С 341.25 Д-758

11/14-69

P6 - 4539

Х.Дростэ, В.Нойберт, Т.Морек, С.Хойнацкий, З.Вильгельми, К.Александер

£

ИССЛЕДОВАНИЕ СВОЙСТВ НЕЙТРОНОДЕФИЦИТНЫХ ЯДЕР ЦЕЗИЯ

Часть I Новые изотопы ¹²² Св и ¹²⁴ Св Х.Дростэ, В.Нойберт, Т.Морек, С.Хойнацкий, З.Вильгельми, К.Александер

ИССЛЕДОВАНИЕ СВОЙСТВ НЕЙТРОНОДЕФИЦИТНЫХ ЯДЕР ЦЕЗИЯ

Часть I Новые изотопы 122 Св и 124 Св

> OGDERHAGENMIAN KUCHUNYA LAOPELIK BECRONOSITUN BATLINICA TEXTA

7346/, yp.

Введение

Целью работы являлось дальнейшее исследование ядер в области 50 < Z, N < 82, где теоретически / 1-3/ предусматривается появление деформации. Как показали авторы /3/, в некоторых случаях в этой области можно ожидать наличия отрицательных деформаций для основных и низколежащих состояний. В ядрах ¹²⁰⁻¹²⁴ Сs , согласно/3/, существование отрицательной деформации может привести к образованию изомеров. В связи с этим были исследованы нейтронодефицитные изотопы цезия ¹²⁰⁻¹²⁴ Сs , у которых ожидается образование низковозбужденных изомерных уровней с большим спином.

В настоящей работе (1 часть) представлены данные о распаде до сих пор не изучавшихся изотопов ¹²⁰Cs, ¹²²Cs и ¹²⁴Cs. Во второй и третьей частях статьи будут опубликованы результаты исследований изомерного состояния ядра ¹²²Cs ($T_{1/2} = 0.35$ сек, $E_{\gamma} = 47$ кэв

и 82 кэв), β^+ – распада ядра ¹²²Cs ($T_{\frac{1}{2}} = 3,5$ мин), а также до сих пор неизвестного изомера в ядре ¹²³Cs ($T_{\frac{1}{2}} = 1,6$ сек, $E_{\gamma} = 63$ и 95 кэв, соответственно).

Эксперименты по синтезу ¹²² Св проводились на выведенном пучке тяжелых ионов циклотрона У-300.

Изотоп ¹²² Ся образуется в реакциях ¹¹⁹In (¹² C, 3n) ¹²²Cs $_{\rm H}$ ¹⁰⁹ Ag (¹⁸ 0, 5n). ¹²²Cs при энергии бомбардирующих ионов 60 и 94 Мэв соответственно. Мишени изготовлялись из индия, обогащенного до 66% изотопом ¹¹³In , и из серебра, обогащенного изотопом ¹⁰⁹Ag до 97%. Продукты реакции исследовались при помощи Ge(Li) – детектора, установленного в пучке тяжелых ионов/4/ циклотрона У-300.

В у -спектрах (рис. 1), полученных при облучении мишени из ¹¹³ In ионами ¹² С и мишени из ¹⁰⁹ Ag ионами ¹⁸ O, наблюдаются быстро распадающиеся линии с энергией 330 ± 1 кэв и 355 кэв. Измеренный период полураспада линии 330 кэв составляет 23 ± 6 сек (рис. 2). Переход с энергией 331 кэв наблюдался в работе/5/, в которой были исследованы мгновенные у -спектры ядерных реакций, приводящих к возбужденным уровням ядра ¹²² Хе. Этот переход соответствует у – распаду уровня 2^{+} на основное состояние ядра ¹²² Хе. Таким образом, наблюдаемая нами линия показывает, что мы действительно имеем дело с распадом ¹²² Ся.

