13/x-69

P6 - 4585

В.Куш, Х.Дростэ, Т.Морек, С.Хойнацки, И.И.Чубуркова

СПЕКТР ЭЛЕКТРОНОВ КОНВЕРСИИ ИЗ РАСПАДА ²⁰⁴ Ро ПУТЕМ ЭЛЕКТРОННОГО ЗАХВАТА

P6 - 4585

В.Куш, Х.Дростэ, Т.Морек, С.Хойнацки, И.И.Чубуркова

ţ.

СПЕКТР ЭЛЕКТРОНОВ КОНВЕРСИИ Из распада ²⁰⁴ ро путем электронного захвата

Направлено в ЯФ

Объединсканий институт Пасренах исследований БИБЛИОТЕКА

7962/2 np.

Введение

Полные схемы распада легких изотопов полония известны лишь для нескольких случаев, что объясняется трудностями синтеба и короткими временами жизни изотопов, быстро уменьшающимися по мере уменьшения массового числа.

Изотопы полония с массовыми числами меньше 208 в основном распадаются путем электронного захвата, однако, при переходе к более легким изотопам начинает расти вклад альфа-распада, а у изотопов с массовыми числами меньше 200 альфа-распад даже преобладает.

С точки зрения времени жизни для спектрометрических исследований наиболее удобна группа изотопов с массовыми числами 207-204, периоды полураспада которых укладываются в интервале 9.0д-1.5ч.

Распад ²⁰⁷ Ро (Т 1/2 = 5,7 ч) исследован в работе ^{/1/}, где на основании гамма-спектров и спектров электронов конверсии определена схема уровней ²⁰⁷ Bi.

Распад ²⁰⁶ Ро (Т ½ = 9д) путем электронного захвата исследован в ^{/2/} и ^{/3/}. Полученные экспериментальные данные позволили авторам предложить схему уровней ²⁰⁶ Ві.

Схема распада ²⁰⁵Ро изучена слабо. Известно, что время жизни этого изотопа равно 1,5 ч, а альфа-вилка составляет 0.074% ^{/4/}.

<u>Результаты</u>

Недавно опубликованы первые данные о распаде 3,8-часового ²⁰⁴ Ро путем электронного захвата. Куш и Чубуркова ^{/5/} измерили спектр гамма-лучей с помощью германиевого детектора и идентифицировали 18 линий.

В настоящей работе продолжены исследования схемы уровней $^{204}\,B_i$. Измерены спектры электронов конверсии с целью определения мультипольности переходов.

Эксперимент

Изотоп ²⁰⁴ Ро получался как и в прежнем эксперименте $^{/5/}$: золотая фольга толшиной 10 мкм облучалась ионами ¹⁵ N с энергией 80 мэв на ускорителе тяжелых ионов ОИЯИ. Время облучения 5 часов, ток ионов – 1 мка. В реакции ¹⁹⁷Au(¹⁵N, 4n) ²⁰⁸ Rn получался изотоп ²⁰⁸ Rn , который с временем жизни 23 мин. распадался до ²⁰⁴ Ро.

Полоний отделялся от облученного золота соосаждением его с элементарным теллуром. После растворения туллура он вновь осаждался сернистым газом из 6N HCl , а полоний оставался в растворе. В последней стадии полоний методом внутреннего электролиза выделялся на серебре из 0,1 нормального солянокислого раствора при температуре 70-80°C.

Спектр электронов конверсии измерялся с помощью безжелезного тороидального магнитного спектрометра со светосилой 2% и разрешающей способностью 1% (при размерах источника диаметром 15 мм)^{/6/}. Наши экспериментальные данные получены в трех облучениях. На рис. 1 и 2 показаны спектры электронов конверсии, измеренные в первом и втором облучениях. В третьем облучении, целью которого явилось определение интенсивности высокоэнергетических линий, удалось измерить только отношение интенсивности линий К884 и К270.

Для оценки интенсивности линий K1016 и K1040 использовались результаты контрольных измерений, проводившихся с помощью полупроводникового детектора.

