

Р. Брода, В. Валюс, И. Звольски, Й. Молнар,
Н. Ненов, Э.З. Рындина, У.М. Файнер,
П. Шошев

ИССЛЕДОВАНИЕ УРОВНЕЙ 176 Н f ПРИ РАСПАДЕ¹⁷⁶ Та

P6 - 5094

ИССЛЕДОВАНИЕ УРОВНЕЙ ¹⁷⁶ Н f ПРИ РАСПАДЕ¹⁷⁶ Та

8416/2 yg

Работа доложена на XII совещании по ядерной спектроскопии нейтроно зефицитных изотопов и теории деформированных ядер (Дубна, 1-5 июля 1969 г.)

Направлено в Известия АН СССР

Feet.

Имеющиеся в настоящее время опубликованные данные об уровнях ¹⁷⁶ Нf получены при изучении реакции ¹⁷⁶ Lu(p,n) ¹⁷⁶ Нf и бета-распада ¹⁷⁶ Lu и ¹⁷⁶ Ta . В реакции ¹⁷⁶ Lu(p,n) ¹⁷⁶ Hf ^{/2/} установлено существование изомерных уровней с энергиями 1335 кэв (Т 1/2 = 13 мксек) и 1562 кэв (Т 4 = 10,3 мксек), интерпретируемых как состояния nn [512 ↑+ 514] 6 ⁺ и pp [514 [↑]+ 404 ↓]8⁻ соответственно. При изучении бета-раслада основного состояния ¹⁷⁶ Lu наблюдались три первых возбужденных уровня основной ротационной полосы , а в работе Ри-/4/ ла обнаружено состояние 1248 кэв, возбуждающееся при распаде изомерного уровня ¹⁷⁶ Lu (Т 4 = 3,7 часа). Наибольшее количество информации о переходах и уровнях в ядре¹⁷⁶ Нf былю до сих пор получено при изучении бета-распада ¹⁷⁶ Та (Т_{1/2} = 8 часов). Харматцем и др. были впервые опубликованы сведения о конверсионных электронах¹⁷⁶ Та с энергиями до 2 Мэв, а Верэлом и др. /6/ - до 3 Мэв. В работе были также проведены эксперименты по е-у -совпадениям. Информация о гамма-излучении 176 Та, исследованном с помощью сцинтилляционных детекторов, содержится в работах /3,3,7/. После окончания наших измерений вышла из печати работа Боддондиэка и др. , посвященная изучению гамма-лучей, гамма-гамма- и 🤫 - у - совпадений при распаде ¹⁷⁶ Та с применением Ge(Li) -детекторов. Разные варианты схемы распада¹⁷⁸ Та были опубликованы в^{/6,7,8/}. Они до-

вольно сильно расходятся друг с другом и во многом отличаются от результатов наши: исследований. Недавно нам стало известно об экспериментах Бернтала⁹ по изучению конверсионных электронов, гаммалучей и гамма-гамма-совпадений, существенно пополняющих данные о гамма-лучах^{17;} Та . Предложенная в⁹ схема возбужденных уровней¹⁷⁶ Нf в оснозном согласуется с нашими результатами.

Настоящая работа посвящена изучению состояний¹⁷⁶ Hf , возбуждающихся при распаде¹⁷⁶ Ta . С этой целью мы исследовали спектры конверсионных элэктронов, позитронов и гамма-лучей, а также совпадения между гамма-квантами, возникающими при распаде¹⁷⁶ Ta . Нами измерялся также период полураспада уровня ¹⁷⁶ Hf с энергией 1247,5 кэв. На основе полученных данных предлагается схема распада ¹⁷⁶ Ta . Информация об уровнях¹⁷⁶ Hf сравнивается с результатами расчётов, проведенных в рамках сверхтекучей модели с учётом мультиполь-мультипольного взаимодействия на базе потенциала Вудса-Саксона. О предварительных результатах наших исследований сообщалось /1,10/

1. Условия эксперимента

1.1. Радиозктивные источники

В наших опытах использовались источники трех типов:

 фракция "антала, выделенная из золота, облученного протонами с энергией 660 Мэв на синхроциклотроне ОИЯИ;

2) дочерний тантал, накопленный при распаде вольфрама, образовавшегося также в облученном золоте;

3) активность тантала, полученная при облучении тербиевой мишени ионами ²² Ne с энергией 100 Мэв на циклотроне У-300 ОИЯИ (159 Tb(22 Ne, 5n) 176 Re \rightarrow 176 W \rightarrow 176 Ta).

Из облученных мишеней тантал выделялся следующим образом. После растворения мишени тантал адсорбировался на стенках стеклянного сосуда, затем растворялся в 0,5М НГ и, наконец, экстрагировался метилизобутилкетоном. С целью получения тонних источников для бета-спектрометра метилизобутилкетон отгонялся и его остатки разрушались перекисью водорода. Потом добавлялся 0,5 МНГ, и полученный раствор упаривался на тефлоне досуха. После растворения остатков в электролите (0,1 М оксалат натрия +~ 0,1 мл 0,)6 М маслоновая кислота) проводилось электроосаждение тантала на катод при плотности тока 200 ма/см². Катодом служила никелевая или хромоникелевая фольга.

Радиоактивные препараты содержали, кроме¹⁷⁶ Та , и другие изотопы тантала. Спустя 5 часов после конца облучения, источники первого типа содержали 40%¹⁷⁶ Та (присутствовали также¹⁷⁸ Та ,¹⁷⁵ Та и¹⁷⁷ Та), второго - 70% (присутствовал также¹⁷⁵ Та и¹⁷⁷ Га) и источники третьего типа были практически чистым изотопом¹⁷⁶ Та (> 90%).

1.2. Аппаратура

Для исследования электронных и позитронных спектров использовался бета-спектрометр с двукратной двойной фокусировкой на угол $\pi\sqrt{2}$, характеризующийся малым фоном / 11/. Действительное разрешение на линии конверсионных электронов в области энергий > 700 кэв составляло 0,18 + 0,25%.

Спектры гамма-лучей изучались с помощью _{Ge}(L_i) -детекторов объемом 5,7; 12 и 33 см³ в соединении с 4096-канєльным амплитудным анализатором. Разрешение _γ -спектрометра составляло 3,8 + 6 кэв на линиях ⁶⁰ Со •

Для изучения совпадений между гамма-квантами был применен двухмерный спектрометр совпадений с возможностью выбора цифровых окон, построенный на базе ЭВМ "Минск-2" В качестве детекторов были использованы 1Ва Ge(Li) -кристалла объемом 30 и 33 см³. Дополнительные опыты по гамма-гамма совпадениям были выполнены со сцинтилляционным детектором (NaJ(Tl) ; (40 x 40 мм) в задающем тракте и Ge(Li) - детектором (13 см³) в анализирующем тракте.

Для изучения кремен жизни возбужденных состояний был использован спектрометр сокладений, описанный ${}^{13/}$. В качестве детекторов служили или два кристалла NaJ(Tl) (40 мм x 40 мм), или комбинация Na(Tl) с детектором Ge(Li) (13 см³).

2. Результаты измерений

Период полураспада¹⁷⁶ Та определялся по более интенсивным гамма-переходам в изморениях спектров гамма-лучей и конверсионных электронов. Полученное значение Т_½ = 8,1 ± 0,1 час хорошо согласуется с данными предыдущих работ.

2.1. Гамма-излучение

Для изучения гамма-лучей¹⁷⁶ Та применялись источники всех трех типов. Спектр, полузенный с источником второго типа, показан на рис. 1. Энергетическая кал:бровка производилась по фотопикам¹⁶⁹ Yb,²²⁸ Ra, ²² Na, ¹³⁷Cs, ⁶⁰ Co, ⁵⁴ Mn и ⁸⁸ Y. Для точного определения энергий гамма-перєходов в области энергий ≥ 1500 кэв были использованы также пики двойног) вылета. Зависимость эффективности регистрации гамма-квантов от эзергии была изучена с помощью изотопов ¹⁶⁹ Yb, ²²⁶ Ra и ²⁴ Na. Наши данные о гамма-лучах ¹⁷⁶ Ta приведены в табл.1. Они находятся в хорюшем согласии с данными работ ^{/8,9/}. Из наших опытов следует, чтс гамма-лучи переходов с энергиями 1249, 1658, 1744 и 1792 кэв, отнесенные в работе ^{/8/} к распаду¹⁷⁶ Ta, возникают при распаде¹⁷⁵ Ta.

2.2. Конверсионные электроны

Используя радиоактивные источники первого и второго типа (см. выше), мы изучали конверсионные электроны в области энергий 700-3000 кэв. Источники второго типа применялись в основном для выяснения структуры некоторых сложных линий. Участки полученного спектра изображены на рис. 2 а,б,в. Данные об относительных интенсивностях К -конверсионных электронов ¹⁷⁶ Та приведены в табл. 1. Они не противоречат в пределах погрешностей значениям, полученным в работах ^{/5,6/}

В использованном бета-спектрометре напряженность магнитного поля определялась методом протонного резонанса. Для перехода от не-посредственно измеряемой резонансной частоты к величине H_{ρ} были использованы К-конверсионные линии переходов 1053,98 ± 0,13 кэв 177 Ta $^{/14/}$, 1190,0 ± 0,4 кэв и 1861,9 ± 0,6 кэв 176 Ta . Последние два значения были нами определены по спектру гамма-лучей.

2.3. Совпадения между гамма-квантами

Основная информация о совпадениях между гамиа-квантами ¹⁷⁶ Та была получена нами при помощи аппаратуры с двумя Ge(Li) -детекторами. Изучались спектры совпадений с гамма-квантами от 28 переходов (см. табл. 2). Для учёта совпадений с компто ювским фоном под линией одновременно снимался спектр совпадений с 'окном" за соответствующим фотопиком. Примеры полученных спектров совпадений показаны на рис. З а,б,в. Отметим, что в спектре совпадений с квантами у 125 проявлялись пики, соответствующие ¹⁷⁵ Та , но совпалений этого _у-перехода с гамма-лучами¹⁷⁶ Та замечено не было, хотя в использованном источнике активность ¹⁷⁶ Та составляла ≈ 90%.

В качестве дополнительного опыта Ge(Li) -детектор в отбирающем тракте был заменен кристаллом Nal(Гl) и "окнами" выделялись гаммакванты с энергиями 200, 1100-1250, 1200-1350, 1450-1650 и 1600-1800 кэв.

Полученная таким образом информация подтвердила результаты опытов с двумя Ge(Li)-детекторами и, кроме того, позволила установить, что переходы 213,0 и 1268,8 кэв могут находиться в каскаде с переходами 1553 и 1642 кэв (рис. 4).

Относительные интенсивности гамма-гамма-совпадений приводятся в табл. 2. Они зыражены в единицах интенсивностей гамма-лучей табл.1. В табл.2 даны также расчётные значения интенсивностей совпадений, соответствующи э схеме распада, изображенной на рис. 10.

Следует отметить, что полученные в^{/8/} данные согласуются большей частью с результатами наших измерений. Существенное отличие наблюдается в двух случаях: 1) значение интенсивности совпадений у(1159 + 1157) с у201 в^{/8/} в 2,5 раза завышено по сравнению с нашими данными; 2) в наших опытах не наблюдалось заметного числа совпадений у201 с у239 и у1290.

