СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ,

P6 - 4868

Т. Морек, Р. Брода, В. Валюсь,Х. Дростэ, В. Нойберт, С. Хойнацки

уровни ²⁰² ро, ²⁰³ ро, ²⁰⁴ ро, ²⁰⁵ ро И ²⁰⁶ ро

P6 - 4868

Т. Морек, Р. Брода, В. Валюсь, Х. Дростэ, В. Нойберт, С. Хойнацки

уровни ²⁰² Ро, ²⁰³ Ро, ²⁰⁴ Ро, ²⁰⁵ Ро И ²⁰⁶ Ро

отериненный институт прерных исследований БИБЛИСТЕКА

1. Введение

Все изотопы астатина являются радиоактивными и распадаются с довольно малым периодом полураспада. Нейтронодефицитные изотопы астатина синтезировались уже давно в реакциях с тяжелыми ионами/1,2,3,4,5,6/. В большинстве случаев был изучен только их a -распад, в результате чего определялись период полураспада данного изотопа и энергия a -перехода. Хотя изотопы астатина распадаются преимущественно путем электронного захвата, для тех из них, у которых массовое число A < 208, не было изучено гамма-излучение, сопровождающее этот процесс.

Самые легкие изотопы полония с возбужденными уровнями, о которых в настоящее время в литературе имеются сведения, - это нечётные изотопы ²⁰⁵ Ро и ²⁰⁷ Ро. Харгровэ и Мартин/7/ обнаружили у этих изотопов изомерные состояния. В результате поиска изомеров у нечётных изотопов Ро нами был найден новый изомер в ядре ²⁰³ Ро /14/.

Более подробная информация имеется об уровнях ядер более тяжелых изотопов полония: 208,209,210,211,212 Ро /8,9,10/. Особый интерес представляет для теоретических исследований ядро 210 Ро, у которого заполнена нейтронная оболочка (N = 126) и только два протона находятся выше заполненной оболочки (Z = 82)/18,19,20,21/. У чётных ядер²⁰⁸ Ро и²¹⁰ Ро были обнаружены уровни 0⁺, 2⁺, 4⁺, 6⁺, 8⁺, которые возникают в результате расщепления мультиплета ($h_{9/2}$)². Они позволяют объяснить высоколежащие изомерные состояния с большим спином в ядрах ²⁰⁷ Ро, 209 Ро и²¹¹ Ро /23,24/.

Целью настоящей работы является исследование гамма-излучения, сопровождающего К -захват более легких изотопов астатина, чтобы получить новые сведения о систематике возбужденных уровней нейтронодефицитных изотопов полония.

2. Эксперимент

Изотопы ²⁰² At и ²⁰³ At были получены в реакци n^{85} Re⁽²² Ne, xn)^{207-x} At. Более тяжелые изотопы, ²⁰⁴ At , ²⁰⁵ At , ²⁰⁶ At , синтезировались в реакции ¹⁹⁷ Au(¹² C, xn) ^{209-x} At .

Мишени облучались на выведенном пучке тяжелых ионов циклотрона У-300. Золотая мишень была изготовлена из тонкой фольги (≈ 2 мг/см²).

Мишень из ¹⁸⁵ Re (85%) приготовлялась путем осаждения слоя из металлического порошка на алюминиевую фольгу толщиной 1,35 мг/см². В этом случае толщина мишени была не больше 3 мг/см².

Мишень обеспечила полное торможение ядер отдачи, но была достаточно тонка для исследования кривых возбуждения и для получения довольно чистых изотопов астатина.

Мишени не подвергались химической обработке. Облученные образцы через 1,5 мин. переносились к детектору. Измерения γ -спектров проводились на Ge(Li) – детекторе объемом 13 см⁹. Спектры электронов внутренней конверсии измерялись охлаждаемым кремниевым детектором с разрешением 7 кэв. К сожалению, в случае ²⁰² At и ²⁰³ At применение этого счётчика оказалось невозможным из-за большого фона от позитронов, обусловленных распадом продуктов облучения алюминиевой подложки тяжелыми ионами.