В таблице 1 представлены результаты всех измерений: в столбце I, II, III даются данные, полученные с помощью магнитного спектрометра, в IV – с помощью полупроводникового детектора. I_е означает средние, относительные интенсивности линии К, определенные на основании данных серии I и II. Для последних трех линий К интенсивность определена на основании серии IV. I_y означает относительные интенсивности гамма-линий, опубликованные в работе ^{/5/}.

Так как для большинства переходов удалось измерить с удовлетворительной точностью только интенсивности линий К, определение коэффициентов конверсии с оболочки К являлось очень существенным для идентификации мультипольностей.

Отношения интенсивности K/L , измеренные для некоторых переходов, помогли в нормировке I_e/I_γ к теоретическим кривым для коэффициентов конверсии с оболочки К . Таблица II указывает отношение K/L для пяти переходов, включая известные переходы 375 кэв в ²⁰⁴ Pb и 406 кэв в ²⁰⁷ Bi , которые проанализированы для проверки правильности обработки данных.

Для перехода 375 кэв с мультипольностью Е2 мы получили K/L = 2,3+0,4 (2,4+0,4, согласно данным Фрича и Холландера /7/) и для

Рис.2. Высокоэнергетическая часть спектра электронов конверсии из распада $^{\rm 204}\,P_0.$

Таблица І

Результаты измерений интенсивности линии конверсии всех серий (1, II, III, IV). I_с - средние относительные интенсивности линии К, I_у -относительные интенсивности гамма-линии

Ee		I	I	Ī	ĪV	Ie	Iĭ	Ie/I	εĸ
31.0	K 121,5	0,89				0. 89	3.3	0,27	<u>5.</u> 4
45.8	K136.3	17.90		14.10	16.6		27.1		
105.8	L 122.2	0.29	0.29						
115.0	K205.5	0.27	0.32			0.30	10.5	0.029	5.7×10 ⁻¹
120,2	L1366	1.00	1.00		1.2				
132.7	N136.7	0.39							
179.5	к270.0	<u>1</u> ,57		<u>1</u> .57	1.57	1.57	687	0.023	4.6×10 ⁻¹
244.0	K304.5	0.17				0.17	11.0	Q015	2,9 × 10-1
0.055	K316.5	025			0.34	0.25	13.3	0,019	3.7× 10 ⁻¹
253.6	L270.0	0.33			0.28				
266.4	N270.4	Q096							
287.8	K375,0	0.252							
315.0	K 405.5	0.200							
336.2	K426.7	0.037	0.042			0.040	7.7	0,051	1.0×10 ⁻¹
359.5	L374.7	0.110	0.238						
370.9	M374.7	0.046	0,092						
<u> </u>	L406.0	0.034	0,037						
402.8	M406.8		0.014						
410.1	L420,5		0.020						
424.0	M428		0.014						
435	L 451		0.029						
444.5	K.535.0	0.14	0.183		0, 15	0.1 6	.32.0	5.0×10	1.0×10 ⁻¹
518.3	L 534.7		0.041						
532	N 536		0.023						
588.3	K 679.3		0.057		0.06	0.06	23.2	2.8× 10 ⁻³	5.6×10 ⁻²
652.7	K742,7		0.143						
662.6	L679.0		0.040						
	K 884			0.013	0.015	0.14	74.0	1.9*10-4	3.8×10 ⁻³
	K 1016				0,012	0.11	50.0	2.2 - 10-4	4.5 × 10 ⁻³
	K 1040				0,009	0,08	25.6	3.2*10-4	6.5 * 10 - 3

Таблица II Отношение К/L для пяти переходов

THE R. L. L. J. Comm. P. Letters and

Εγ	d1	dz	حع	β1	βz	<i>B</i> 3
121 8	5,8	0.20	001	5.5	2.5	0.50
121,0				3.1±1.8		
2700	5.9	1.3	0.45	5.6	38	2.0
270,0				4,8±1.0		
27/0	6.0	2.2	0. <i>8</i> 0	5.6	4.2	2.7
374.9		2,3±0,3				
1057	6.0	2.4	0.95	5.6	4.3	2.8
405.7				5.9±1.0		
5340	6.0	3.2	1.6	5.6	4.6	3.4
				4.5±1,3		

8

перехода 406 кэв $K/L = 5,9 \pm 1,0$ (5,7, согласно данным Арбмана и др. $^{/1/}$).