2.4. Определение коэффициентов внутренней конверсии

В работе Карматца и др.^{/5/} были впервые определены мультипольности переходот 88,35 кэв (Е2) и 201,5 кэв (Е2), происходящих между нижними уровнями ротационной полосы основного состояния. Мультипольности переходот более высоких энергий были в большинстве случаев неизвестны. Для определения КВК мы использовали наши данные о гаммалучах и в области энергий > 700 кэв также наши данные о конверсионных электронах. Для контроля в мягкой области спектра нами были сняты конверсионные линии перехода у 201,5, однако интенсивность линии K 201,5 в нашем опыте содержит сравнительно большую погрешность. Для остальных переходов в низкоэнергетической области мы воспользовались значениями относительных интенсивностей конверсионных электронов работы^{/5/}. КВК были вычислены в предположении, что переход 1553 кав, разряжающий состояние 1642 кав (1^m K = 1⁻0), - типа E1,

и переход 1252,5 кэв, разряжающий уровень 1341 кэн (Iⁿ K = 2⁺ 2), типа E2 . Таким образом, полученное значение $a_{\rm K}$ для перехода 201,5 кэв согласуется в пределах погрешностей с теорией для мультиполя E2 . Экспериментальные значения КВК приводятся в табл. 1. Сопоставление экспериментальных значений $a_{\rm K}$ с тесретическими дано на рис. 5.

2.5. Позитроны

По изучению позитронов¹⁷⁶ Та нами были выполнены опыты двух типов:

1) исследовался позитронный спектр,

2) измерялись тройные совпадения у 511-у511-у.

Для изучения позитронного спектра использовался радиоактивный источник второго типа (≈ 70% ¹⁷⁶Та). Был обнаружен слабый позитронный спектр (см. рис. 6), интенсивность которого в точках, соответствующих энергии < 1800 кэв, убывала с периодом полураспада (7,5 + <u>+</u> 1,5) час, а в точке, соответствующей энергии 2200 кэв, с Т_{1/2} = (6<u>+</u>3) час. Общая интенсивность позитронов I $\beta^{+/}$ K(1155+1157+1139) = 13 ± 4, что соответствует, в единицах табл. 1, Значению $I_{R^+} = (0, 6 \pm 0, 2)$ % на распад. В спектре были замечены три компоненты с граничными энергиями $E_1 = 860 \pm 60$, $E_2 = 1860 \pm 60$ и $E_3 = 3000 \pm 80$ кэв с отношением интенсивностей I₁: I₂: I₈ = 5:7:1. Интерпретация этих результатов затруднена присутствием 175 Ta ($\approx 30\%$, T $_{1/2}$ = 10 час), а также 173 Ta (\leq 3%, T $_{12}$ = 4 часа), в спектре которых также были замечены пики аннигиляционных квантов. В наших опытах по изучению распада¹⁷⁵ Та было установлено, что позитронный распад ¹⁷⁵ Та должен совершаться преимущественно на уровни 81 и 348 кэв а при распаде ¹⁷³Та - на уровень 242 кэв. Воспользовавшись табличным значением разности масс ¹⁷⁵ Ta \rightarrow ¹⁷⁵ Hf (2330 кэв) и ¹⁷³ Ta \rightarrow ¹⁷³ Hf (3180 кэв), мы

получаем, что для β^+ -спектров ¹⁷⁵ Та возможны граничные энергии ≈ 960 и ≈ 1200 кев и для ¹⁷⁸ Та ≈ 1900 кэв. Таким образом, обе мягкие компоненты обнаруженного β^+ -спектра могут содержать примесь позитронов ⁷⁵ Та и ¹⁷⁸ Та.

Опыты по тройным совпадениям гамма-спектра с аннигиляционными квантами были выполнены с источником третьего типа ($\geq 90\%$ ¹⁷⁶ Ta). Из-за слишком "тезной" геометрии в спектре тройных совпадений (рис. 7), кроме пинов, соответствующих совпадениям с позитронами от β^+ – распада и совпадениям гамма-квантов от тройных каскадов, заметны и совпадения с пиками двойного вылета. После вычета совпадений с пиками двойного вылета и совпадений между квантами тройных каскадов было установлено, что заметная доля позитронного распада направлена на уров и 1247,5 и 88,3 кэв. В работе ^{(8/}) определялась разность масс ¹⁷⁶ Ta--¹⁷⁶ Hf по эффекту уменьшения К -захвата на уровень 2920 кэв и найдено значение (3050^{+380}_{-40}) кэв. В этом случае следовало бы отнести β^+ -компоненты с $E_{\Gamma p.} = 1860$ и 860 кэв к β -распаду на уровни 88,3 и 1247,5 кэв, а жесткую компоненту ($E_{\Gamma p.} = 3000$ кэв) приписать другой, неизвестной активности.

2.6. Измерение времен жизни уровней 1247,5 и 1313 кэв

Определение периода полураспада возбужденных уровней было проведено методом задержанных совпадений по экспоненциальному спаду кривых временного спектра совпадений. С целью получить информацию о периоде полураспада состояния 1247,5 кэв были выполнены опыты двух типов. В первом из них в качестве детекторов гамма-квантов служили два кристалла NaI(Tl). Дискриминаторами выделялись участки гамма-спектров, содер кащие в одном канале фотопик у1159 и в другом канале-последовательно фотопики у710 и у1695. Интенсивные переходы 710 и 1695 кэв заселяют уровень 1247,5 кэв, разряжающийся

переходом у 1159 кэв (см. рис. 10). Кривые временного спектра совпадений для обоих каскадов изображены на рис.8.В том и другом случае в пределах погрешностей был получен одинаковый период полураспада

Т_{1/2} = (4,43 ± 0,11).10⁻⁹сек. Чтобы убедиться, чтэ полученный результат не искажен наложением временного спектра совладений от других каскадов, нами был выполнен второй вариант опыта: в первом тракте кристаллом Nal(Tl) выделялись гамма-кванты с энергиями 1500-1800 кэв, а во втором тракте Ge(Li) - детектором отбирались фотопики у1159 и у 1224. Таким образом селективно регистрировались совладения:
1) (у 1695) (у1159) и 2) (у 1632) (у 1224). Соот зетствующие временные спектры совладений также показаны на рис. 8. Е первом случае было подтверждено значение периода полураспада уровня 1247,5 кэв, полученное выше, во втором - определена верхняя граница периода полураспада состояния с энергией 1313 кэв: Т_{1/2} ≤ 2.10⁻⁹ сек.

Результаты наших измерений находятся в согласии с данными работы Хенига¹¹⁵⁷, в которой при изучении временного спектра совпадений (Kx) ($\gamma \approx 1100$) при распаде¹⁷⁸ _{Та} наблюдался период полураспада Т $\frac{1}{12} = (4,75 \pm 0.25).10^{-9}$ сек. В этой же работе приводится также значение Т $\frac{1}{12} = (4.4 \pm 0.3). 10^{-9}$ сек, полученное пругим автором (см. частное сообщение в¹¹⁵⁷).

3. <u>Теоретические исследования возбужденных состояний</u> ¹⁷⁶ Hf

Первые расчёты двухквазичастичных уровней¹⁷⁶ Н были проведены в работе Галахера и Соловьева^{/16/} в рамках "сверхтєкучей модели" ядра с использованием потенциала Нильссона. На той же основе, учитывая мультиполь-мультипольные взаимодействия, Железнова и др.^{/17/} вычислили энергии первых двух квадрупольных состояний с К[#] = 0⁺,2⁺

и октупольных уровней с $K^{\pi} = 0^{-}, 1^{-}2^{-}$ и определили компонентный состав первых коллективных состояний этого типа. В работах Малова и др. ^{/18,19/} были гассчитаны энергии тех же состояний для чётно-чётных ядер переходной области, в том числе и для ¹⁷⁶ Hf 2 с волновыми функциями и одночастичными энергиями потенциала Саксона-Вудса с деформацией $\beta = 0, 23^{/20/}$.

В настоящей работе мы рассчитали энергии двухквазичастичных, а также квадрупольных и октупольных состояний ¹⁷⁶ Hf . Для первых двух однофононных состояний с $K^{\pi} = 2^{+}$, 0⁻, 1⁻ и 2⁻ был определен компонентный состав. При расчётах энергий была использована схема одночастичных уровней и волновых функций потенциала Саксона-Вудса и те же константы квадрупольного ($\kappa^{(2)}$) и октупольного ($\kappa^{(3)}$) взаимодействия, что и в /18,19/. Константы парного взаимодействия также взяты из работы /19/. При расчёте энергий уровней с $K^{\pi} = 1^{-}$ была более последозательно проведена блокировка соответствующих полюсов, чем в предыдуцих работах. Для определения компонентного состава однофононных состолний использовались экспериментальные значения $\kappa^{(2)}$ и $\kappa^{(3)}$.

Результаты наших расчётов энергий двухквазичастичных состояний с $\mathbf{K} \leq 3$ и первых двух однофононных уровней с $\mathbf{K}^{\pi} = 0^+, 2^+, 0^-, 1^-, 2^$ показаны на рис. 9. В табл. 3 приводятся наиболее интенсивные компоненты некоторых огнофононных состояний. Следует отметить, что на рис. 9 среди двухкгазичастичных уровней приведены также третьи и более высокие уровни с $\mathbf{K}^{\pi} = 2^+, 0^-, 1^-, 2^-$ и состояния с $\mathbf{K}^{\pi} = 3^-$, которые имеют колле: тивную природу, для которых, однако, не был рассчитан компонентный состав.

В последнее время Пятовым и др. $^{/21,22/}$ была развита теория состояний с I $^{\pi}$ = 1⁺ в чётно-чётных ядрах на основе представлений об осцилляциях магнитнсго дипольного момента. Результаты расчётов для 176 Hf. выполненных Габраковым и др. $^{/22/}$, приведены в табл. 4 и на рис. 9.

4. Схема распада Та . Обсуждение результатов

На рис. 10 представлена схема распада ¹⁷⁶ Та→⁷⁶ Нf, не противоречащая всей совокупности полученных экспериментальных данных. В ней размещено большинство наблюдавшихся нами переходов. Интенсивность неразмещенных переходов, включенных в табл. 1, составляет ≈ 7% на распад. Баланс интенсивностей переходов по отдельным уровням схемы приводится в табл. 5.

Наиболее вероятными квантовыми характеристинами основного состояния 1^{76} Та являются I^{π} = 1⁻. Для такого утверждения имеются следующие соображения.

Уровни ¹⁷⁶ Нf , возбуждающиеся при бета-распаде¹⁷⁶ Та, имеют спины, не превышающие значения 4 (см. рис. 10), и электронный захват на уровни со спинами I = 1 и 2 совершается с наиболее низкими значе-ниями log ft (табл. 5).

