-69

P6 - 4592

Х.Дростэ, В.Нойберт, Т.Морек, З.Вильгельми, С.Хойнацкий, К.Александер

ſ

<u>C341.2r</u>

- 458

ИССЛЕДОВАНИЕ СВОЙСТВ НЕЙТРОНОДЕФИЦИТНЫХ ЯДЕР ЦЕЗИЯ

III часть. Изомерное состояние в ядре¹²³Св

P6 - 4592

¥

Х.Дростэ, В.Нойберт, Т.Морек, З.Вильгельми, С.Хойнацкий, К.Александер

ИССЛЕДОВАНИЕ СВОЙСТВ НЕЙТРОНОДЕФИЦИТНЫХ ЯДЕР ЦЕЗИЯ

III часть. Изомерное состояние в ядре¹²³Сs

Объедійськый институт ядерных всследований БИБЛИСТЕНА

29 25/2 y

1. Введение

Целью настоящей работы явился поиск изомерных состояний в ядре 123 Cs. Возможность существования изомерного (E3)-перехода в этом ядре предсказывают теоретические расчёты/1/. По этим расчётам такой переход связан с наличием отрицательной равновесной деформации основного и низколежащих состояний в ядре 123 Cs. Надо заметить, что имеющиеся экспериментальные данные о существовании отрицательной равновесной деформации ядер в области 50 \leq Z , N \leq 82 весьма ограничены/2,3/.

2. Методика эксперимента

Измерения проводились при помощи Ge(Li) – детектора^{2/2/} и β -спектрометра^{4/4}, работающих на пучке циклотрона тяжелых ионов. Для исследования характеристического рентгеновского К – излучения использовался Nal(Tl) – детектор, также работающий на пучке. Изучение распада изомера^{123 m}Cs осуществлялось при импульсном облучении тонких металлических мишеней из серебра-109 (¹⁰⁹ Ag – 97%) и естественного индия (¹¹⁵ In – 96%).

3. Экспериментальные результаты

При облучении мишени из ¹¹⁵ In ионами ¹² С ($E_c = 82 \text{ Мэв}$) и мишени из ¹⁰⁹ Ag ионами ¹⁸ О ($E_o = 70 \text{ Мэв}$) найдено две быстро распадающихся линии ($T_{1/2} = 1,5-2,0 \text{ сек}$) с $E_y = 63 \text{ кэв и } E_y = 95 \text{ кэв.}$ (рис. 1). Аннигиляционная линия (511 кэв), которая наблюдается в у -слектре, не имеет компоненты с $T_{1/2} \approx 1,5 \text{ сек.}$

Для идентификации массового числа ядра, в котором наблюдаются изомерные переходы, исследовалась (по линии 95 кэв) функция возбуждения (рис. 2). По положению ее максимума для реакции¹⁰⁹ Ад¹⁸ 0, xn)^{127-x}Cs

получаются следующие значения для $\frac{\epsilon_x}{x} = \frac{E_{excit.} - \frac{5}{1 + 1} B_{1n}}{x}$ (см. $^{(5/)}$): x = 3: $\frac{\epsilon_3}{3} = 10,3\pm1,3$ Мэв, x = 4: $\frac{\epsilon_4}{4} = 5,5\pm1,0$ Мэв, x = 5: $\frac{\epsilon_5}{5} = 2,2\pm0,8$ Мэв.

Отсюда следует, что имеет место реакция ¹⁰⁹Ag (¹⁸ O, 4n) ¹²³Cs. Дальнейшим подтверждением этого результата является:

- Ч) Исследование реакции ¹¹⁵ In(¹² C, xn) ¹²⁷ ^x Cs
 Ход функции возбуждения (рис. 3), изученный по линии 95 кэв, совпадает с ходом функции возбуждения для линии 98 кэв, которая связана с β⁺ -распадом основного состояния ядра ¹²³Cs /6/.
- 2) Исследование перекрестных реакций. Изучение реакций Cd(¹²C,xn) Xe, Cd(¹⁰B,xn) I, в которых не наблюдались линии с энергиями 63 и 95 кэв (T_{1/2} = 1,6 сек), подтверждает, что наблюдаемые изомерные состояния не могут возбуждаться в реакциях (HI,pxn) и (HI,axn), приводящих к образованию изотопов¹²¹⁻¹²³ Xe и¹¹⁸⁻¹²⁰ I.