Нормировка I_e/I_γ проводилась исходя из данных для сильного перехода 270 кэв. Величины $K/L = 4,8 \pm 1,0$ и $K/M = 16 \pm 5$ указыванот на мультипольность M1.

Последняя строчка таблицы I дает величины коэффициентов конверсии ϵ_k , полученные из нормировки I_e/I_y на основе этой информации.

На рис. З представлены кривые ϵ_k в функции энергии для мультипольности E1, E2, E3, M1 и M2 по данным Слива и Банда ^{/8/} для Z = 83 и нанесены результаты из таблицы 1 (крестики). Источник, приготовленный для измерений второй серии, был использован для повторного измерения гамма-спектра. Коэффициенты конверсии, полученные на основе этого спектра, тоже представлены на рис. 3 (кружочки).

Обсуждение результатов

Слабый переход 121,5 кэв определен как М1. Величина $K/L = 3,1 \pm +1,2$ могла бы указывать на мультипольность М2. Однако в этом случае ϵ_k должно быть в 4,4 раза больше, а линия М – в 3 раза сильнее, чем К. В полученном спектре линия М вообще не наблюдается.

Переход 136,6 кэв требует обсуждения, так как K/L = 17,9 в три раза превышает наибольшую из величин K/L, данную теорией. Казалось разумным подозревать существование неидентифицированного перехода, L линия которого перекрывается с линией K136,6. Этот мог бы быть переход 62,4 кэв в свинце или 61,9 в висмуте.

Целью повторного измерения спектра гамма-лучей являлось также исследование низкоэнергетических линий.

Действительно, мы обнаружили гамма-линию с энергией 63 ±1 кэв и с временем жизни 4±2 часа. Этот переход должен характеризоваться сильной конверсией и его L-линия должна перекрываться с K136,6, а М линия – с группой линий Оже с энергией 58,3 кэв.

Интенсивность этой группы Оже-линий (KL₁L₁ , KL₁L_{II}, KL_{II} , L_{II}) должна быть, по расчетам ^{/9/}, в 1,21 раза больше, чем следующей группы (KL₁ L_{II}, KL_{II} , L_{II}), энергия которой в спектре определена как 61,3 кэв.

Измеренное отношение интенсивности обеих групп (3,44) свидетельствует о значительном вкладе линии М63.

Предположение, что переход 136,6 кэв является переходом М1 с K/L = 5,5 и что отношение интенсивностей обеих групп Оже равно 1,2 приводит к выводам: линия электронов конверсии 45,8 кэв с интенсивностью 17,9 является суммой К136,6 и L 63 с интенсивностями 5,5 и 12,4; линия 58,3 кэв включает линию Оже и M63 с интенсивностями 1,0 и 1,9.

В результате получаем K/M = 14,1 и $\epsilon_k = 4,0$. Обе величины близки к теоретическим значениям для мультипольности M1 (9,6 и 3,3).

Аналогичное рассуждение в предположении мультипольности E2 (K/L = 0,27) приводит к величинам K/M = 0,70, ϵ_k = 0,20 при теоретических значениях 0,35 и 0,32.

Исходя из остальных мультипольностей получаются величины К/М и є_к, расходящиеся с теоретическими данными.

Коэффициент конверсии є перехода 205,5 кэв указывает на мультипольность ЕЗ или М1. Однако отсутствие сильной линии L исклю-чает ЕЗ.

Мутипольность перехода 270 кэв определена как M1 на основании $K/L = 4.8 \pm 0.5$ и $K/M = 16 \pm 5$.

