а) К.Я. Громов, Б.М. Сабиров, Я.Я. Урбанец. Изв. АН СССР, сер. физ., <u>33</u>, 1646, 1969.
 - 6) E.W.A. Lingeman, J. Conijn, P. Polak, A.H. Wapstra. Nucl.Phys., Nucl.Phys., <u>A133</u>, 630 (1969).
- 9. Б.С. Джелепов, Л.К. Пекер. "Схемы распада радиоактивных ядер", A<100, стр. 149, Изд. "Наука", М.-Л, 1966.
- 10. a) P.H. Barker, R.D. Connor. Nucl.Instr. and Meth., <u>57</u>, 147(1967).

6) K.W. Dolan, D.K. McDaniels, D.O. Wells. Phys.Rev., <u>148</u>, 1151 (1966).

- 11. К.Я. Громов, Ж. Желев, В.В. Кузнецов, Ма Хо Ик, Г. Музиоль, Хань Шу-Жунь. Программа и тезисы докладов XV ежегодного совещания по ядерной спектроскопии и структуре атомного ядра. стр. 51. Изд. "Наука", М-Л, 1965.
- 12. W.D. Myers, W.J. Swiatecki. UCRL-11980, 1965.
- 13. S. Liran, N. Zeldes. Nucl. Phys., A136, 190 (1969).
- P.A. Moore, P.J. Riley, C.M. Jones, M.D. Mancusi, J.L. Foster Jr. Phys.Rev., <u>180</u>, 1213 (1969). Phys.Rev., <u>175</u>, 1516 (1968).
 H. Seitz, D. Rieck, P. Von Brentano, J.P. Wurm, S.A.A. Zaidi. Nucl.Phys., A140, 673 (1970).

- 16. L. Veeser, W. Haeberli. Nucl. Phys., <u>A115</u>, 172 (1968).
- G. Clausnitzer, R. Fleischmann, G. Graw, D. Proetel, J.P. Wurm. Nucl.Phys., <u>A106</u>, 99 (1968).
- 18. М.П. Авитина, Е.П. Григорьев, А.В. Золотавин, В.О. Сергеев, М.И. Совцов, Ю.Н. Лукин, Я. Врзал, Я. Липтак, Я. Урбанец. Программа и тезисы докладов XVIIIежегодного совещания по ядерной спектроскопии и структуре атомного ядра, стр. 66, Изд. "Наука", М-Л, 1968.
- S. Fiarman, E.J. Ludwig, L.S. Michelman, A.B. Robbins. Nucl.Phys., <u>A131</u>, 267 (1969).
- 20. Nucl.data tables, A5, № 5-6, 1969.
- 21. B.H. Wildenthal, E. Newman, R.L. Auble. Phys.Letters, <u>27B</u>, 628 (1968).

13

Рукопись поступила в издательский отдел 3 июня 1970 года.