Следующим указанием на образование ¹²²Св является кривая возбуждения (рис. 3), измеренная по линии 330 кэв в реакции ¹⁰⁹Аg + ¹⁸О. Функция возбуждения имеет максимум при энергии бомбардирующих ионов Е ^{LAB} = 94 Мэв, что соответствует энергии возбуждения составного ядра Е _{ехо} = 77,5 Мэв. Для идентификации массового числа продукта реакции была рассчитана величина

$$\frac{\epsilon_x}{x} = \frac{E_{exc} - \sum_{i=1}^{\Sigma} B_{in}}{x},$$

где х – количество испарившихся нейтронов в реакции (HI, xn); E_{exc} – энергия возбуждения, соответствующая положению максимума сечения образования данного продукта; В in – энергия связи i –го нейтрона. Для реакции 109 Ag (18 O, xn)^{127-x} Cs величина ϵ_x / x принимает следующие значения:

$$\frac{\epsilon_4}{4} = (9.9 \pm 0.7) \text{ M}_{\text{BB}},$$

$$\frac{\epsilon_5}{5} = (5,7 \pm 0,6) \text{ M}_{\text{BB}},$$

$$\frac{\epsilon_6}{6} = (3,2 \pm 0,5) \text{ M}_{\text{BB}}.$$

4

× 103 COUNTS

По систематике, приведенной в^{/6/}, в исследованной области ядер ожидается $\frac{\epsilon_x}{X} \approx 6$ Мэв. Это означает, что реакция, в которой наблюдается линия 330 кэв, действительно является реакцией ¹⁰⁹Ag(¹⁸0, 5n) ¹²²Cs.

Линия 355 кэв, распад которой наблюдается в слектре (рис. 1), связана с распадом ¹²⁴ Cs. Этот изотол образуется в реакции ¹¹⁵ In(12 C, ${}^{3}n$)¹² Cs на примесях изотопа ¹¹⁵ In (см. раздел 3).

Кроме линии 330 кэв в у- спектре распадающегося ядра ¹²² Ся наблюдаются линии 495 и 636 кэв с периодом полураспада $(3,5\pm0,5)$ мин. Они тоже известны из работы^{/5/}, где определены как переходы 4⁺ \rightarrow 2⁺ и 6⁺ \rightarrow 4⁺ в ядре ¹²²Хе. Из этого следует, что в ядре ¹²² Ся существуют два изомера с периодом 23 сек и 3,5 мин. Их взаимное расположение пока не известно. На основании полученных нами данных изомер с периодом полураспада 23 сек распадается, главным образом, на уровень 2⁺ (примесь перехода на уровень 4⁺, если вообще существует, то меньше 20% перехода на 2⁺). Изомер 3,5 мин. распадается, по-видимому, на уровень 6⁺ в ядре ¹²² Хе или на один из вышележащих уровней.

Дальнейшие данные о β^+ – распаде этого изомерного состояния будут опубликованы. Хотелось бы только отметить, что существование такого изомера (вероятно, с большим спином) может быть объяснено отрицательной деформацией ядра ¹²²Cs.

3. Распад ¹²⁴ Сs → ¹²⁴ Хе

Изотоп ¹²⁴ Св образовался в реакции ¹¹⁵ In (¹² C, 3n) ¹²⁴ Св. Мишень была изготовлена из естественного индия. у -спектр распада продуктов реакций исследовался при помощи Ge(Li) детектора.

Гамма-спектр измерялся в интервале энергий от 50 до 900 кэв. В этом спектре (рис. 4) наблюдается быстро распадающаяся линия с энергией 353+2 кэв. Период полураспада линии равен 34+6 сек (рис. 5). Переход 352 кэв был также измерен (рис. 6) при помощи β -спектрометра, установленного в пучке⁷⁷. В этом случае использовалась реакция ¹¹⁶ Sn (¹²C, 4n) ¹²⁴ Ba. Продукт ее ¹²⁴ Ba распадался в ¹²⁴ Cs и далее в ¹²⁴ Xe. Измерено отношение $\frac{a_k}{a_{L+M}}$; оно равняется 5, 2+0, 4.

Рис. 3. Функция возбуждения реакции ¹⁰⁹ Аg(¹⁸0,5n)¹²² Cs. В -кулоновский барьер реакции. Толшина мишени изотопа ¹⁰⁹ Аg - 4 мг см. Функция возбуждения измерена на линии с энергией 330 кэв и периодом полураспада 20 сек.