В случае ²⁰⁴ At магнитным β -спектрометром, работающим непосредственно на пучке тяжелых ионов/15,16/, был измерен электронный спектр.

Для исследования совпадений между у -квантами был использован спектрометр совпадений с разрешающим временем 100 нсек/25/. В качестве детекторов были применены в анализирующем тракте кристалл Ge(Li) (13 см³) и в тракте, где выбирались "окна", кристалл NaI - 2 " × 2". Определение мультипольностей у -переходов было проведено на основании анализа отношений a_K/a_L и сравнения интенсивностей линий в у -спектре и соответствующих линий в спектре электронов внутренней конверсии/26/.

Для определения массового числа образуемых изотопов были измерены функции возбуждения наблюдаемых гамма-линий (рис. 11,12). В случае ²⁰⁴ At и ²⁰⁵ At полученные кривые находятся в согласии с результатами работы Томаса^{/3/}. Функция возбуждения для переходов из распада ²⁰² At ($T_{1/2} = 3$ мин) совпадает с тем, что получается для переходов в дочерних продуктах (²⁰²Bi). Это подтверждает правильность определения массового числа как A = 202. К сожалению, используемый нами метод неприменим к слабым переходам, и поэтому идентифицированное нами число γ -переходов небольшое.

Другим способом идентификации является определение периода полураспада у -линии, например, в случае ²⁰² At и ²⁰⁴ At , период полураспада которых короче, чем более тяжелых соседних ядер.

Построенные нами схемы уровней ядер полония построены на основании баланса интенсивностей и результатов измерений у-у совпадений.

3. Распад ²⁰⁶ Аt

²⁰⁶ At был получен в реакции ¹⁹⁷ Au(¹² C, 3n) ²⁰⁶ At . Небольшое сечение этой реакции из-за близости кулоновского барьера затрудняло измерение, но, с другой стороны, таким образом полученные источники были довольно чистыми по своему изотопному составу.

Определенный нами период полураспада $T_{1/2} = 33\pm 2$ мин. совпадает с периодом полураспада, известным из предыдуших работ/1,24/ по *а* -распаду ²⁰⁶ At . С таким же периодом распадаются все перечисленные в табл. 1 γ -линии.

На основании измеренного кремниевым детектором спектра электронов внутренней конверсии (рис. 3) были определены мультипольности сильнейших линий. Все они оказались Е2 -переходами. Измерения у-у совпа-

Таблица 1 Переходы в ²⁰⁶ Ро

	1062		23	
	1011			
•	960			
	954			
	922	6 ∓ 2		
	731	11±2		
	669	100	100	B 2
	616	7±2		LW
	526			
	476	82±8	83±8	に留
	446	3 <u>+</u> 1		
	396	45.4	43+4	EZ
	385	4 71		
;	276	4		
	255	5±1		M1+E2
	E _Y keV	١ ٧	$\mathbf{I}_{y} + \mathbf{I}_{e}$	Мульт.

дений (рис. 1,2) показали, что 3 основных перехода, т.е. 396, 476, 699 кэв, образуют каскад. Согласие относительных интенсивностей переходов в прямом спектре и спектрах совпадений позволяет установить, что последовательность уровней такая, как показано на рис. 13. Эта схема очень похожа на схемы уровней 208 Ро и 210 Ро . На основании этого сходства мы считаем, что природа этих уровней такая же, как в ядрах 208 Ро и 210 Ро . На основании этого сходства мы считаем, что природа этих уровней такая же, как в ядрах 208 Ро и 210 Ро , т.е. мы имеем дело с переходами между уровнями $6^+ + 4^+$, $4^+ + 2^+$ и $2^+ + 0^+$ расщепленного двухквазичастичного мультиплета. Вероятно, что из-за малой энергии не наблюдалось перехода $8^+ + 6^+$.