2. Все известные нечётные изотопы тантала имеют в основном состоянии квантовые характеристики $7/2^+$ (орбиталь 404), а для 10^9 -го нейтрона в соседних нечётных ядрах 173 Yb и 175 Hf установлено основное состояние $5/2^-$ [512]. Отсюда вытекает, что наиболее вероятная конфигурация основного состояния 176 Ta - [p 404 $_{\downarrow}$ - n 512 †] 1⁻.

3. К такому же заключению приводит и обсужд∋ние результатов по распаду ¹⁷⁶ W → ¹⁷⁶ Ta в работе ^{/23/}.

Ядро ¹⁷⁶ Та превращается путем электронного захзата и β^+ -распада в чётно-чётное ядро ¹⁷⁶ Нf . Ядро ¹⁷⁶ Нf обладает в основном состоянии сравнительно большой деформацией. В работе ^{/24} был определен период полураспада первого вращательного уровня 88,3 кэв (2⁺): Т_½ = = (1,39 ± 0,04). 10⁻⁹ сек, который соответствует параметру деформации $\beta = 0,24$.

4.1. Состояния с $K^{\pi} = 0^{+}$

Переходы 1137,7; 1150,0; 1292,8 и, вероятно, также 1290,2 кэв, отличаются большими значениями КВК. Интерпретация их мультипольностей дана в табл. 1 (рис. 5). Мультипольность переходов 1150,0 и 1292,8 кэв типа Е0 , а переходов 1137,7 и, по-видимому, 1290,2 кэв -E0+M1+E2. На основе этих данных, а также результатов совпадений было установлено существование двух состояний с $I^{\pi} = 0^+$ с энергиями 1149,7 и 1253 кэв и соответствующих им первых ротационных состояний 1226 и 1375 кэв с $I^{\pi}K = 2^+0$. Значения КВК остальных переходов, разряжающих перечисленные состояния на основную ротационную полосу, не противоречат предположению, что это переходы типа E2.

В табл. 6 приведены экспериментальные значения величины $X = \frac{e^2 R^4 \rho(E0)^2}{B(E2)}, \quad \text{которая характуризует отношение приведенных ве$ $роятностей перехогов E0 и E2 , разряжающих состояние с <math>K^{\pi} = 0^+$ на уровни ротациогной полосы основного состояния. Кроме значений $X_0 = \frac{B(E0, 0^+ \rightarrow 0_g^+, 0)}{B(E2, 0^+ \rightarrow 2_g^+, 0, 0)}, \quad \text{даны также аналогичные значения для рота$ $ционных уровней <math>I^{\pi}K = 2^+0$, а именно: $X_2 = \frac{B(E0, 2^+ \rightarrow 2_{g.s.}^+, 0)}{B(E2, 2^+ \rightarrow 2_{g.s.}^+, 0)}$ и $X_2' = \frac{B(E0, 2^+ \rightarrow 2_{g.s.}^+, 0)}{B(E2, 2^+ \rightarrow 2_{g.s.}^+, 0)}. \quad \text{Отношения } s = \frac{X_2}{5\chi_0}$ $\mu_{S'} s' = \frac{X_2'}{3,5\chi_3}$ должны быть равны 1, если внутренняя структура состояний 0⁺ и 2⁺ одной ротационной полосы одинакова. В табл. 6 приводятся также значения отношений призеденных вероятностей переходов

$$R_{2} = \frac{B(E2, 2^{+} \rightarrow 2^{+}_{g.s.})}{B(E2, 2^{+} \rightarrow 0^{+}_{g.s.})}, \qquad R_{4} = \frac{B(E2, 2^{+} \rightarrow 4^{+}_{g.s.})}{B(E2, 2^{+} \rightarrow 0^{+}_{g.s.})}$$

и параметра ротационно-вибрационной связи z_o. Величины s и s´ для ротационной полосы уровня 1149,7 кэв в рамках погрешностей

близки к 1 и могут свидетельствовать о том, что внутренняя структура состояния 1226 кэв (2⁺0) близка к структуре уровня 1149,7 кэв (0⁺) и что примесь М1 -компоненты в переходе 1137,7 (Е(+ М1 + Е2) невелика. Состояние 1293 кэв (0⁺) отличается большим сначением X_0 . Столь большое значение в низкой области возбуждений (ниже энергетической шели) в деформированных ядрах пока не наблюдалось. Малое значение величины ^{s'} для ротационного состояния 1379 кэв (2⁺0) обусловлено, по-видимому, присутствием интенсивной М1 -компоненты перехода 1290,2 кэв (2⁺0 \rightarrow 2⁺g.s.), что свидетельствует о малом значении приведенной вероятности Е2 -компоненты γ 1290,2. Это предположение подтверждается также большим отступлениэм от правил Алаги экспериментального отношения $R_2 = \frac{B(E2, 2^+ \rightarrow 2^+ LS)}{B(E2, 2^+ \rightarrow 0^+ LS)}$ для уровня 1379 кэв.

В микроскопической теории деформированных ядер обсуждаются разные по внутренней структуре 0⁺-состояния.

1. Парные вибрации, обусловленные парными взаимодействиями /27/, представляют суперпозицию двухквазичастичных состояний, отдельно нейтронных и протонных, где обе квазичастицы одной пары находятся на одном уровне. Вклады разных состояний в суммы, квыдраты которых определяют приведенные вероятности переходов, некогерентны, и значения $B(E0; 0^+ \rightarrow 0^+_{g.s.})$ и $B(E2; 0^+ \rightarrow 2^+_{g.s.})$, в общем, малы. Так как матричные элементы E0 -переходов, разряжающих парные вибрации, значительно больше матричных элементов параллельных E2 -переходов, то величина X, в общем, может принимать большие значения

(X > 1). Парные вибрации должны наблюдаться выше энергетической щели.

2. Когерентны флюктуации спаривания, рассмотренные Беляе-^{/28/}, представлнот собой особый случай парных вибраций, нечетных по отношению к оператору временной инверсии. В отличие от Т-чётных состояний, упомянутых выше, вклады частичных и дырочных возбуждений в Т -нечэтный фонон одинакового знака. Как показано в ^{/29/}, эти состояния можно ожидать и в области энергий ниже энергетической шели и их разрядка на уровни полосы основного состояния должна происходить Е0-переходами с большими значениями В(Е0) и Е2 -переходами, для которы в В(Е2) может быть и значительно меньше, чем для аналогичных пэреходов с бета-вибрационных уровней. Вследствие этого величина Х может принимать и очень большие значения (Х>>1).

3. Бета-вибрании, обусловленные квадрупольными взаимодействиями лежат ниже энергетической шели и отличаются, как правило, большими значениями $B(E2)^{/30/}$. Из-за когерентности вкладов отдельных двухквазичастичных компонент (квазичастицы одной пары на разных уровнях) в суммы, определяющие величину B(E2), и некогерентности вкладов в суммы для B(E0), можно ожидать X < 1. Однако из-за интерференции фононов парных и бета-вибраций для 0^+ -состояний с энергией, близкой к энергетической шели, величина X может существенно увеличиться.

4. Спин-квадрупольные взаимодействия $^{/31/}$ также приводят к появлению 0⁺-состояний ниже энергетической шели. Основной вклад в B(E0) дают двухквазичастичные состояния (квазичастицы одной пары всегда на разных озбиталях), в которых квазичастицы одной пары находятся на уровнях, для которых $\Delta N = \Delta n_z = \pm 2$. Для состояний с квазичастицами на разных уровнях одной оболочки ($\Delta N = 0$) матричные элементы E0 -переходов равны 0. Наоборот, в B(E2) дают вклад все состояния. Поэтому для спин-квадрупольных 0⁺ - состояний в общем значение B(E0) мало и X <<1. Связь бета-вибраций со спин-квад-

рупольными возбуждениями приводит, как правило, к понижению величины X нижних 0⁺-состояний.

В левой части табл. 7 приводятся значения величин, характеризующих 0⁺-состояния в ядре ¹⁷⁶ Hf , рассчитанные Н.И.Пятовым в рамках сверхтекучей модели ядра с учётом парных, квадрупольных и спин-квадрупольных взаимодействий по^{/32/}. При вычислении использовались волновые функции Нильссона и значения констант квадрупольного и спин-квадрупольного взаимодействий $\kappa_q = 8,7$; $\kappa_t = 9,0$. В правой части табл. 7 даны значения аналогичных величин для первых двух 0⁺ состояний ¹⁷⁶ Hf , вычисленные Беляевым^{/29/} на основе модели, учитывающей квадрупольное взаимодействие, ϵ также спаривательное взаимодействие, удовлетворяющее требованию градиентной инвариантности^{/28/}.

Из сравнения табл. 6 и 7 следует, что экспериментальное значение **X** для уровня 1149,7 кэв можно объяснить в рамках расчётов Пятова, между тем как большое значение **X** для уровня 1293 кэв близко к теоретическому, полученному для второго 0⁺-состряния в модели Беляева.

4.2. Гамма-колебательная полоса

Первым неротационным состоянием с квантовыми характеристиками I^{π} = 2⁺, наблюдавшимся при распаде¹⁷⁶ Та в ¹⁷¹ Нf, является уровень 1340,6 кэв. Его существование и разрядка переходами y1340,5 (Е2), y 1252,4 (Е2) и y1051 на уровни вращательной полосы основного состояния подтверждены опытами по совпадениям (см. габл. 2). В ядре соседнего изотопа¹⁷⁸ Hf реализуется аналогичный урсвень с энергией 1174,3 кэв^{/34/}. Теория предсказывает существование гамма-вибрационного состояния ¹⁷⁶ Hf при энергии 1,7 Мэв (табл. 3, рис. 9). Экспериментальные отношения приведенных вероятностей переходов разрядки состояния 1340,6 кэв на уровни ротационной полосы эсновного состояния

равны: $B(E2, \gamma 1340, \xi): B(E2, \gamma 1252, 4): B(E2, \gamma 1051) = (0,78\pm0,13):1: (0,13\pm0,05), а по правилам Алаги: <math>B(L = 2,22 \rightarrow 00): B(L = 2;22 \rightarrow 20): B(L = 2;22 \rightarrow 40) = 0,7:1:0,05$. Параметр связи z_2 , учитывающий влияние вращательно-колебательного взаимодействия на вероятности переходов, вычисленный из отношений $B(E2,22 \rightarrow 00): B(E2,22 \rightarrow 20)$ и $B(E2,22 \rightarrow 40): B(22 \rightarrow 20)$, принимает возможные значения 0,02 и 0,11+0,05 соответственно.