Слабые переходы 306 и 317 кэв по значениям ϵ_k должны быть переходами M1.

Для перехода 426,7 кэв измерены линии конверсии K , L и M. Линия K426,7 перекрывается с линией K422 ²⁰⁴ Pb , вклад которой определен по отношению интенсивности K375/K422 с использованием данны Фрича и Холландера ^{/7/}. Коэффициент конверсии $\epsilon_k = (1,0\pm0,4)$. 10^{-1} и K/M = 3,0 ± 1,2 указывает на мультипольность E3, величина K/L = = 2,1 ± 0,8 (незначительно больше чем для E3) соответствует мультипольности E2.

Переход 535,0 кэв на основании $K/L = 4,5 \pm 1,3$ и $K/M = 8 \pm 4$ может быть переходом M2 или M1. ϵ_k указывает на M1. Переход 679,3 кэв на основании $\epsilon_k = (5,6 \pm 1,7) \cdot 10^{-2}$ определен как M1.

Линии K884, K1016, K1040, измеренные с помощью полупроводникового детектора, пронормированы по интенсивности к линии K270.

При оценке этих данных надо учесть гот факт, что пробег электрона с энергией 1 мэв в кремнии (1,7 мм) был несколько больше толщины чувствительного слоя нашего детектора (1,4 + 0,1 мм).

В связи с этим надо считать, что три последние измерения могут давать заниженные значения интенсивности (< 20%).

В таблице III даются мультипольности переходов, интенсивность линий электронов конверсии, интенсивности гамма-линий и полные интенсивности переходов.

Авторы выражают глубокую благодарность академику Г.Н. Флерову за предоставление условий для выполнения этой работы и за постоянный интерес к ней.

Литература

1. E. Arbman, J.Burde, T. R.Gerholm. Arkiv for Fysik, 13, 501(1958). 2. A. Stoner, Univ.Calif.Rad.Lab.Report. UCRL-3471 (1956).

- 3. E. Arbman, P.A. Tove. Arkiv for Fysik, 13, 61 (1958).
- 4. D.G. Karraker, A.Ghiorso, D.H.Templeton, Phys.Rev. 83, 391 (1955).
- 5. W. Kusch, I.I. Chuburkova. Acta Phys. Polonica 35, 879 (1969).
- Z.Wilhelmi, V.C.Alfeev, S.Chojnacki. Ch.Droste, J.Lewitowicz, T.Morek, P.Radecki, K.J.Siomin, J.Srebrny, A.Wojtasiewicz. Preprint JINR E6-4593, Dubna, 1969.
- 7. A.R.Fritsch, J.M.Hollander, J.Inorg. and Nucl.Chem., 6, 165 (1958).
- Я. А. Слив, И.М. Банд. Габлицы коэффициентов внутренней конверсии у -излучений. Изд-во АН СССР, 1956.
- 9. A.H.Wapstra, G.J.Nijgh, R.van Lieshout, Nuclear Spectroscopy Tables, North-Holland Pub.Comp., 1959.

Рукопись поступила в издательский отдел З июля 1969 года.

Таблица III

Полные интенсивности переходов определены на

.....

основе измеренных мультипольностей

Εð		Iκ	IL	Im	Iχ	$I\tau$
121.5	Mł	17.8	5,8		3.3	26.9
136.6	MI	110.0	20.0	7.8	27.f	164.9
	E2	5.8	20.0	7.8	27.1	60.7
205.5	MI	6.0	~1.0		10.5	17.5
270.0	MI	31.4	6.6	2.0	68.7	108.7
304.5	M1	3.4	~0,5		11.0	14.9
316.5	M1	5.0	~1.0		13,3	19.3
426.7	E3(E2)	8.0	4.0	0.2	7.7	19.9
535.0	M1	3.2	0.8	0.4	32.0	36.4
679.3	M1	1.2			23.2	24.4
884	E3(E2)	0.3			74.0	74.3
1016	E2	0.2			50.0	50.2
1040	M1(E3)	0,2			25.6	25.8