<u>C341.1r</u> 1-369

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

10 /x - 69

P6 - 4597

Е.Левитович, В.Нойберт, С.Хойнацкий, Х.Дростэ, Т.Морек, З.Вильгельми, К.Александер

> 137 m Nd: НОВЫЙ ИЗОМЕР В ИЗОТОНАХ С N = 77

P6 - 4597

¹³⁷ m Nd: НОВЫЙ ИЗОМЕР В ИЗОТОНАХ С N = 77

Левитович Е., Нойберт В., Хойнацкий С., Дростэ Х., Р6-4597 Морек Т., Вильгельми З., Александер К.

^{137 m} Nd : Новый изомер в изотонах с N = 77

В реакциях ¹¹⁹ Sn (²² Ne , 4n)¹³⁷ Nd ,¹²² Sn (²⁰ Ne , 5n) ¹³⁷Nd , ¹²² Sn (²Ne , 7n)¹³⁷ Nd и ¹²⁶ Te (¹⁸ O , 7n)¹³⁷ Nd найден новый изомер с периодом полураспада 1,60±0,15 сек. Идентификация атомного числа проводилась по разнице между энергиями К- и L -электронами у -переходов. Массовое число определялось по функциям возбуждения. При распаде нового изомера наблюдаются следующие у -переходы: 108±1 кзв, 232,8±0,8 кзв (ЕЗ- изомерный переход) и 285±1 кэв. Обсуждается систематика возбужденных состояний в ядрах с числом нейтронов N = 77.

Сообщения Объединенного института ядерных исследований Дубна, 1969

Lewitowicz J., Neubert W., Chojnacki S., Droste Ch., Morek T., Wilhelmi Z., Alexander K. P6-4597

¹³⁷ "Nd : a New Isomeric State in N =77 Isotones

In the reactions ¹¹⁹Sn(²²Ne,4n)¹³⁷Nd, ¹²²Sn(²⁰Ne,5n)¹³⁷Nd, ¹²²Sn(²²Ne,7n)¹³⁷Nd and ¹²⁶Te(¹⁸0,7n)¹³⁷Nd a new isomeric state with a half-life of 1.60+0.15 sec was found. The atomic number was assigned by means of the conversion electron spectrum from the measured difference of K and L electron binding energies. The mass number follows from excitation function measurements. In the decay of the new isomer the following γ -rays were observed: 108+1 keV, 177+1 keV, 232+0.8 keV (E3 -isomeric transition) and 285+1 keV. The systematics of excited states in nuclei with neutron number N =77 is discussed.

Communications of the Joint Institute for Nuclear Research. Dubna, 1969

1. В ведение

В ядрах ${}^{129}_{52}$ Те, ${}^{131}_{54}$ Хе, ${}^{133}_{56}$ Ва и ${}^{135}_{58}$ Се с числом нейтронов N =77 наблюдаются изомерные состояния ${}^{/1,2/}$. Изомерным переходом в первых трех случаях является М4-переход, а в ядре ${}^{135}_{58}$ Се-Е3-переход. По систематике уровней ${}^{/2/}$ можно было бы ожидать, что в ядрах 137 Nd и 139 Sm существуют аналогичные изомерные состояния. Нами были предприняты попытки найти эти изомеры. Целью настоящей работы является исследование нового изомера в ядре 187 Nd , который полностью соответствует изомерному состоянию в ядре 185 Се.

2. Методика эксперимента

Опыты проводились на выведенном пучке циклотрона тяжелых ионов У-300 ОИЯИ на установке, подробно описанной в работе $^{/9/}$. Гаммаспектры измерялись Ge(Li) -детектором, а электроны внутренней конверсии - на магнитном тороидальном β -спектрометре на пучке, параметры которого подробно описываются в работе $^{/4/}$.