На основе совладений было установлено существование состояния 1445 кэв, разряжающегося переходами У 1356,8 и У 1155 на уровни 2⁺ и 4⁺ полосы основного состояния. Следует отметить, что разрешение наших приборов не позволило разделить линии близких по энергии переходов у1155, у 1157 и у1159. Поэтому интенсивность I у1155 = 21(5) (в единицах табл. 1) была определена из интенсивностей совпадений (у 1357) (у 466) к (у 201) (у 466) (табл. 2). Для определения квантовых характеристик состояния 1455 кэв, кроме вышеуказанной разрядки на уровни 2 + и + , мы воспользовались еще следующими данными: 1. Значение КВК для у 1356,8 не противоречит предположению, что это переход типа Е2 . 2. Уровень 1911 кэв (2⁺1), принадлежащий ротационной полосе состояния 1862 кэв (1⁺1), разряжается М1 -переходами на состояние 1340,6 (2⁺2) и 1445 кэв, между тем как для уровня 1862 кэв (1⁺1), разряжающегося интенсивным MI -переходом на состояние 1340.6 кэв (2⁺2), соответствующего перехода на уровень 1445 кэв замечено не было. Всэ эти факты позволяют сделать вывод о наиболее вероятных квантовых характеристиках уровня 1445 кэв: I^{*π*} = 3⁺. Можно предположить, что это состояние является ротационным к вибрационному уровню 1340,6 кэв (2⁺). Предполагая, что переходы у 1356,8 и у 1155-типа Е2 , находим для отношения их приведенных вероятностей значение B(E2, y 1356,8): B(E2, y1155) = 1: (0,61+0,23), которое близко к значению, наблюдєвшемуся в соседних ядрах для переходов, разряжаю-

ших состояния с $I^{\pi} K = 3^+ 2$. По правилам Алаги $B(L=2;32 \rightarrow 22)$: $B(L=2;32 \rightarrow 42) = 1 : 0, 4$. Возможное значение параметра z_2 в этом случае: $z_2 \leq 0,06$.

В этой интерпретации природы уровня 1445 кэв следует отметить существенное уменьшение момента инерции ядра ¹⁷⁶ Hf при гаммаколебаниях: $h^2/2 J_{g.s.}: h^2/2 J_{\gamma} = J_{\gamma}/J_{g.s.} = 0.85$. Аналогичный эффект наблюдается в ядре ¹⁸² W ($J_{\gamma} / J_{g.s.} = 0.92$)^{/33}, а в соседнем, ¹⁷⁸. Hf, $J_{\gamma} / J_{g.s.} = 1^{/34/}$. В ядре ¹⁷⁶ Hf он может быть вызван, по крайней мере частично, отталкиванием близких по энергии уровней 1340,6 кэв (2^+2) и 1379 кэв (2^+0) (см. рис. 10). Действительно, и в случае ротационной полосы, членами которой являются состояния 1293 кэв (0^+) и 1379 кэв (2^+0), наблюдаемое значение $J_0 + /J_{g.s.}$ существенно меньше, чем для полосы, основанной на уровне 1148,7 кэв (0^+) (см. табл. 6). Эти явления известны и из исследования других ядер, в которых наблюдалось отталкивание уровней (2^+2) и (2^+0), принадлежащих гам-ма- и бета-вибрациям^{/35/}.

Если рассматривать ядро ¹⁷⁶ Hf как неаксиальный ротатор, то согласно уравнениям Давыдова-Чабана ^{/36/}, использун энергии состояний 88,3 кэв (2⁺0), 1340,6 кэв (2⁺2) и 1149 кэв (0⁺), для параметров неаксиальности (γ) и неадиабатичности (μ) можно получить значения: $\gamma = 9.4^{\circ}$; $\mu = 0.26$.

4.3. Состояния с $K^{\pi} = 2^{-}$

На основе совокупности экспериментальных данных было установлено существование состояний 1247,5; 1957; 2470 и 2943 кэв с квантовыми характеристиками I^π = 2⁻. Теория предсказывает первые два октупольных состояния с K = 2 при энергиях 1,2 и 2,0 Мэв (табл. 3, рис. 9).

Состояние 1247 кэв разряжается интенсивным переходом γ 1159 (E1+M2) на уровень 2^+_{π} и слабыми переходами γ 1248 (M2) и у 957,4 (M2+E3) на уровни $0^+_{g,g_1}$ и $4^+_{g,g_2}$, соответственно. Отношение приведенных вероятностей переходов у 1248 и у 957,4, вычисленное в предположении, что у 957,4 является чистым M2-переходом - B(M2; y 1243) B(M2, y 957, 4) = 0,41, - резко отличается от значения, ожидаемого по правилам Алаги: B(L = 2; 22 → 20) : B(L = 2; 22 →40)=14. Известно, что для M2 -компонент разрядка 2⁻² уровней на полосу основного состояния обычно подчиняется правилам Алаги достаточно хорошо. В этом предположении можно сделать заключение. что переход у 957,4 должен содержать интенсивную ЕЗ -компоненту. Если вышесказанное выполняется также для ЕЗ -переходов, то, воспользовавшись правилами Алаги и значениями интенсивностей переходов 1248 (M2) и 957,4 кэв (ЕЗ), следовало бы ожидать для перехода 1159 кэв смесь мультиполей: ≈ 88% E1+ ≈ 2% M2+ ≈ 10% E3 . и для соответству, шего КВК - значение а "≈ 1,6.10⁻³.

Согласно вышенриведенным расчётам (табл. 3) основными двухквазичастичными компонентами состояния 1247,5 кэв являются конфигурации nn [624[↑] - 512[↓]] и pp [514[↑] - 402[↑]]. Переходы 512[↑] ², 624[↑] и 514[↑] ², 402[↑] реализуются в ядрах ¹⁸¹ W ^{/3/} и ¹⁸³ Re ^{/37/} соответственно. В табл. 8 сравниваются парциальные периоды полураспада для этих переходов, а также переходов, разряжающих уровень 1247,5 кэв в¹⁷⁶ Hf, со значениями, рассчитанными по Мошковскому (F_M) и по Нильссону (F_N) с учёто14 парных взаимодействий.

Ротационная полоса состояния 1247,6 кэв. Поскольку более высокие 2⁻-сэстояния разряжаются на уровень 1247,5 кэв (2⁻), естественно ожидать возбуждения и его ротационных уровней 3⁻ и, возможно, 4⁻. Нет сомнений, что уровень 1313 кэв (3⁻) является первым из них. Что касается ротационного состояния 4⁻2, то возможно.

что оно реализуется при энергии 1404 кэв. Возмо кные квантовые характеристики уровня 1404 кэв – $I^{\pi} = 3^{-}$ или 4⁻. Для такого предположения имеются следующие аргументы. 1) Энергия 1404 кэв близка к энергии 1400 кэв, ожидаемой согласно ротационной формуле в адиабатическом приближении для 4⁻2 состояния. 2) Уровень 1404 кэв разряжается на состояния 1247,5 (2⁻) и 1313 кэв (3⁻) переходами 156,8 и 91,3 кэв соответственно, а, возможно, также переходом 1114,4 кэв на уровень 4⁺⁰ в.з. Значение КВК для 156,8 близко к теоретическому для E2 -перехода, а отношение (K:L_{II} : L_{III}) → 7:10:10, приведенное в работе^{-/5/}, не противоречит предположению, что у 91,3 является M1+E2 -переходом с преобладающей E2 -компонентой. В таком случае отношение приведенных вероятностей B(E2; y156,8):B(E2; y91,3) ≈ 6 близко к значению, вычисленному по правилам Алеги для E2 -переходов внутри ротационной полосы с K=2: B(L=2; 42 + 22) / B(L=2; 42 + 32)= 4.6.

Состояния 1957; 2470 и 2943 кэв разряжаются в основном на уровни 1247,5 (2⁻) и 1313 кэв (3⁻). Мультипольности соответствующих переходов и интенсивное заселение этих состояний за счёт бета-распада (\approx 7%) позволяют определить их квантовые характеристики: Iⁿ = 2⁻. В табл. 9 даны отношения приведенных вероятностэй отмеченных *у*-переходов. Во втором столбце находятся значения, вычисленные в предположении, что переходы – типа MI . Такое предположение справедливо для переходов, разряжающих состояния 1957 и 294% кэв, но неверно для уровня 2470 кэв, так как переходу 1222,9 кэв (2⁻ + 2⁻) принадлежит большое значение КВК ($a_{\rm K} = (2,4\pm1,2).10^{-2}$), близкое к теоретическому для мультипольности M3 . По-видимому, этот переход – типа E0+M1+E2. Значение X = B(E0)/B(E2) для перехода 1222,9 кэв в табл. 9 вычислено в предположении, что вся интенсивность гамма-квантов обусловлена компонентой E2 . Из табл. 9 видно удовлетворительное согласие отношений приведенных вероятностей переходов с правилами Алаги для

M1 -переходов в случае разрядки уровней 1957 и 2943 кэв и несоответствие в случае уровня 2470 кэв.

Отношение и тенсивностей гамма-переходов, разряжающих состояние 2470 кэв на уровни 1247,5 (2⁻) и 1313 кэв (3⁻), ближе к значению, ожидаемому иля переходов типа E2 (третий столбец табл. 9). Состояние 2470 кэв разряжается также переходом 1065,8 кэв на уровень 1404 кэв, который, вероятно, является членом с I = 4 ротационной полосы состояния 1247,5 кэв. Значение КВК для у 1065,8 не противоречит предположеник, что его мультипольность типа E2 (рис. 5). Отношение приведенных вероятностей переходов у 1065,8 и у 1222,9 близко к значению $B(E2; 22 \rightarrow 42) / B(E2; 22 \rightarrow 22)$, ожидаемому по правилам Алаги (последний столбец табл. 9).

Имея в виду вышеотмеченные факты, можно сделать следующее заключение: между тем как уровень 1957 кэв является одним из октупольных состояний с К^{*π*} = 2⁻, уровень 2470 кэв по способу разрядки и мультипольности соответствующих переходов имеет свойства бетавибрационного состояния, основанного на октупольном уровне 1247,5 кэв, т.е. является двухфононным состоянием.

4.4. Состояния с $I^{\pi} = 1^{-}$.

При бета-распаде¹⁷⁶ Та возбуждаются состояния 1642; 1721; 2601; и 2920 кэв с квантовыми характеристиками $I^{\pi} = 1^{-}$, разряжающиеся Е1 -переходами на уровни 0⁺ и 2⁺ основной ротационной полосы. В табл. 10 даны обношения приведенных вероятностей этих переходов и сделан вывод о пвантовом числе K . Между тем как состояниям 1642, 2601 и 2920 кэв можно приписать K = 0, для уровня 1721 кэв однозначного заключения о значении K сделать нельзя. Отношение приведенных вероятностей B(E1; y1633)/B(E1; y1720,8)=0,93±0,18 свидетельствует о присутствии компонент с K = 1 и K = 0.

Теория (табл. 3, рис. 9) предсказывает первые два октупольных состояния к K = 0 при энергиях 1,6 и 2,3 Мэв и следующие два двухквазичастичных полюса с K^{π} = 0⁻ на высоте 2,7 и 2,8 Мэв. По тем же расчётам первые два октупольных состояния с K = 1 должны реализоваться при энергиях 1,6 и 1,8 Мэв. Близость энергий первых октупольных состояний с K = 0 и K = 1 будет способствовать их смешиванию. Экспериментальные данные не исключают возможности приписать состоянию с E = 1766 кэв квантовые характеристики I^{π}K = = 2⁻ I . Таким образом, это состояние может принадлежать ротационной полосе состояния 1721 кэв (с K = 1).