Это означает, что обнаруженное изомерное состояние, по всей вероятно- сти, принадлежит ядру $^{12\,3}\mathrm{Cs}$.

Распад изомерного состояния в ядре ¹²³ Cs был также исследован при помощи β-спектрометра. В спектре электронов внутренней конвер-

4

сии (рис. 4), измеренном в диапазоне от 36 до 154 кэв, найдены линии 57,2±0,4 и 59,5±0,5 кэв; 90,5±0,5 кэв; 94,8±0,6 кэв, которые интерпретируются как L 63 ; K 95,5 ; L 95,5 ; M 95,5 соответственно. Период полураспада, измеренный по линиям L63 ; K 95,5 ; L 95,5 , равен 1,60±0,15 сек; 1,55±0,15 сек; 1,55±0,15 сек соответственно. Это является доказательством того, что оба у – перехода (63 и 95 кэв) связаны с одним и тем же изомерным состоянием. Кривые распада приведены на рис. 5.

Из у - спектра, а также из спектра электронов внутренней конверсии определены отношения интенсивностей:

$$I_{\gamma}(95) / I_{\gamma}(63) = 2,9 \pm 1,0;$$
 $I_{0}\ell(L63) / I_{0}\ell(K95) = 1,6 \pm 0,5$

Для линии 95,5 кэв определено отношение $a_{\rm K} / a_{\rm L} = 2,5 \pm 1,0$. Сравнение экспериментального отношения $a_{\rm K} / a_{\rm L}$ с расчётными величинами (табл.1) приводит к выводу, что переход с энергией 95,5 кэв может иметь мульти-польность М1+E2; E2; M3. Другие возможности мы исключили, исходя из величины отношения $a_{\rm K} / a_{\rm L}$, либо из эначений времен жизни (табл. 1).

Таблица 1

Теоретические значения отношений а_к / а_L для линии 95 кэв и коэффициентов внутренней конверсии а_L для линии 63 кэв взяты из/7/. Однопротонные времена жизни Т_{1/2} (s.p.), по оцёнкам Вайскопфа, взяты из/8/

Ey		E1	E2	E3	. E4	M1	M2	M3	M4
05.5	a _k /a _L	7,4	2,2	0,5	0,1	7,5	4,8	2,1	0,9
95,5 кэв	Т _{,%} (sp)	2,4.10 ⁻⁷	6 . 10 ⁻⁷	0,7	7,10 ⁵	1,2.10 ⁻¹¹	1,4.10 ⁻⁶	17	2,3.10 ⁷
	a _L	0,09	4,2	181	5000	0,39	10,1	2 66	6500
498 Кэв	T ₁₅ (sp)	5,5,10-7	1,4.10 ⁻⁶	1,4	1,5.10 ⁶	2, 1, 10 ⁻¹¹	2,4.10 ⁻⁶	46	8,8,10 ⁷

На основании отношения интенсивностей у -лучей и электронов конверсии были сделаны оценки коэффициента внутренней конверсии а_L для перехода с энергией 63 кэв (см. табл. 2). Теоретические величины коэффициентов приведены в табл. 1.

Габлица	2
---------	---

Мультипольность перехода 95 кэв	a _L (63)	Мультипольность перехода 63 кэв	Ι _{κχ} /Ι _γ (95)	
M1+E2 или E2	2-10	E1+M2, M2	3,4 -13,3	
		M1 + E2 , E2	2,0 -2,9	
MB	100-420	E3	55	
		MB	130	

Для ограничения возможного набора мультипольностей изучаемых переходов было измерено рентгеновское К –излучение (рис. 6) и определено отношение интенсивности К Х –лучей к линии 95 кэв (I_{KX}/I_{γ} (95) = 2,5). Сравнение полученного результата с расчётными величинами I_{KX}/I_{γ} (95) (табл. 2) приводит к выводу, что переходы 63 и 95 кэв имеют мультипольность M1 + E2 (или E2). Максимальная примесь излучения M1 может достигнуть ~ 60%. Небольшая энергия переходов и в связи с этим невозможность наблюдения (при помощи нашей аппаратуры) линии K63 затрудняет более точное определение мультипольности переходов.