4. Распад ²⁰⁴ Аt

 204 Аt был получен в реакции 197 Au (12 C, 5n) 204 At .

Период полураспада этого изотопа, измеренный нами, составляет $T_{1/2} = 9,5\pm1,0$ мин. Это эначение находится в согласии с известным по *a* -распаду/1,2,4/. Предварительные данные о распаде²⁰⁴ At \rightarrow^{204} Po приведены нами в работе/13/.

В у -спектре (рис. 4,5) по кривым возбуждения и периоду полураспада нами найдены 10 переходов, принадлежащих распаду ²⁰⁴At . Энергии этих переходов, их относительные интенсивности и мультипольности показаны в табл. 2.

Измерения у-у совпадений показали, что переходы 426, 516, 682 кэв образуют каскад.

Учитывая их интенсивности, мы построили схему уровней, которая показана на рис. 13. Остальные переходы либо слишком слабы, чтобы их можно было обнаружить в спектре совпадений, либо следуют на уровни с большим временем жизни. Может быть поэтому не наблюдается совпадений довольно сильного перехода 609 кэв с одним из переходов основного каскада. Это одно из свидетельств существования в ²⁰⁴Ро уровня 8 + как самого высокого уровня двухчастичного мультиплета с довольно большим временем жизни.

5. Распад ²⁰² Аt

²⁰² Аt был получен в реакции¹⁸⁵ Re(²² Ne, 5n) ²⁰² At . В у -спектре (рис. 8), измеренном после К -захвата в ядре ²⁰² At , мы обнаружили 4 перехода с $T_{1/2}$ = 3,0±0,5 мин. Определенный нами период полураспада совпадает с известным из предыдущих работ $T_{1/2}$ = 3 мин. Данные об энергиях и интенсивностях наблюдаемых нами переходов помещены в табл. 3. Из-за небольшой интенсивности и небольшого периода полураспада не было возможности измерить спектры совпадений и спектры электронов внутренней конверсии. Можно предполагать, что мы наблюдаем аналогичный случай каскада Е2 переходов между уровнями $6^+, 4^+, 2^+, 0^+$ двухчастичного мультиплета, как у более тяжелых чётных ядер Ро

6. Распад²⁰³Аt

²⁰³Аt был синтезирован в реакции ¹⁸⁵ Re(²² Ne, 4n) ²⁰³ At . ²⁰³ At по данным, полученным при изучении его а-распада, имеет период полураспа-T_{1/2} = 7,4 мин/3/. В зарегистрированном нами у -спектре была да обнаружена только одна относительно сильная линия с Е , = 640+1 кэв с таким же периодом полураспада. Энергия этого перехода очень близка к энергии изомерного М4 -перехода ²⁰³ Ро, известного по нашей предыдущей работе/14/. Маловероятным кажется, что при К -захвате ²⁰³ Аt уровень 13/2+ в ядре 203 Ро. Чтобы получить сведения заселяется о природе у -перехода, найденного в распаде изотопа ²⁰³ At , был измерен спектр электронов внутренней конверсии. Тот факт, что мы на фоновом спектре не наблюдали К -линии этого перехода, свидетельствует о том, что его мультипольность низкая. Учитывая интенсивность у -перехода и эффективность β -спектрометра, в случае M4 -перехода мы должны были бы обнаружить соответствующие линии внутренней конверсии. По расчётам Кислингера и Соренсена/22/ и по систематике уровней ожи-

Таблица 2 Переходы в²⁰⁴ Ро

Ey	329	336	426	489	516	588	609	682	762	842
Ι _γ	5±I	6±I	66 <u>+</u> 5	5 <u>+</u> 1	95 <u>+</u> 9	9 <u>+</u> I	21 <u>+</u> 2	100	5 <u>+</u> I	9 <u>+</u> 2
$I_{\gamma} + I_{e}$			68 <u>+</u> 5		96 <u>+</u> 9		22 <u>+</u> 2	100		
мульт.			E2	:	E2		MI	E2		