При бета-распаде¹⁷⁶ Та возбуждается также состояние 2911 кэв, разряжающееся интенсивными M1 -переходами на уровни 1642 (1⁻) и 1721 кэв (1⁻). Отсутствие параллельных переходов заметной интенсивности на возможные уровни ротационных полос состояний 1642 и 1721 кэв может служить аргументом в пользу того, что наиболее вероятными квантовыми характеристиками уровня 1911 кэз являются I^π = 1⁻ или 0⁻.

Наконец, отметим, что бета-распад на рассмотрэнные состояния 2911 (1⁻), 2920 (1⁻0) и 2943 кэв (2⁻2) выделяется среди остальных самыми низкими значениями log ft (табл. 5). Если принять для разности масс ¹⁷⁶ Та и¹⁷⁶ Нf значение, полученное в работе ^{/8/}, то величины log ft для бета-распада на уровни 2911 (1⁻0); 2920 (1⁻0) и 2943 (2⁻2) кэв близки к значению \leq 6 (см. табл. 5). Столь малые значения могли бы соответствовать β -распаду р514⁺ \rightarrow n 514 \downarrow и свидетельствовать о том, что в отмеченных состояниях присутствуют четырехкназичастичные компоненты типа 0⁻ { р 404 \downarrow - р 514⁺ - n 512⁺ + n 514 \downarrow } 1 2⁻ { р 404 \downarrow + р 514⁺ n 512⁺ - n 514 \downarrow } соответственно.

4.5. Состояния с $I^{\pi} = 1^{+}$

При распаде¹⁷ Та, кроме рассмотренных уже состояний с $K^{\pi} = 0^+$ и 2^+ , наблюдалось возбуждение еще ряда уровней, которым экспериментальные данные также позволяют приписывать положительную чётность. Все они разряжаются преимущественно на уровни 0^+ и 2^+ основной ротационной полосы. В области энергий > 2,2 Мэв заселение этих состояний маловероятно (< 1%) и точность определения КВК соответствующих переходов невелика. Е табл. 11 приводятся состояния, для которых квантовые характеристики $I^{\pi} = 1^+$ являются наиболее вероятными.

Согласно простой сверхтекучей модели в качестве первых двух уровней с $I^{\pi} = 1^{+}$ должны реализоваться двухквазичастичные конфигурации nn[514, -5121]1⁺ (1,6 Мэв) и pp [404+-4027]1⁺ (1,9 Мэв) (рис. 9). Расчёты, проведенные Пятовым и др. в рамках модели, учитывающей, кроме остаточных парных, и спин-спиновые взаимодействия^{/22/}, приводят и аналогичным результатам (табл. 4). Эти конфигурации можно отождествить с уровнями 1862 (1⁺1) и 2044 кэв (1⁺1). Отметим, что дублетное состояние [514, +512†]6⁺ наблюдается при энергии 1335 кэв^{/2/}.

Сравнительно большая заторможенность М1 -переходов, разряжаюших состояние $nn[{:}14+-512t]$ (1862 кэв) на уровни основной ротационной полосы (B(M1)/B(M1)_{s.p.} $\approx 1\cdot10^{-8}$, табл. 4), будет способствовать конкурирующей разрядке на уровень 1340,6 кэв (2⁺2) (компонента $nn[514_{\downarrow} -512_{\downarrow}]$ 13%), что и наблюдается на опыте: ($I_{\gamma 521}/I_{\gamma 1862}$) = = 0,63. Пользуясь волновыми функциями Нильссона для указанных конфигураций, в рамках сверхтекучей модели мы получаем близкое значение

 $(I_{\gamma 521} / I_{\gamma 1862})_{\text{Tecp.}} \approx 2.$

Уровень 1911 гэв (2⁺), разряжающийся Ml -переходами на состояние 2⁺0 g.s., а также на уровни β- и у -вибрационных состояний,

можно интерпретировать как ротационный к состоянию 1862 кэв (1⁻1). С таким предположением находится в согласии экспериментальное отношение приведенных вероятностей переходов на уровни гамма-вибрационной полосы:

$$\frac{B(M1; \ \gamma \ 466,0; \ 2^+ K \rightarrow 3^+ 2)}{B(M1; \ \gamma \ 569,6 \ ; \ 2^+ K \rightarrow 2^+ 2)} = 2,7 \pm 0,7 .$$

По правилам Алаги следует ожидать значения 2 для: K = 1 и 0,5 для K = 2.

Авторы выражают свою благодарность К.Я. Грэмову за ценное обсуждение работы, Ж.Т. Желеву и Г.Н. Флерову за постоянную поддержку и интерес к работе и Н.И. Пятову, В.Г. Соловьеву и Л.А. Малову за полезные замечания и дискуссию, особенно по теорэтической части работы. Авторы рады выразить свою благодарность *N*. Неновой за большую помощь при измерениях и обработке экспериментальных данных.

Литература

- Р. Брода, В. Валюс, И. Звольски, Й. Молнар, Н. Ненов, Э.З. Рындина, В.И. Фоминых, М.И. Фоминых. Тезисы докладов уд совещания по ядерной спектроскопии нейтронодефицитных изотспов и теории деформированных ядер, Дубна, 1-5 июля 1969 г., Преприлт ОИЯИ, 6-4756, Дубна, 1969.
- 2. J. Borggreen, N.J.S. Hansen, J. Pedersen, L. Westgaard, J. Zylicz and S. Bjørnholm. Nucl.Phys., <u>A96</u>, 561 (1967).
- 3. C.M. Lederer, J.M. Hollander and I. Perlman. Table of Isotopes, Sixth Edition, California, 1967.
- 4. J.A. Riehl. Thesis, Washington State University, 1966; J.A. Riehl. Private communication.

- 5. B. Harmatz, T.H. Handley and J.W. Mihelich. Phys.Rev., <u>119</u>,1345 (1960).
- 6. H. Verheul, H.M.W. Booy, J.G.R. Okel and J. Błok. Nucl.Phys., <u>42</u>, 551 (1963).
- 7.G.G. Staehl, N.L. Pool. Bull. Am. Phys. Soc., 9, 7, 718 (1964).
- 8.H.G. Boddendijk, S. Idzenga, G. Kleimeer and H. Verheul. Nucl. Phys., A134, 241 (1969).
- 9. F.M. Bernthal. Thesis, California, Univer., Berkeley, Lawrence Rad. Lab. (UCFL-18651), 1969.
- И. Звольски, Й. Молнар, Н. Ненов, Б. Стычень, Й. Томик, В.И. Фоминых. Тезисы докладов на XVIII совещании по ядерной спектроскопии и структуре атсмного ядра, Рига, 1968, стр. 87; W.I. Fominikh, J. Molnar, N. Nenoff, B. Styczen, J. Zwolsky, Contr. of Inter. Symp.on Nucl.Struc. Dubna, 1968, p.46.
 О. W. M. COCD.
- 11. С.А. Шестопалоза. Изв. АН СССР, сер. физ., <u>25</u>, 1032 (1961).
- В.С. Александрсв, Ф. Дуда, О.И. Елизаров, Г.П. Жуков, Г.И. Забиякин, З. Зайдлер, И. Звольски, Е.Т. Кондрат, З.В. Лысенко, В.И. Приходько, В.Г. Тишин, В.И. Фоминых, М.И. Фоминых, В.М. Цупко-Ситников. Препринт ОИЯИ, 13-4025, Дубна, 1968.
- Т. Вальчак, Е. Киселевски, Я. Стычень, М. Шавловски, Х. Хрынкевич. Препринт ОИЯИ, 13-4025, Дубна, 1968.
- 14. H.I. West, Jr., L.G. Mann, and R.J. Nagle. Phys.Rev., <u>124</u>, 527 (1961).
- 15. V. Hönig. Z. Physik, 225, 327 (1969).
- G.J. Galagher, V.G. Soloviev. Mat.Fys.Skr.Dan.Vid.Selsk., 2, 2 (1962).
- К.М. Жлезнова, А.А. Корнейчук, В.Г. Соловьев, П. Фогель, Г. Юнгклауссен. Препринт ОИЯИ, Е4-4075, Дубна, 1968.
- Л.А. Малов, В.Г. Соловьев, У.М. Файнер. Contr.Int.Symp.on Nucl. Struc., Dubna, 1968, p.78.

- 19. Л.А. Малов, В.Г. Соловьев, У.М. Файнер. ДАН СССР, <u>186</u>, 2, (1969).
- Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин. Препринт ОИЯИ, Р4-3451, Дубна, 1967; Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин,

С.К. Слепнев, М.Г. Гинзбург. Препринт ОИЯИ, Р4-3607, Дубна, 1967.

- 21. А.А. Кулиев, Н.И. Пятов. Препринт ОИЯИ, Р4-3607, Дубна, 1967.
- 22. S.I. Gabrakov, A.A. Kuliev, N.I. Pyatov. Preprint, E4-4774,
 - Dubna, 1969, Preprint, E4-4908, Dubna, 1970.
- 23. H.M.H. Abou-leila, R. Ceuleneer et J. Vanhorenbeeck. Nucl.Phys., <u>A115</u>, 635 (1968).
- 24. D.B. Fossan and B. Herskind. Nucl. Phys., 40, 24 (1963).
- Р.Б. Бегжанов, Д.А. Гладышев, А.А. Исламов, С.Л. Раковицкий.
 Возбужденные состояния ядер, Ташкент, 1967.
- 26. E.L. Church, J. Weneser. Phys. Rev., <u>103</u>, 1035 (1956).
- 27. A. Bohr. Congres Internat. de Physique Nucleaire, 1, Paris, 1964.
- 28. С.Т. Беляев. ЯФ, 4, 671 (1966).
- 29. S.T. Belyaev. Proceedings Ser.Nucl.Structure.Lubna Symp., 1968, v.1, p155, IAEA, Vienna, 1968.
- 30. V.G. Soloviev. Nucl. Phys., 69, 1 (1965).
- 31. А.А. Кулиев, Н.И. Пятов. Препринт ОИЯИ, Р4-3171, Дубна, 1967.
- 32. А.А. Кулиев, Н.И. Пятов. Препринт ОИЯИ, Р4-3576, Дубна, 1967.
- 33. Н.А. Воинова, Б.С. Джелепов. Изобарные ядра с массовым числом А = 182, Ленинград, 1968.
- 34. П.Т. Прокофьев, Г.Л. Резвая. Изв. АН СССР, сер. физ., № 10, 1655 (1969).
- 35, B.S. Dzhelepov and S.A. Shestopalova, Proceedings Ser.Nucl. Structure Dubna Sympos., 1968, v.1, p.39, IAEA, Vienna, 1968.
- 36. A.S. Davydov, A.A. Chaban. Nucl. Phys., 20, 499 (1960).
- 37. А.И. Ахмаджанов, Р. Брода, В. Валюс, И. Звольски, Й. Молнар,
 Э.З. Рындина, Дж. Саломов, А.З. Хрынкевич. Препринт ОИЯИ, Р6-4746,
 Дубна, 1969.

5 мая 1970 года.