3. Экспериментальные результаты

Попытки синтезировать изомер ^{137 m} Nd были предприняты в разных реакциях, в которых должен был образоваться ¹³⁷ Nd : ^{119,122} Sn(^{20,22} Ne,xn)¹³⁷ Nd и Te(¹⁸ 0, xn) Nd. Среди продуктов этих реакций обнаружена новая активность с периодом полураспада Т ½ = 1,60 ± 0,15 сек. В таблице 1

приведены параметры используемых мишеней, при облучении которых появляется новая активность. Во всех случаях наблюдались те же самые γ линии: 108, 177, 233 и 285 кэв (рис. 1). Их относительные интенсивности приведены в табл. 2. Все линии распадаются с тем же самым периодом полураспада ($T_{1/2} = 1,60 \pm 0,15$ сек). Кроме этих линий в гамма-спектре, измеренном в диапазоне энергии от 40 Кэв до 1 Мэв, не наблюдается других линий с тем же периодом полураспада. (Мы не считаем линию 54 Кэв изомера ^{73 m} Ge ($T_{1/2} = 0,5$ сек), образуемого в реакции ⁷³ Ge(n,n') на германиевом счетчике).

Отсутствие 1,6-секундной компоненты в распаде аннигиляционной линии (511 Кэв) указывает на то, что мы имеем дело с изомерным состоянием, разряжающимся испусканием только у -лучей.

Соответствующий спектр электронов внутренней конверсии (рис. 2) данных гамма-переходов был измерен в диапазоне энергии электронов от 40 до 350 кэв в заданных интервалах между импульсами циклотрона. (верхняя часть спектра). Кроме К-и L -линий перехода 233 кэв другие К-и L -линий, соответствующие переходам 108 кэв, 177 кэв и 285кэв, не выделяются. Из-за этого большого фона пришлось проводить временной анализ для каждой величины Но . Спектр короткоживущей активности (Т 1/2 = 1,6 сек) показан в нижней части рис. 2. Этот спектр позволяет точно определить разницу ΔE_{KL} между К-и L-линиями перехода Е _у = 233 кэв. В данном случае получается $\Delta E_{\kappa L}(exp)=37,0\pm0,8$ кэв. Рассчитанные величины для атомов Nd , Pr и Ce составляют: ΔЕ кL(Pr)= = 35,6 кэв; ΔE_{KL} (Nd)= 36,8 кэв $\Delta E_{\kappa L}$ (Ce) = 34,3 кэв. Экспериментальное значение хорошо совпадает с теоретически ожидаемым для атома Nd . Из этого мы можем заключить, что новый изомер в самом деле принадодному изотопу Nd . Чтобы доказать, что изомер имеет меслежит то в изотопе Nd , были измерены функции возбуждения реакций ¹²² Sn(²⁰ Ne, xn)^{142-xn} Nd и ¹¹⁹ Sn(²² Ne, xn)^{141-xn} Nd. Результаты представлены на рис. 4 и 5. Анализ положения максимума сечения образования приводит к выводам о том (см. табл. 3), что мы имеем дело с реакциями ¹²² Sn (²⁰ Ne, 5n)¹³⁷ Nd и ¹¹⁹ Sn (²² Ne, 4n)¹³⁷ Nd или, иначе говоря, новая изомерная активность есть искомый изомер 137 Nd.

Реакция	Mип	енъ			
	Вид	толщина мг см ² 2	степень обогащен.	энергия бо мб ард. ионов (Мэв)	исследован спектр
¹¹⁹ Sn ⁽²² Ne, 4n)	метал. олово ^{II9} Sn	4,5	87%	от 50 до 135	√- спектр
^{I22} Sn(²⁰ Ne, 5n)	металл. олово ^{I22} Sn	6,0	83,3%	от 60 до 155	ў- спектр
^{I22} Sn(²² Ne 7n)	• _#_	3,0	83,3%	138	у -спектр+ спектр кон- версионных электронов
^{I26} Te(^{I8} 0, 7n)	металл. теллур естест.	10	I8 , 7%	от 80 до 120	7 -спектр

Таблица 1 Реакции, в которых образовался ^{137 m} Nd

Таблица 2 Эноргия гамма-переходов и интенсивности гамма-линий

(Кэв)	Iz (%)
I08 ± I	49 ± 2 0
I77 <u>t</u> I	92 ± 10
232,8 ±0,8	100
285 <u>+</u> I	29 ± 6