Таблица З

Переходы в²⁰² Ро

Ε _γ	443	472	57I	675	
Ι _γ	62 <u>+</u> 7		90 <u>+</u> 9	100	

Таблица 4

дается, что уровень 13/2+ с уменьшением числа нейтронов опускается ниже фононного состояния 9/2-. Экспериментальный результат находился бы в согласии с этими представлениями, если бы в К-захвате заселялся уровень 9/2- и распадался У-переходом на основное состояние 5/2-.

7. Распад ²⁰⁵ Аt

Впервые β -распад ²⁰⁵ At был исследован с использованием источников, полученных при выделении на масс-сепараторе ²⁰⁵ At из продуктов деления урана. Однако период полураспада был в этом случае слишком коротким, чтобы провести подробные исследования. Авторы наблюдали только переход 718 кэв. С другой стороны, известны два у -перехода с энергиями 160 и 707 кэв (измеренные NaI -детектором) с изомерного уровня ²⁰⁵ Ро (650 мксек)/7/.²⁰⁵ Аt в наших условиях был синтезирован в реакции ¹⁹⁷Au(¹²C,4n) ²⁰⁵At . Полученные источники всегда содержали примеси ²⁰⁴ At и ²⁰⁶ At . Период полураспада последнего похож на период полураспада 205 At , так что идентификация у -линии по периоду полураспада была невозможна. Анализ у -спектра проводился по кривым возбуждения. γ -переходы, относящиеся к распаду²⁰⁵ At \rightarrow ²⁰⁵ Po , перечислены в табл. 4. Среди этих переходов нет изомерного перехода 160 кэв. Чтобы убедиться, что наблюдаемый в распаде ²⁰⁵ At переход 707 кэв и наблюдаемый в распаде ²⁰⁵ At переход 718 кэв - одно и то же, мы возбуждали изомер ²⁰⁵ Ро в реакции ¹⁹² Os(¹⁸ O,5n)²⁰⁵ Ро. В измеренном Ge(Li) -детектором спектре присутствовала линия ~718 ков, распадающаяся с T_{1/2} ≈ 1 мсек, что соответствует предлагаемой авторами работы/7/ схеме распада изомера 205 Ро

Проведенные измерения $\gamma - \gamma$ совпадений (рис. 9) показывают, что только переход 311 кэв совпадает с сильным переходом 718 кэв. Измерение совпадений с другими линиями из-за небольшой их интенсивности было невозможно. Мультипольности переходов были определены с помощью спектра электронов внутренней конверсии, измеренного Si -детектором (рис. 10). Предварительная схема уровней ²⁰⁵ Ро показана на рис. 14.

Переходы в²⁰⁵ Ро

	Iy	311	362	449	630	667	718	103 0
: •	Ι _γ	15 <u>+</u> 2	5 <u>+</u> 2	6 <u>+</u> 2	18 <u>+</u> 2	3I <u>+</u> 2	100	9 <u>+</u> 2
	lγ+I _e	22 <u>+</u> 2	6 <u>+</u> 2	7 <u>+</u> 2	19 <u>+</u> 2	31 <u>+</u> 2	100	
	Мульт.	MI	MI+E2	MI	MI	MI+E2	E2	

8. Обсуждение результатов измерения

В настоящее время еще сравнительно мало спектроскопических данных и теоретических расчётов для возбужденных уровней нейтронодефицитных ядер в области Z > 82 и N < 126. Поэтому трудно однозначно объяснить полученные нами результаты измерений. До сих пор были довольно хорошо исследованы схемы уровней ²⁰⁸ Ро и ²¹⁰ Ро /8,21/. Основным результатом этих исследований является обнаружение полос уровней положительной чётности: 0⁺, 2⁺, 4⁺, 6⁺, 8⁺. Переходы между этими уровнями – самые сильные.