Таблица І

Энергия пер. Е. (кав) (ДЕ)	Относите интенсии	ельные зности	~ _K	Принятая ^{а)} мультип.	I пол. (% на рас-
-1($\Gamma_{\rm K} (\Delta \Gamma_{\rm K})$	Lγ. (Δ.Lγ)			пед)
I	2	3	4	5	6
Kx		3500 (800)			
88,35 ⁽⁵⁾	.►310 ⁰)	520 (100)		Е2 ^{в)}	80
9 1,3 ⁽⁰⁾ :	>4(L ₁₁ ; L _m =	5,5) ⁰		E2+(MI) ^{B)}	~0,4
99,6 ^d ,k)	3,3 ⁰⁾				
103,4 ^{0,k)}	2,3 ⁰⁾	<12 ^{r)}			
125,6 ^{0,k)}	14 ⁽⁾	<30 ^r)			
I3I,I ^{б,к)}	2,4 ⁰⁾	« 0,9	>2(+ I)		
I46,7 ⁰⁾	11,5 ⁰⁾	12 (3)	7,2(-1)	MI+E2	~0,6
156,8 ⁵⁾	8 G)	I3 (3) ^{e)}	4,6(-I)	E2	~0,4
158,2 ⁰⁾	12 ⁽⁾	9 (3) ^{e)}	I,O(O [`])	MI	~0,6
175,6 ^{d)}	13 ^{(j})	25 (4)	3 , 9(-I)	MI+E2	0,9
190,4 ^d)	11,5 ⁰⁾	24 (4)	3, 6(-I)	MI+E2	~0,8
201,5 (3)	40 (6)	230 (30)	1,3(-1)	E2 ^{B)}	7
213,0 (5)		24 (4)			~0,6
239,5 (4)	(٥ و	25 (4)	2,7(-I)	MI	0,8
366,5 б,к)	(,4 0)	Ι,8	I,7(-I)		
4I4,8 ^{б,к}	(,35 ⁰⁾	5,5 (25)	4,8(-2)		
466,0 (6)	3,3 O)	38 (7)	6,5(-2)	МІ	I
472,9 (8)	(,85 ⁰⁾	I3 (3)	4,9(-2)	IM	0,3
507,5 (7)	(ک <u>ن</u>	50 ^{e)} (I5)	4,5(-2)	MI	Ι,3
512,0 (7)	ј,1 б)	~30; (~ 14	^{л)})		
520,8 (5)	5,2 0)	100 (15)	3,9(-2)	MI	2,5
532,2 (7)	(1,6 ⁰)	7 (2)	6,4(-2)	MI	0,2
545,6 (7)	1,4 O)	20 (4)	5,3(-2)	MI	0,5

Данные об энергиях переходов и относительных интенсивностях конверсионных электронов и гамма-лучей при распаде 176_{Та}

Продолжение табл. І

 ĭ		2	ζ	<u> </u>	5	6
<u>1</u> 569.6	(7)	ī.4 ⁰⁾	25 (4)	4.2(-2)		0.6
610,2	(7)	I,9 ⁰⁾	48 (8)	3,0(-2)	MI	1,2
615,4	(7) ~	0,35 ⁰)	34 (7)	~7,7(-3)	(EI)	0,85
636,6	(9) ^{к)}		5 (2)			0,12
644,7	(5)	I,3 ⁽⁾	33 (5)	2,9(-2)	MI	0,8
676,5	(9)	0,55 ⁰⁾	I6 (3)	2,5(-2)	MI	0,4
685	(1)		6 (2)			0,15
710,2	(4)	3,6 (6)	180(20)	1,5(-2)	MI	4,5
723	(I) ^{K)}		~ 4			0,1
74I	(I) ^{K)}		~ 3			0 , I
818	(I) ^{K)}		9 (3)	*		0,22
92I,9	(7) ^{K)}	0,35 (6)	27 (6)	9,7(-3)	MI	0,7
936,5	(7)	0,20 (5)	27 (6)	5,5(-3)	£2	0,7
957,4	(7)	0,25 (7)	9 (3)	2,1(-2)	M2+E3	0,25
1022,4	(6)	0,30 (5)	95 (20)	2,4(-3)	EI+M2	2,4
1051	(I)		6 (2)			0,15
1061,0	(7)	0,10 (3)	20 (5)	3,7(-3)	E2	0,5
1065,8	(7)	0,12 (4)	22 (5)	4,I(-3)	E2	0,5
1090,0	(8) ~	0,02	IO (3)	~I,5(-3)	(E2)	0,25
1107,5	(10) ^{K)}	≼ 0,15 ^{r)}	8 (3)	∡ I,4(-2)		0,2
II14 , 4	(8)	≰0,25 ^{r)}	20 (5)	4 9,4(-3)		0,5
1137,7	(5)	0,7 (I)	20 (5)	2,6(-2)	EO+MI+E2	0,5
1150,0	(4)	0,30 (9)	sl.	≽I,6(-I)	EO	0,006

29

.

Продолжение табл. І

<u> </u>	2 3		4	5	6
II55 д) ~(0,I 2I(5) ^{e)}]		E2	0,5
1157 ^{д)}	150(40) ^{e)} 1000(70)	2,2(-3)	MI+E2	3,5
II59 д) 5,0	(S) 840(70) ^{e)}		EI+M2	21
1190,0 (4) 0,9	(2) 147	(18	4,6(-3)	MI	3,7
II99,0 (Ц) ▲0,1	17 ^{r,} 10	(4)			0,25
I20 3,6 (9) ≼0,	17 ¹⁾ 14	(5)			0,35
1222,9 ^{x)} ~1,9)	70(30) ^{é)}	~2,4(-2)	EO+MI+E2	I,8
1224 ³⁾ ~0,9	2,8(3) 200(30) ^e) ²⁹⁰⁽³⁰⁾	~3,6(-3)	EI +M 2	5
1226 ~ 0,0	05			(E2)	0,4
I248 (2)	I	₄ и)			0,35
1252,4(6) 0,32	2 (6) IIO	(10)	2, 2(-3)	E2	2,8
1258 (1) ~0,00	6 13	(3)	~3,3(-3)		0,33
I267,9 (9) 0,4	(I) 43	(7)	4,7(-3)	MI	I.I
I278 (I)	~5				0,12
I290,2 (6) 4 I	,I 55	(7)	≤1, 5(-2)	(EO+MI+E2)	I,4
1292,8 (4) 3	,3 (3) IO		≥I,5(-I)	EO	0,06
1340,5 (5) 0,2	5 (6) I20	(10)	1,6(-3)	E2	3,0
1356,8 (6) 0,1	5 (4.) 75	(10)	I,5(-3)	E2	Ι,9
1380 (I) ~0,0	01 34	(I)	2,5(-3)	(E2)	0,08
I4I9 (I) ^{r)} ≲0,0	03 I 2	(3)	√ 2 (-3)		0,3
I429 (I)	~I				0,025
I45I (I) 0,0	07 (3) I8	(5)	2,9(-3)	MI	0,45
I474 (I) ^{K)} ≤ 0,0	0 3 I5	(4)	∢ I,2(-3)		0,38
I488,5(8) ^{K)} 0,(05 (2) 35	(6)	I,I(-3)		0,88
(I492,5(I,2) ^{K)}	I 4	(5)			0,35
1503,I(8) ^{κ)} 0,3	10 (4) 23	(5)	3,2(-3)	MI	0,58
1537 (I) ^{K)}	0 7	e) 25 (5)			
I54I (I)	٥,٥	- 25 (5)			
I543 (I)					
1553,5 (7) 0,	I2 (3) I4O	(16)	6,4(-4)	EI	3,5

			· · · ·					
I		2			3	4	5	6
1563,2	(8)	0,06	(2)	19	(3)	2,3(-3)	MI	0,48
(1578)	(I)	€0,05		25				
1582,2	(8)	0,35	Ø)	205	(25)	I,3(-3)	(E2)	5,2
1614,8		0,15	G)	47	(6)	2,4(-3)	(MI)	Ι,2
1 620	(I)			17	(3)	0,43		0,43
			(~)	T / 0		100(20) ^{e)}	(EI)	2,5
1632		0,30	(6)	160	(20)	60(20) 4(-3)	(M1)	1,5
I642 , 5	(6)	0,07	(2)	77	(9)	6,8(-4)	ĿЛ	Ι,9
1672 ,3	(7)	0 ,2I	(4)	54	(7)	2,9(-3)	MI	Ι,4
1678,I	(8)	0,04	(I)	45	(6)	6,7(-4)	ЕI	I,I
1695,3	(7)	0,50	(12)	190	(20)	2,0(-3)	MI	4,8
1703,4	(7)	0,11	(3)	55	(6)	I,5(-3)	MI+E2	I,4
1720,8	(8)	~0,08	Ø)	I20	(15)	5,0(-4)	EI	3,0
1765,6	(9)	0,06	(2)	22	(4)	2,0(-3)	MI	0,55
1773 , 7	(8)	0,16	(3)	57	(8)	2,1(-3)	MI	I,4
1822,8	(7)	0,35	(8)	170	(20)	I,5(-3)	MI	4,3
1835,5	(12)	~0,0I		6	(2)	~1,2(-3)	(EI+M2)	0,15
1861,9	(6)	0,32	(6)	160	(20)	I,5(-3)	MI	4,0
1870				~1,5	5			~0,04
1911				41,4	ł			€0,03
1946 (I	.) ^{ĸ)}	0,009)(3)	14	(4)	4,9(-3)		0,3
1948 (1	.) ^{k)}	~0,004	ł	4				Ο,Ι
1955,4	(8)	0,060)(18)	30	(5)	1,5(-3)	MI	0,75
1976,9	(8)	0,05	(1)	28	(4)	I ,3(- 3)	MI	0,71
2044,3	(9)	0,08	(2)	52	(10)	1,2(-3)	MI	1,3
2066	(2)	0,003	5	I	8	I ,3 (-3)		0,04
2160	(2) ^K	, ~0,002	2	-2	2	~7,5(-4)	(E2)	0,05
2192	(2)	0,007	7	9 ((2)	5,9(-4)	E2	0,22
2219	(2)	0,018	3(3)	10	(2)	I,3(-3)	MI	0,25