8

Рис. 4. Гамма-спектр распада ¹²⁴ Св. из реакции ¹¹⁵ In(¹² C, 3n) ¹²⁴ Св. Энергия налетающих ионов ²С – 70 Мэв. Мишень: фольга металлического индия толщиной 15 мг см². Ge(Li) – детектор с объемом 4,5 см³. Спектр А измерен спустя 5 сек после окончания облучения, время измерения 20 сек. Спектр В измерен спустя 6 мин. после окончания облучения, время измерения, время измерения 60 сек.

9

Рис. 6. Спектр электронов внутренней конверсии. Возбужденное состояние в ядре 124 Хе образовалось в распаде 124 Ва 124 Сз 124 Хе. 124 Ва получен в реакции 116 Sn(12 С,4n) 124 Ва при энергии налетающих ионов 82 Мэв. Толщина мишени 2,8 мг·см⁻².

10

11

Это подтверждает результат работы^{/8/}, в которой определена мультипольность перехода - Е2 (таблица 1).

Таблица 1

переход	E1	E2	E3	M1	M2	M3
<u>a k</u> a L+M	6,1	<u>4.8</u>	2,9	5,9	<u>5,1</u>	4,2

Из работы ^{/8/} известен у -переход с энергией 354 кэв, который соответствует распаду уровня ¹2⁺ на основное состояние в ядре ¹²⁴ Хе. Наблюдаемая нами линия 352<u>+2</u> кэв является доказательством того, что в реакции ¹¹⁵ In + ¹² С (при $E_c = 60$ Мэв) образуется действительно ¹²⁴ Св, который распадается на уровень ¹2⁺ в ядре ¹²⁴ Хе.

Добавочным доказательством образования ¹²⁴Cs является кривая возбуждения (рис. 7), измеренная на линии 352 кэв. Функция возбуждения имеет максимум при энергии $E^{LAB} = 60\pm 2$ Мэв. Если учитывать влияние кулоновского барьера ($B^{LAB} = 45$ Мэв) на форму кривой возбуждения, то получается $E_{exc} = 52\pm 2$ Мэв. Тогда величина $\frac{\epsilon_x}{x}$

принимает следующие значения:

 $\frac{\epsilon_3}{3} = 6,6\pm0,8 \text{ M}_{\mathcal{B}\mathcal{B}} - {}^{115} \ln ({}^{12}\text{C},3n) {}^{124} \text{Cs},$ $\frac{\epsilon_4}{4} = 2,8\pm1,0 \text{ M}_{\mathcal{B}\mathcal{B}} - {}^{115} \ln ({}^{12}\text{C},4n) {}^{123} \text{Cs}.$

Это приводит к выводу, что линия 352 кэв образуется в реакции $\ln ({}^{12}C, 3n) {}^{124}Cs.$

В спектре у -излучения, сопровождающего β^+ - распад ¹²⁴Cs. наблюдается только одна линия - 352 кэв (переход $1 \ 2^+ \rightarrow 0^+$ в ядре ¹²⁴Xe). Распад на более высокие уровни в ядре ¹²⁴Xe) отсутствует потому, что известные из работы^{/8/} линии 525 кэв (переход $4^+ \rightarrow 1 \ 2^+$), 669 кэв ($6^+ \rightarrow 4^+$), а также 401 кэв (вероятно переход $2 \ 2^+ \rightarrow 1 \ 2^+$) не наблюдаются. Если эти линии существуют в наших спектрах, то их интенсивность меньше 5% интенсивности линии 352 кэв.

Рис. 7. Функция возбуждения реакции ¹¹⁸ In (¹² C, 3n) ¹²⁴ Ся. Толшина мишени 3,2 мг.см⁻². Мишень изготовлена путем испарения естественного индия на алюминиевую фольгу толшиной 5 мкм в вакууме. Для определения спина изотопа ¹²⁴ Св измерено отношение І_β+/І_{у852}. Оно составляет 2,1±0,4. Если мы принимаем, что энергия β⁺ – распада Q = 6,0 Мэв (согласно расчётам работы/10/), мы получаем для log ft β⁺ –перехода на основное и первое возбужденное состояние в ядре величины 5,4 и 5,2, соответственно. Из этого следует, что переход является разрешенным и состояние ядра ¹²⁴ Хе с периодом полураспада ¹²⁴ Св Т₁₆ = 34 сек имеет спин и чётность I^π = 1⁺. Предполагаемая схема распада представлена на рис. 8.