Экспериментальные данные по идентификации типа реакции

	Комбинация мишень-ион	Число испарившихся нейтронов Х	$\frac{\mathbf{e}_{X}}{X} = \frac{\mathbf{E}_{exc} - \sum_{i}^{X} \mathbf{B}_{in}}{X}$	Идентифицированная реакция
9	¹²² Sn + ²⁰ Ne	4	(II,35 ± I.0)MeV	¹²² Sn (²⁰ Ne, ⁵ n) ¹³⁷ Nd
		5	(6,9 ± 0,8) MeV	
		6	(4,4 ± 0.7) Mev	
	¹¹⁹ Sn + ²² Ne	3	(12,0 ± 1,00) MeV	^{II9} Sn (²² Ne, 4n) ^{I37} Nd
		4	(6,40 ± 0,75) MeV	
		5	(3,5 ± 0,6) MeV	

Рис.2. Спектр конверсионных электронов у -переходов 108,177, 233 и 285 Кэв из реакции ¹²² Sn(²² Ne, 7n) ¹³⁷ Nd при энергии налетающих ионов 138 Мэв. Спектр А измерен в заданных интервалах между импульсами циклотрона. Спектр В измерен по тому же временному циклу, что и у -спектр, приведенный спектр В показывает разницу между первым и вторым спектрами.

Рис.3. Распад изомера Nd , измеренный на К-лчнии гамма-пере да 233 Кэв.

Рис.4. Функция возбуждения реакции ¹¹⁹ Sn(²² Ne, 4n)¹³⁷ Nd . Толщина металлической мишени ¹¹⁹ Sn : 4,5 мгсм⁻².

Рис.5. Функция возбуждения реакции ¹²² Sn (²⁰ Ne, 5n)¹³⁷ Nd . Тюлт щина мишени: 6,0 мгсм⁻².

Рис.6. Предполагаемая схема распада 137 m Nd.

.

Определение мультипольностей переходов приводилось на основе спектра конверсионных электронов. Из анализа спектра конверсионных электронов получаются следующие отношения:

$$(a_{\rm K}/a_{\rm L})_{108} = 2.8 \pm 1.4$$
, $(a_{\rm K}/a_{\rm L+M})_{177} = 3.1 \pm 1.5$,
 $(a_{\rm K}/a_{\rm L+M})_{222,8} = 1.2 \pm 0.2$.

Сравнение этих данных с теоретическими значениями приводит к выводу, что мультипольность перехода $E_{\gamma} = 232,8$ Кэв – ЕЗ, а мультипольность переходов 108 и 177 Кэв – М1, Е2 или смесь обеих мультипольностей. На основе этих данных и по аналогии со структурой изомера ^{135 m} Се мы предлагаем для изомера ^{137 m} Nd схему распада, приведенную на рис.6. На основании систематики уровней $s_{1/2}$ и $d_{3/2}$ в работе ^{/8/} мы приписали у -линию $E_{\gamma} = 177$ Кэв переходу $3/2^+ \rightarrow 1/2^+$.

4. Обсуждение результатов

Для сферических ядер проведенные расчеты, которые учитывают парные корреляции и квадрупольные взаимодействия ^{/9/}, предсказывают в изотонах с N = 77 низколежащие одночастичные уровни $s_{\frac{1}{2}}$, $d_{\frac{3}{2}}$, и $h_{\frac{11}{2}}$. Выше уровня $11/2^-$ по работе ^{/9/} ожидаются однофононные состояния $5/2^+$ и $7/2^+$, построенные на уровнях $s_{\frac{1}{2}}$ и $d_{\frac{3}{2}}$, соответственно. Однако с ростом атомного номера Z энергия уровня $5/2^+$ уменьшается, а энергия уровня $h_{\frac{11}{2}}$ увеличивается. Это приводит к тому, что уже в ядре церия (Z=58) уровни $5/2^+$ и $h_{\frac{11}{2}}$ меняют последовательность, т.е. уровень $h_{\frac{11}{2}}$ находится выше уровня $5/2^+$. Ввиду этого вместо М4-перехода ($h_{\frac{11}{2}} \rightarrow d_{\frac{3}{2}}$),имеющего место в ¹²⁴ Те , ^{'3'} Хе и ¹³³ Ва, в ядрах ¹³⁵ Се и ¹³⁷ Nd мы наблюдаем ЕЗ-переход. По систематике (рис. 7) ожидается подобный случай в ядре ¹³⁹ Sm . Нами были предприняты попытки синтезировать этот изомер в реакциях 124 Te (20 Ne, 5n) 139 Sm и 126 Te (20 Ne, 7n) 189 Sm $^{x/}$.