Продолжение табл. І

Продолжение табл. І

I		2		3	4	5	6
2246	(2) ^{K)}	0,006	(2)	5,0 (I,2)	8,7(-4)	MI	0,12
2258	(2) ^{K)}	~0,0017	7 l				0.05
2 2 63	(2) ^ĸ	~0,002]	~2			0,05
2 279	(2)	0.005		5,6 (I4)	5 5(-4)	(52)	0,14
2283	(2)	0,005		~1,3	2,2(-+)	(EC)	0,03
2306	(2)	0,012	(4)	7 (2)	I,3(-3)	MI	0,18
2316	(2)	0.018	(4)	I8 (6)	8,4(-4)	MI	0,45
2362	(2)	0,006	(2)	7 (2)	6,4(-4)	MI	0,16
2383	(2)	~0.00I		<2			0,05
2 3 9 3	(2)	0.006	(2)	5 (2)	9 (-4)	E2,EI+M2	0,12
2404	(2)	0.028	(5)	2I (4)	I,0(-3)	MI	0,52
(2470)	(2)	Հ 0.005		< 2			
248I	(2)	~ 0.003	(1)	4,4 (I,5)	5,6(-4)	E2,EI+M2	0,I
2512	(2)	0.013	(4)	25 (4)	3,8(-4)	EI	0,63
260I	(2)	0.007	(2)	13 (3)	4,I(-4)	EÏ	0,33
2672	(2)	~ 0.004	(I)	5,3 (1;5)	6 (-4)	MI	0,13
270I	(2)	0.003	(1)	I,8 (5)	I.,3(-3)	MI	0,04
27 3 0	(2) ^{K)}	~0.002		I,5 (4)	-I (-3)		0,038
2745	(2) ^{K)}	~0.002		I,3 (4)			
276I	(2)	~0.002		1,7 (5)	8,9(-4)	MI	0,04
2773	(2)	0.006	(2)	4,6 (I,I)	9,8(-4)	MI	0,II ;;
2777	(2) ^H	() 0.002		I,7 (7)			0,04
2739	(2)	~ 0.004		2,7 (8)	5.8(-4)		0,07
2797	(2)			2,5 (8)	5,0(4)		0,06
2818	(2) ^{ĸ)}	~0.005		~ 2			:
(2822)				~ 2			
2831,4	+(8)	0 ,055	(10)	170 (30)	2,3(-4)	EI	4,3
2855	(2)			~0,6			. 4
2862	(2)	0,003	(I)	3,6 (7)	6. (-4)	MI	0,09

ŝ

Продолжение табл. І

I	2	3	4	5	6
2880 (2) ^K		~1,2	h 3(_h)		0 72
2884 (2)]=0,004	4,8 (9)	4,,)(-+)		Ugic
2890 (2) ^K) 0,003	I,4 (6)			
290I (2) ^K)]	I,2 (6)			
(2911)		~I,5			
2919,5(8)	0,032 (5)	80 (I4)	2,9(-4)	EI	2,0
2939 (2) ^{K)}		0,6 (3)			
2952 (2) ^{K)}		I,0 (4)			
297I (2) ^{K)}		0,4 (2)			
2980 (2) ^{ĸ)}		0,5 (2)			

Примечание:

- а) Согласно схеме распада рис. 9.
- б) Значение заимствовано из работы / 5 /.
- в) Определено по отношению К : L, : L_u : L_m B / 5 /
- г) Вместе с линией другого изотопа.
- д) Значение дается по балансу энергий уровней схемы распада. Положение суммарного пика соответствует в конверсионных и гамма-спектрах значэнию II59,2 ков.
- е) Интенсивность определена по гамма-гамма-совпадениям.
- ж) Значение соответствует положению макслыума сложного пика в конверсионном спектре.
- Значение соответствует положению максимума сложного пика в гамма-спектре.
- и) Значение получено после вычета гамма-линии 175 та.
- к) Переходы, не размещенные в схеме распада.
- л) По совпадениям (у 512)(у 1357).

Задающ. канал	F .	Ir	r	F.,	I	cr 🗌	F	Ire	·
Ег (кэв)	- r	эксп,	схема	-1	эксп.	схема	- Y	эксп.	схема
I	2	3	4	5	6	7	8	9	10
	175,6	4,5	2,7	936,5	5,8	4,8	1614,8	7,4	7,5
	190,4	2,7	3,0	1022,4	16	15 [°]	I 620	3	2,7
	201,5	39	37	1061,0 }	7 /	3,2	1632 [*]	27	26
	239,5	3,5	3,2	1065,8	(,4	3,5	1672,3	≰ 4	∠ I,3
	466,0	5,9	6,I	III4,4	5,0	3,2	1678,I	5,9	7,2
	472,9	I,5	2,1	1137,7	3,2	3,2	1695,3	28	3 0
	507,5)		1159 *	160	I60	1703	3	
	۲±	(29)		1190,0	7,2	10,6	1765,6	3	3,5
88,3	512,0)		1224 [¥]	39	36	1773,4	8,2	9,I
	520,8	12	8,8	1252,4	14	17,5	1822,8	29	27
	545 , 6	5,0	2,9	1267,9	6,9	4,3	1946	3 8	
	569,6	2,4	2,2	1290,2	9,8	ö , 8	1948 J	,0	
	610,2	6,6	7,7	1356,8	11	12	1955,4	5,3	4,8
	615,4	4	3	155 3, 5	24	23	1976,9	4,8	4,5
	644,7	5,4	5 ,3	1582,2	36	33	283 I , 4	25	26
	710,2	25	28	1					
I46 , 7	88,3	I,4	I,9	201,5	~2	3,6	1419	5	4,7
							1620	7	7,3
156,8	88,3	2,I	2,7	1614,8	4,5	4,4	1703,4	4,5	4,2
158,2	1065,8	6,3	5	1159 ^{*}	13	13			
175,6	1553,5	18	16	1642,5	10	8,9			

Данные по гамма-гамма-совпадениям при распаде ¹⁷⁶та

Продолжение табл. 2

I	2	3	4	5	6	7	8	9	IO
	88,3	~ 27	37	610,2	13	12	I 090	7,7	7,9
	466,0	6,2	6,2	644,7	II	8,2	I	12	16
	507,5			936,5	28	24	I∷59 [¥]	57	
201,5	8=	(22)		1022,4	75	75	I1.I9	9,4	8,7
	512,0]			1051	6	4,7	I503,I	9	
	545,6	3,9	3,5	1065,8	6,6	~5,5	I:63,2	10	15
							I€32 [¥]	13	16
239,5	1582,2	17	20	1672,3	3,7	5		•	
466,0	88,3	4 I0	6	1356,8	32	28	201,5	4II	~6,2
507,5+	88,3	2 I		676,5	IQ	II	1356,8	7	
(r)±	20I,5	I 4		1159 *	50				
512,0	610,2	32		1224 [¥]	27	21			
520,8	88 ,3	~14	8,8	1252,4	52	55	1340,5	50	45
545,6	88,3	2,3	2,9	610,2	I4	I 4			
	20I,5	<ii< td=""><td>3,5</td><td>1022,4</td><td>7</td><td>4,3</td><td>I224*</td><td>I6</td><td>9</td></ii<>	3,5	1022,4	7	4,3	I224*	I6	9
610,2	88,3	10,4	7,7	507,5)		10/22 , 4	12	15
	20I,5	17	I2	8=	32		1224 *	33	33
	545 , 6	17	I 4	512,0	J				
615,4	1340,5	20	I5	1252,4	19	19	,		
644,7	88,3	4,9	5,3	1022,4	7	10	1224 *	25	23
	20 I, 5	(6,4)	8,2						
710,2	II59 ^{*}	180	I 80	88,3	31	28			
1022,4	507	II	10	6 IŨ, 2	14	I5	1159 [¥]	52	
	546,5	7,3	6,2	644,7	13	I0,4	I632 [#]	23	20
1061,0	1114,4	~5	~5	1159 [¥]	~I2	I2	1224 *	~5,5	4,4
1065,8									

Продолжение табл. 2

1	2	3	4	5	6	7	8	9	IO
	507,5			676,5	20	16	I224 *	120	
	۲±	40		710,2	I70	I75	1632 [¥]	30	
1159 [*]	512,0			1022,4	4I		1672	IO	
	644,7	10,5		(II59) [¥]	27		1695,3	185	I90
	610,2	~ 6							
1190,0	1632 *	67	67	1720,8	80	80			
I224 [¥]	507,5			545,6	II	9	1159 [¥]	120	
	8=	30	22	610,2	31	33	1503,1	I 4	
	512,0			644,7	23	23	1632 [*]	42	40
1252,4	520,8	38	55	569,6	12	14	614,9	19	19
							I45I	IO	9
1290,2	5 32, 2	I2	6	154 1	8				
I34I, 5	520,8	32	45	569,6	13	II	614,9	21	15
							I45I	II	9
1356,8	466,0	27	28	507,5 / [±] 512,0	~12				

* Сложная линия, см.табл.І и схему распада (рис. Ю).

Структура первых двух однофононных состояний с $\mathcal{K} = 2^+$.

0	,	I-	•,	2	B	ядре	176 _H f
---	---	----	----	---	---	------	--------------------

к ⁷	^Е расч.	^Е эксп.	Структура
2-	I , 2	I , 247	nn 624t 512t 59%; pp 402t 514" 24,6%; nn 633t 521t 2%.
2+	I , 7	I , 340	nn 5121 5101 51,2% ;nn 5144 5.24 13%; nn 6241 6421 7,6% ;nn 5124 5.01 3,5%; pp4021 4114 2,9% ; pp4111 4.14 2,6%
0-	I , 6	I,642	nn 51446337 30% ;nn 5127 6427 8,2% ; pp 54144114 6.8% :nn 6157 5057 6%
1_	I , 6	-	nn6331 5121 57% ; nn 6241 5.44 12%
		I , 72I	pp404+514† 12% ; pp402† 523† 2%
1_	I , 8		nn 514f4044 87,4%; nn 633f 522f 9% nn 624f5144 2,8%;
2-	2,0	I,957	pp514+ 402+ 70,5% ; nn 624+ 512+ 29,5%
2+	2,0		pp402 1 411 + 97% ; nn 512 1 510 1 2%
0-	2,30	-	nn5144 6331 67,8 ;nn5121 6421 10,2% pp5414 4114 4,6% .

•		-			
Энергия уровня (Мэв)	ĸ	Структура состояний	B(MI) B(MI)	Экспери Энергия уровня (Мар)	имент К
I,69	I +	100% nn5141 - 5187	0,001	I,862	I +
2,21	I +	100% pp404↓ - 4021	0,01	2,044	I+
2,59	I+	5% nn512 1 - 512 1	0,013		
		93% nn 6241 - 6331			
2,77	1+	5% nn 512† - 512↓	0,00I	2,404	I +
		50% nn521↓ + 510 †			
2,85	0 +	98% nn 521↓ - 510†	0,056	2,760	0+
2,96	I +	33‰ nn 5I2↓ - 52I↓	0,030		
		48% nn 512† - 512↓			
		3% nn 5I4↓ - 523↓			
		€% nn 503† - 512†			
		3∥ nn 624↑ - 633↑			
		5% nn 521↓ + 510†			
3,07	1+	40% nn5I2↓ - 52I↓	0,006		
		4% nn512† - 512↓			
		52% nn 50 3t - 512 t			
5 , 10	0 +	59% nn514↓ - 503↑	0,004		
3 ,23	0 +	59% nn523↓ - 512 ↑	0,011		

Часть данных с состояниях с I^T = I⁺, полученных в модели с учетом остаточных парных и спин-спиновых взаимодействий/22/