В таблице 2 представлены данные по энергии распада (Q), периоду полураспада (T $_{\frac{1}{2}}$) и спину основного состояния (I^{*n*}) для ранее известных изотопов цезия/9/. Сюда включены также данные, полученные в настоящей работе, хотя мы не знаем, является ли уровень в ядре ¹²⁴ Сs (с периодом 34 сек) основным или изомерным. То же самое касается ядра ¹²² Сs , где порядок уровней изомерной пары (23 сек и 3,5 мин) не известен. Энергия распада для ^{122,124} Сs взята из расчётов/10/.

т	้ค	ศ	17	ы	τт	A	2
	a	v		*1	ц	a	-

Cs	130	128	126	124	122
Ç (Мэв)	2,99	3,93	4,8	6,0	7,1
Т _{1/2}	30 мин	3,8 мин	1,6 мин	34 сек	23 сек 35 мин
1 7	1+	1+	1+	1+	

Как видно из таблицы 2, период полураспаде ¹²⁴ Cs проявляет ту же закономерность, что и периоды полураспада соседних ядер цезия.

Поиски изомера ¹²⁴ Cs_, с периодом полураспада порядка нескольких минут, который являлся бы аналогом **3**,5 минутного изомера в ядре ¹²² Cs не дали положительного результата.

Рис. 8. Предполагаемая схема распада изотопа 124 Cs.

4. Изотоп ¹²⁰ Cs

При облучении мишени, обогашенной изотопом ¹⁰⁷ Ag , ионами ¹⁸ 0 с энергией 94 Мэв среди продуктов реакции наблюдается ву -спектре и в спектре конверсионных электронов переход с энергией 328 кэв и периодом полураспада = 72 сек. Этот переход соответствует (по данным работы^{/5/}) разрядке 2⁺ - уровня в ядре ¹²⁰ Xe и является доказательством того, что в реакции ¹⁰⁷ Ag (¹⁸ 0, 5n) ¹²⁰Cs образовался изотоп ¹²⁰ Cs .

Авторы выражают глубокую благодарность академику Г.Н.Флерову за поддержку этой работы, группе эксплуатации циклотрона У-300 во главе с Б.А.Загером и В.С.Алфеевым, обеспечившей чёткую работу ускорителя, и Ю.Юнкер за постоянную помощь при обработке экспериментальных данных.

Литература

- 1. E.Marshalek, L.W.Person and R.K.Sheline, Revs. Mod. Phys., 35, 108 (1963).
- 2. K.Kumar and M.Baranger. Phys. Rev. Lett., <u>12</u>, 73 (1964).
- 3. D.A.Arseniev, A.Sobiczewski and V.G.Soloviev, Nucl. Phys., <u>A126</u>, 15 (1969).
- 4. K.F.Alexander, W.Neubert, H.Rotter, S.Chojnacki, Ch.Droste, T.Morek, Preprint JINR E6-4278, Dubna 1969.
- 5. Jack E.Clarkson, R.M.Diamond, F.S.Stephens and I.Perlman. Nucl. Phys., <u>A93</u>, 272 (1967).
- 6. В.Нойберт, К.Александер. Препринт ОИЯИ Р7-3657, Дубна 1968.
- 7. Z.Wilhelmi, V.S.Alfeev, S.Chojnacki, Ch.Droste, J.Lewitowicz, T.Morek, P.Radecki, K.I.Siomin, J.Srebrny and A.Wojtasiewicz. Preprint JINR E6-4593, Dubna 1969.
- 8. I.Bergström, C.J.Herrlander, A.Kerek and A.Luukko. Nucl. Phys., <u>A123</u>, 99 (1969).
- 9. C.M.Lederer, J.M.Hollander and L.Perlman. "Table of Isotopes" sixth edition. (J.Wiley & Sons, New York, 1967).

10.N. Zeldes, A.Grill and A.Simievic. Mat.Fys.Skr.Dan.Vid.Selsk., 3, no.5 (1967).

> Рукопись поступила в издательский отдел 13 июня 1969 года.

> > 17

16