Расчёты схемы уровней ²¹⁰ Ро проведены в нескольких работах/18,19,20,21/ на основе оболочечной модели. Изучая ²⁰⁹ Ві, авторы /17/ получили последовательность протонных уровней: $9/2^-$, $7/2^-$ и $13/2^-$. Мы исходили из предположения, что низковозбужденные уровни ²¹⁰ Ро связаны со всеми возможными парными комбинациями этих протонных состояний. Тогда, судя по конфигурации $(h_{9/2})^2$, можно заключить, что самые низкие уровни, уровни со спином 0, 2, 4, 6, 8, – положительной чётности. Вырождение состояний снимается при учёте протон-протонного взаимодействия. Хоффом/21/, Кимом и Расмуссеном/20/, а также Ганасом и др./19/ учитывались разные силы. Все эти расчёты дают довольно

хорошее согласие с экспериментом. В случае 208 Ро экспериментальные данные, а также приблизительные расчёты /8/ показывают качественно такую же ситуацию. На основании этой систематики уровней мы решили предложить схемы уровней четных изотопов полония (см. рис. 13). Переходы с уровней 8+ на 6+ не обнаружены, вероятно, из-за небольшой энергии. Несколько найденных нами переходов не включены в схему. Так как при β -распаде заселяются уровни с большим спином, можно предполагать, что у чётных изотопов астатина основное состояние имеет большой спин. Это в соответствии с правилом Нордгайма. Более сложная ситуация в случае нечетных изотопов полония. Спины основных состояний известны/12/ и отвечают предсказаниям оболочечной модели. Как видно из рис. 14, во всех этих ядрах присутствуют уровни 9/2 - и 13/2 + , энергии которых уменьшаются плавно с уменьшением числа нейтронов. Такое поведение уровней в зависимости от числа нейтронов хорошо описывается моделью со спариванием и квадрупольно-квадрупольным взаимодействием/22,14/. В ядрах ²⁰⁷ Ро[•], ²⁰⁹ Ро[•] и ²¹¹ Ро[•] существуют изомерные состояния с большим спином. Пекер/23,24/ интерпретирует их как трехчастичные состояния, используя двухчастичную структуру уровней соседних чётных изотопов Ро. С помощью этого метода можно объяснить существование изомеров в ²⁰⁷ Ро и ²⁰⁹ Ро , а также высоковозбужденного гипотетического изомера в ²⁰³ Ро , учитывая наличие уровня 8⁺ в чётных изотопах полония. В этих ядрах два протона (h 9/2)² дают максимально возможный вклад в спин изомерного уровня 8.

Спин нечётного нейтрона складывается со спином этой пары, в результате чего мы получаем максимальный спин в случаях ²⁰⁹ Po(17/2-), ²⁰⁷ Po (19/2-) $_{\rm H}$ ²⁰³ Po(21/2-). Последний случай особенно интересен, так как до сих пор неясно: существует ли^{/6/} или не существует^{/5/} второе изомерное состояние ($T_{1/2}$ = 29 мин) в ²⁰³ Po, распадающееся путем испускания а -частиц. Наши результаты по исследованию уровней ²⁰² Po дают повод для поиска этого изомера.

Мы признательны академику Г.Н.Флерову за поддержку и большое внимание к работе.

Авторы благодарят профессора З.Вильгельми за постоянный интерес к работе, доктора Я.Жилича за ценные замечания и группу эксплуатации циклотрона У-300 за обеспечение чёткой работы ускорителя.