Уровень	Интенсивн	ость переходов а)	заселени; б) уровня	logft ^{B)}
^Е (кэв)	уход.	приход.	E (%)	- 4
0	-	4200 <u>+</u> 800	-	-
88,3	3200 <u>+</u> 700	2700 <u>+</u> 400	_ ·	-
289,8	280 <u>+</u> 40	225 <u>+</u> 45	-	-
II49 , 7	20 <u>+</u> 5	-	0,5	8,6
1226	65 <u>+</u> 15	6 <u>+</u> 2	I,5	8,0
1247,5	860 <u>+</u> 80	520 <u>+</u> 80	8,5	7,2
1293	I4 <u>+</u> 5	-	0,35	8,6
1313	320 <u>+</u> 55	3I0 <u>+</u> 70	-	-
1340,6	236 <u>+</u> 23	I83 <u>+</u> 34	I,3	7,9
1379	69 <u>+</u> 12	I4 <u>+</u> 6	I , 4	8,0
1 404	48 <u>+</u> 20	22 <u>+</u> 8	-	-
I445	96 <u>+</u> 15	63 <u>+</u> 10	-	-
1642	217 <u>+</u> 25	113 <u>+</u> 15	2,5	7,6
1671	260 <u>+</u> 32	57 <u>+</u> 15	5,0	7,0
1703	102 <u>+</u> 15	17 <u>+</u> 7	2,1	7,6
172I	220 <u>+</u> 35	160 <u>+</u> 20	I,6 '	7,7
1766	45 <u>+</u> 6	< 15	I,I	7,9
1818	35 <u>+</u> I0	-	0,9	7,9
I85 3	41 <u>+</u> 7	-	I	7,9
1855	50 <u>+</u> 15	-	I,2	7,9
I862	3 70 <u>+</u> 50	-	9,4	6,8
1911	240 <u>+</u> 30	-	5,9	7,0
1922	72 <u>+</u> 12	68 <u>+</u> 5	-	-
1957	270 <u>+</u> 30	≤ 30	6	7,0
2044 2065	84 <u>+</u> 15 32 <u>+</u> 5	-	2,I 0,9	7,3 7,6

Баланс интенсивностей переходов при распаде ¹⁷⁶та

				•
1	2	3	4	5
2280	15 <u>+</u> 4	-	0,36	8,2
2 3 07	I7 <u>+</u> 4	-	0,43	8,0
2404	39 <u>+</u> 10	-	0,97	7,6
2430	~ 50	-	~I.,3	~7,3
2450	7 <u>+</u> 2	-	0,16	8 , I
2470	2 9 0 <u>+</u> 80	13	7	6,4
248 I	9 <u>+</u> 4	-	0,22	7,7
260I	38 <u>+</u> 7	-	0,95	7,2
2760	7 <u>+</u> 2	-	0,18	7,7
2790	23 <u>+</u> 7	-	0,59	7,2
2862	8,2 <u>+</u> I,8	-	0,2	~7,5
2884	I4 <u>+</u> 4	-	0,36	~7,I
291 I	193 <u>+</u> 25	-	4,8	4 6 , 0
2920	270 <u>+</u> 50	-	6,7	≤ 5 , 9
2943	275 <u>+</u> 45	-	6,7	≤ 5 , 9

Продолжение таблицы 5

а) В единицах, в которых даны значения Ду таблицы I .

- б) За IOO% принято значение 4000, являющееся усредненным значением интенсивностей переходов, приходящих на основное состояние, и интесивности электронного захвата, вычисленного из интенсивности Кх- лучей (в единицах табл.I).
- в) Значения, вычисленные в предположении, что разность масс ^{I76}Ta и ^{I°6}H≠ равна (3050⁺ 380) кэв ^{/8/}.

Таблица б

a)		Энергия у	уровня (кэв)	
	1149,7	I226	1293	1379
ĩĩ	0+	2*	0+	2*
x ₀ d)	0,29 <u>+</u> 0,II	-	'7 <u>+</u> 3	-
_{Х2} б)		≈I,8	_	≤ 35
s ^{o)}	≈I,2	2	≠I	,8
x ⁶)		0,9 <u>+</u> 0,3		I,Ü
s' ⁰⁾	0,90 <u>+</u> 0) _{.9} 45	≤ 0,	,uЗ
$R_2^{(0)B}$	_	≈I,9	-	26 <u>+</u> 9
R4 ^{6)B)}	_	≈6,9	_	11 <u>+</u> 5
20	-	æ0,03		0,04 <u>+</u> 0,0I
Fot/ Fg. 2.	I,1	6	Ι,	02

Экспериментальные значения величин , карактеризующих состояния с К $\tilde{f} = 0^+$ в ядре 1.76 Нf

- а) Определение величины дано в тексте.
- б) Вычисление проведено в предположении, что периходы
 2⁺0 → 2⁺0_{g.s.} являются чистыми В2-переходами. Значения величины Ω_ν(Z,k) для расчетов В(Е0) брались из таблиц работы ^{/25/}, которые вычислены по формулам работы ^{/26/}.
- в) По правилам Алаги: **R₂ =1**,4 ; **R₄ =**2,6.

	Теоретические	значения с К ⁷⁷ = С	величин,) ⁺ в ядре	xapakt 176 _{Hf}	еризудщих состоян	N A
	Пятов /32/			Б	еляев /29/	
рги	я в р(го)8,	a(F O)	Эн	ергия	$p(r_2)(a) = (r_0)^2$	

.

Энергия уровня (Мэв)	B(E2) ⁸	ς (EO))	Энергия уровня (Мэв)	B(E2) ^{a)}	s(EO) ²	Xo
0,91	1,27	0,169	0,156	I,46	5.IO ⁻³	0,14	200
1,28	I,I5	0,184	0,205	1,67	5,10 ⁻²	0,06	8,5
I,58	0,84	0,171	0,24				
~1,8	~0,06	~ -0,050	~0,3+0, 4				
~2,0	0,21	~0,014	~7.10 ⁻³				

а) В одночастичных единицах.

		datte ada					Process sugges	-	
Rano	ы	T1/2	ца У	(B	T 7/2	Coci	ORHKE	(2)	(ه ر
2	уровия (кав)	ypobha (cek)	(K3B)	МУ ЛЬ ТИ ПОЛБ	- (ček)	начальное	конечное	¥.	Ň
181 W 107	365	-(I4,4.I0	365	M2	2,2.I0 ⁻⁵	5/2[512]	9/2 9/2[624]	5,5,10 ²	21
			252	អ្ន	~I,0.I0 ⁻³	5 /2[512]	II/2 9/2[624]	0,I4	0,06
183 Re 75 Re	496	8. IO ⁻⁹	496	M2	I,2.I0 ⁻⁶	9/2[514]	5/2 5/2[402]	I,2.I0 ²	0,4
1			382	EI	8, I. I0 ⁻⁹	9/2[514]	7/2 5/2 [405]	2,1.10 ⁶	ı
176 Hf	I248	4,4.I0 ⁻⁹	I248	M2	2,7.I0 ⁻⁷	2 - 2 r)	0+ 8. 1.	3.I0 ³	II
			1159	EI	4,5.I0 ⁻⁹	2-2	2 + 5 - 5	3, 5, IO ⁷	ł
			957	8	4,3.I0 ⁷	2-2	4 ⁺ 8. 4.	0,5	0,24

а) Основная компонента о) $\tilde{F}_{M^{2}} \frac{1}{T_{4/2}^{4}} \frac{3KCM}{Mounk}$ в) С учетом парного взаимодействия: $F_{N} \cdot \frac{\overline{T}_{4/2}^{4}}{\overline{T}_{4/2}^{4}} Huabc$ г) Структура дана в табле4.

Таблица 9 ных вероятностей переходов

Отношени: приведенных вероятностей переходов, разряжающих состояния $I^{2} = 2^{-}$ на уровни ротационной полосы состояния I247,5 кэв (2⁻2)

	B(MI;2 + 3)	B(E2; 2 + 3	$B(E0; 2^- \rightarrow 2^-)$	B(E2; 2 + 4)
	B(MI;2 → 2)	B(E2; 2 → 2)	$B(E2; 2^- \rightarrow 2^-)$	B(E2; 2 + 2)
1957	0,23	_		-
2470	2,4	2,6	I , 3	0,67
2943	0,39	- ·	-	-
Теория (Алага)	0,5	I,8	-	0,86

Таблица 10

Отношения приведенных вероятностей переходов, разряжающих

состояния с $I^{\ast} = I^{-}$

Энергия уровня (кав)	$B(EI; I^{-}K \rightarrow 2^{+}0)$	к
($B(EI; I^{-}K \rightarrow 0.0)$	
1642	2,I <u>+</u> 0,3	0
1721	0,93 <u>+</u> 0,18	(1)
2601	2,I <u>+</u> 0,6	0
2920	2,3 <u>+</u> 0,6	0
Правила Алаги	2 0,5	o I

44

ı

Таблица II

Значения отношений приведенных вероятностєй переходов, разряжающих состояния с $I^{\widetilde{H}} = I^+$

Энергия уровня	$\frac{B(MI; IK \rightarrow 20)^{a}}{B(MI; IK \rightarrow 00)}$	К
(A3B)	B (NI ; IN 7 00)	and the second se
1862	0,4I <u>+</u> 0,08	I
2044	0,66 <u>+</u> 0,17	I
2307	I,6 <u>+</u> 0,6	(0)
2404	0,9 <u>+</u> 0,4	I
2760	3,5 <u>+</u> I,4	0
2862	I,4 <u>+</u> 0,5	(0)
Правила Алаги	0,5;2	I; 0
2404 2760 2862 Правила Алаги	0,9 <u>+</u> 0,4 3,5 <u>+</u> 1,4 1,4 <u>+</u> 0,5 0,5 ; 2	I 0 (0) I;0

а) Вычислено в предположении, что переходы не содержат примесей мультипольности E2.

Рис. 1. Спектры гамма-лучей ¹⁷⁸ Та , измеренные с помощью 1 – Ge(Li)--детектора 6,5 см3 без поглотителя; 2 – Ge(Li) –детектора 5 см³, поглотитель 5 мм Pb + 1 мм Cd ; 3–Ge(Li) – детектора 33 см³, поглотитель 3 мм Pb + 1 мм Cd .

Рис. 2в. Участки спектров конверсионных электронов. Отдельные участки не связаны между собой.

Рис. За. Слектри гамма-гамма совладений Ge(Li)-Ge(Li) : 1 - с у 88,3 кэв, 2 - с комптоновским фоном вблизи у 88,3 кэв.

Рис. 36. Спектры гамма-гамма совпадений £e(Li) – Ge(Li): 1 – одиночный спектр, 2 – с у 201,5 кэв, 3 – с у 209,5 кэв, А – пик обратного рассеяния.

Рис. Зв. Спектры гамма-гамма-совпадений Ge(Li)-Ge(Li): 1 - су1159 кэв, 2 - су1190 кэв, 3 - с у1224 кэв, 4 - с у1252 кэв, 5 - с у 1340 сэв, 6 - с у 1356 кэв.

Рис. 4. Спектры гамма-гамма-совладений NaJ(Tl)-Ge(Li) с энергетическими участками 1 - 1200 - 1350 кэв, 2 - 1100 - 1250 кэв, 3 - 1450 - 1650 кэв, 4 - 1600 - 1800 кэв.

Рис. Б. Графическсе сравнение КВК на К -оболочке с теоретическими эначениями.

Рис. 6. График Ферми-Кюри позитронного спектра Та.

Рис. 8. Кривые временного анализа.

Рис. 9. Сравнение положения возбужденных уровней в¹⁷⁶Нf с теоретическими расчётам:. 1 , 3 - данные настоящей работы, 2 - данные работы/22/, 4 - данные работы/2/.