Заметим, что в спектрах, которые мы исследовали в диапазоне от 40 кэв до 2 Мэв, не наблюдалось других линий, кроме 63 и 95 кэв.

4. Обсуждение результатов

Расчёты Д.Арсеньева, А.Собичевского и В.Соловьева^{/1/} предсказывают спин I^{*n*} = 5/2⁺ для основного состояния ядра¹²⁸ Св и I^{*n*} = 11/2⁻ для первого возбужденного состояния ($E_{exo} = 50$ кэв); оба эти состояния имеют отрицательную деформацию $\epsilon_0 \approx -0.25$. Следовательно, согласно теории ожидается изомерный переход типа E3(11/2⁻ + 5/2⁺). Экспериментальные данные говорят о существовании в ядре¹²³ Св изомерного состояния с Т₁₅ = 1,6 сек и двух γ – переходов типа M1+E2 (или E2). Даже если бы наблюдаемые нами γ –переходы имели мультипольность E2 , то, по оценкам Вайскопфа (см. табл. 1), время жизни должно было бы быть порядка 10-6 сек. Это может означать, что существует не наблюдаемый нами у -переход, который определяет время жизни. Его энергия должна быть < 40 кэв. Экспериментальное значение периода полураспада находится в согласии с переходом типа E3.

Другой возможностью является существование запрета порядка 10 ⁶ х. Возможно, что он связан с изменением формы ядра.

Однозначное решение вопроса о природе обнаруженного изомерного состояния требует дополнительных экспериментов.

В заключение авторы выражают благодарность академику Г.Н.Флерову за постоянный интерес к работе, проф. В.Г.Соловьеву, Д.А.Арсеньеву, А.Собичевскому, Л.А.Малову за обсуждение результатов, группе эксплуатации циклотрона за обеспечение хорошей работы ускорителя У-300 и У.Хагеманну за измерение спектра с помощью Nai (Ti) - детектора.

Литература

- 1. D.A.Arseniev, A.Sobiczewski, V.G.Soloviev. Nucl. Phys., <u>A126</u>, 15 (1969).
- 2. K.F.Alexander, W.Neubert, H.Rotter, S.Chojnacki, Ch.Droste, T.Morek, Preprint. E6-4278, Dubna, 1969.
- 3. J.M.D'Auria, H.Bakhru, Phys.Rev., <u>172</u>, 1176 (1968).
- 4. Z.Wilhelmi et al. Preprint E6-4593, Dubna, 1969.
- 5. G.N.Simonoff, J.M.Alexander. Phys.Rev., <u>133</u>, B93 (1964); В.Нойберт, К.Александер. Препринт ОИЯИ, Р7-3657, Дубна, 1968.
- 6. I.L.Preiss, H.Bakhru, J.M.D'Auria, A.C.Li. Arkiv för Fysik, <u>36</u>, 241 (1966).
- 7. R.S.Hager, E.C.Seltzer, Nuclear Data, A4, I (1968).
- 8. Л.А.Слив. Гамма-лучи. Из. АН СССР, 1961.

Рукопись поступила в издательский отдел 7 июля 1969 года.

Рис. 2. Функции возбуждения для реакций ¹⁰⁹Ag (¹⁸ 0, xn)^{127-x} Cs, измеренные по линиям 95 кэв (^{123 m}Cs) и 82 кэв (^{122 m}Cs).

8

Рис. 3. Функция возбуждения для реакции¹¹⁵ ln⁴²C, xn^{127-x}Cs. измеренные по линиям 352 кэв (¹²⁴Cs), 95 кэв (^{123 m}Cs) и 98 кэв (¹²³ Cs). Линия 98 кэв связана с β+ -распадом основного состояния ядра¹²³ Cs /6/.

10

Рис. 5. Кривые распада, измеренные по линиям L63 , K95 , L95 . Реакция — ¹¹⁵ In(¹²C, 4n)^{23 m} Cs .

Рис. 6. Низкоэнергетическая часть у -спектра, исследованная при помощи Nal(Tl) -детектора. Реакция -¹¹⁵ln(¹⁹C, 4n)^{123 m} Cs.