В диапазоне времен от 5 мсек до 3 сек мы не нашли никаких быстро распадающихся линий. В данном диапазоне времен в реакции ¹²⁰ Te + ²⁰ Ne наблюдаются только те линии, которые принадлежат изомеру ^{137 m} Nd, образованному в реакции ¹²⁶ Te (²⁰ Ne, a 5n)¹³⁷ Nd.

Авторы выражают глубокую благоданрность академику Г.Н. Флерову за поддержку работы, профессору Л.К. Пекеру за обсуждение результатов, группе эксплуатации циклотрона У-300 за четкую работу ускорителя, лаборантке Ю.Юнкер за постоянную помощь при обработке данных.

Литература

- 1. C.M.Lederer, J.M.Hollander, I.Perlman. Tables of Isotopes, John Wiley and Sons, New York, 1967.
- 2. 3. Вильгельми, Х. Дростэ, Е. Левитович, Т. Морек, С. Хойнацкий. Препринт ОИЯИ, Р6-4499, Дубна, 1969.
- 3. В. Нойберт, К.Александер, Х. Роттер, С. Хойнацкий, Х. Дростэ. Препринт ОИЯИ, Р6-4276, Дубна, 1969.
- 4. Z.Wilhelmi, V.S.Alfeev, S.Chojnacki, Ch.Droste, J.Lewitowicz, T.Morek, P.Radecki, K.I.Siomin, J.Srebrny, A.Wojtasiewicz. Preprint E6-4593, Dubna (1969).
- 5. P.S.Hager, E.C.Seltzer. Nuclear Data, A4, 1 (1968).
- 6. G.N.Simonoff, J.M.Alexander. Phys. Rev., <u>133</u>, B93 (1964).
- 7. В. Нойберт, К. Александер. Препринт ОИЯИ Р7-3657, Дубна, 1968.
- 8. R.Arlt, G.Beyer, G.Musiol, G.Pfrepper, H.Strusny. Constributions I Internat. Symposium on Nuclear Structure Dubna, 1968, p.23.
- 9. L.S.Kisslinger and R.A.Sorensen, Revs.Mod.Phys., 35, 853(1963).

Рукопись поступила в издательский отдел

11 июля 1969 года.

x/ Мишени были изготовлены из ¹²⁴ Те со степенью обогащения 88,5% и из ¹²⁶ Те со степенью обогащения 93,5%. Оптимальные энергии налетающих ионов были выбраны на основе измеренной функции возбуждения реакции ¹³⁰ Те (²⁰ Ne.7n) /³/.

Рис.7. Систематика изомерных состояний в ядрах с числом нейтронов N = 77.

Таблица 4						
Отношения	коэффициентов	внутренней	конверсии	для		
Z = 60	по таблицам Х	агера и Сель	тцера ^{/5/}			

Энергия перехода (Кэв)		EI	E2	E3	E4	MI	M 2	M3	M 4
108	K	I,76(-I)	9,8I(-I)	4,25(0)	I,84(+I)	9,8I(-I)	8,30(0)	4,75(+I)	2,65(4)
-	OLK OL	6,7	I,76	0,33	0,08	7,21	4,37	1,79	0,72
177	55 K	4,70(-2)	2,I5(-I)	8,40(-I)	3,23(0)	2,45(-I)	I,44(0)	6,75(0)	3,I5(+I)
-	SINICIAM	6,I	2,62	0,81	0,26	5,9	4,22	2,37	I,42
232,8	LJ.X	2,16(-2)	0,90(-I)	3.2(-I)	I,I2(0)	I,I6(-I)	5,65(-I)	2,30(0)	9,10(0)
	ESKI SIL+M	6.0	3.45	I.32	0.59	6.2	4.70	3.05	I.83