Литература

1. R.W.Hoff, F.Asaro, I.Perlman, Journ.Inorg.Nucl.Chem., <u>25</u>, 1303 (1963).

2. W.Treytl, K.Valli. Nucl. Phys., A97, 405 (1963).

3. T.D.Thomas, G.E.Gordon, R.M.Latimer, G.T.Seaborg, Phys. Rev., 126, 1805 (1962).

4. Thoresen, Journ, Inorg, Nucl, Chem., 26, 1341 (1964).

5. E.Tielsch-Cassel, Nucl.Phys., <u>A100</u>, 425 (1967).

Y.Le Beyec, M.Lefort, Arkiv for Fysik, <u>36</u>, 183 (1967).
C.K.Hargrove, W.M.Martin. Canad.Journ. of Phys., <u>40</u>, 964 (1962).
W.Treytl, E.K.Hyde, T.Yamazaki. Nucl.Phys., <u>A117</u>, 481 (1968).
T.Yamazaki, E.Mathias. Phys.Rev., <u>175</u>, 1476 (1968).
S.G.Prussin, J.M.Hollander. Nucl.Phys., <u>A110</u>, 176 (1968).
S.Axtensten, C.M.Olsmats. Arkiv for Fysik, <u>19</u>, 461 (1961).
T.Mopek и др. Препринт ОИЯИ, P6-4494, Дубна, 1969.
T.Mopek и др. Препринт ОИЯИ, P6-4553, Дубна, 1969.
A.K.Alexander et al. Preprint, E6-4578, Dubna, 1969.
R.Woods et al. Phys.Rev.Lett., <u>19</u>, 453 (1967).
S.I.Drozdov. Nucl.Phys., <u>37</u>, 652 (1962).
P.S.Ganas, B.Mc Kellar. Phys.Rev., <u>175</u>, 1409 (1968).
Y.E.Kim, J.O.Rasmussen. Nucl.Phys., <u>47</u>, 184 (1963).

21.R.W.Hoff et al. Phys.Rev., <u>109</u>, 447 (1958).

22. R.A. Sorensen, Nucl. Phys., <u>25</u>, 647 (1961);

L.S.Kisslinger, R.A.Sorensen.Rev.Mod.Phys., <u>35</u>, 853 (1963) 23. Л.К.Пекер. Известия АН СССР, сер.физ., <u>28</u>, 302 (1964). 24. Л.К.Пекер. В кн. "Структура сложных ядер", стр. 319, Атомиздат, 1966

25. Т.Вальчак и др. Препринт ОИЯИ, 13-4025, Дубна, 1968. 26. R.S.Hager, E.C.Seltzer. Nuclear Data, <u>A4</u> 1 (1968).

> Рукопись поступила в издательский отдел 22 декабря 1969 года.

Рис. 1. Ge(Li) гамма-спектр²⁰⁶ At . A,B,C, D – спектры совпадений. Окно выбиралось в тракте с детектором Nal. А – спектр совпадений с у -линией 699 кэв, В – спектр совпадений с комптоновским фоном, С – спектр совпадений с У –линией 476 кэв, D – спектр совпадений с у –линией 396 кэв.

Рис. 3. Спектр электронов внут ренней конверсии ²⁰⁶ At , измеренный кремниевым детектором.

Рис. 4. Ge (Li) у- спектр ²⁰⁴ At . А.В. С. D - спектры совпадений. Окно выбиралось на тракте с детектором NaI. А - спектр совпадений с линией 682 кэв; В - спектр совпадений с комптоновским фоном, С - спектр совпадений с линией 516 кэв, D - спектр совпадений с линией 426 кэв.

18

Рис. 7. Спектр электронов внутренней конверсии ²⁰⁴ At , измеренный кремниевым детектором.

CHANNEL NUMBER

СИАNNEL NUMBER Рис. 9. Ge(Li) у-спектр ²⁰⁸ Ai . A, B - спектры совпадений. Окно выбиралось на тракте с детектором NaI. A - спектр совпадений с линией 718 кэв, B - спектр совпадений с комптоновским фоном.

23

Рис. 13. Схемы уровней чётных изотопов полония.

Рис. 14. Схемы уровней нечётных изотопов полония.