С 341.19 Изв. АНССР сер. диз. 1969, 7-612 і.33 л 10, с. 1622-1630 объединенный институт ядерных исследований

Section States

Дубна.

P6 - 4452

Н.А.Головков, Ш.Гуэтх, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин, В.Г.Чумин

ТОНКАЯ СТРУКТУРА АЛЬФА-СПЕКТРОВ ИЗОТОПОВ 209 At, 210 At, 211 At, 211 Po 85 85 85 85 84

P6 - 4452

Н.А.Головков, Ш.Гуэтх, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин, В.Г.Чумин

ТОНКАЯ СТРУКТУРА АЛЬФА-СПЕКТРОВ

ИЗОТОПОВ 209 At, 210 At, 211 At, 211 Po 85 85 85 85 84

Направлено в Известия АН СССР

d'n 7844/

Указанные изотопы находятся вблизи²⁰⁸ Рb - "дважды магического ядра", имеющего 82 протона и 126 нейтронов. Все они распадаются либо с испусканием альфа-частиц, либо с захватом орбитальных ²¹¹At электронов и испусканием нейтрино. У были известны И только основные альфа-переходы /1/, у ²¹⁰At ²¹¹Po и наблюдались также и альфа-группы тонкой структуры /2,3/. Цель настоящей работы -²⁰⁹ At поиски новых групп тонкой структуры а -спектров ²¹¹Аt и²¹¹Ро .

Методика исследования

Изотопы ²⁰⁹ At , ²¹⁰ At и ²¹¹ At получались в реакциях глубокого расщепления тория (от 0,5 до 5,5 г) протонами с энергией 660Мэв на внутреннем пучке синхроциклотрона Лаборатории ядерных проблем ОИЯИ; облучение продолжалось от 0,5 до 4 часов. Выделение астата из облучений ториевой мишени проводилось через 7-15 часов после конца облучения по химической методике, изложенной в работе $^{/4/}$. Изотоп ²¹¹Po ($T_{12} = 0,56$ сек) получался в источнике при распаде ²¹¹ At ($T_{12} = 7,2$ часа, ϵ 59%) и находился в равновесии с материнским изотопом. Альфа-спектрометрические источники приготовлялись на

основе самопроизвольного осаждения астата из азотнокислого раствора на отполированную поверхность платины ^{/5/}. Платиновая пластинка имела размеры (3+4) x (24+35) мм². Активность источников составляла 10⁵-10⁶ а -расп/сек. В источнике, помимо указанных изотопов, присутствовали продукты их распада – изотопы полония и висмута.

Исследование тонкой структуры альфа-спектров было выполнено на магнитном альфа-спектрографе, описанном в работе ^{/6/}. Для калибровки спектрографа по энергии использовалась альфа-группа изотопа²¹⁰ Ро ($E_0 = 5304,5 \pm 0,5$ кэв. В $\rho = 331772 \pm 12$ гс.см^{/7/}), находившегося в том же источнике. Калибровка в каждой серии измерений повторялась, снималось от 3 до 12 калибровочных точек. Всего были измерены a спектры шести источников. С каждым источником делалась серия экспозиций; общее время экспозиций составило 187 часов. Измерения выполнялись в энергетическом диапазоне альфа-частиц от 4,75 до 7,46 Мэв.

Результаты измерений

На рис. 1-3 показаны участки альфа-спектра; по оси абсцисс отложена энергия альфа-частиц, по оси ординат – число альфа-треков на фотопластинке в полоске шириной 0,4 мм и длиной 50 мм; вертикальные пунктирные линии означают края промеренных участков фотопластинки.

В серии, изображенной на рис. 1ъ, снятой через 75 дней после облучения, видны только а -группы ²⁰⁹ Po(a_0), ²⁰⁸ Po(a_0)и ²¹⁰ Po(a_0). При более ранних экспозициях (рис. 1а и 1б) видны, кроме того, а группы ²⁰⁹ At(a_{541}), ²¹⁰ At(a_{398}), ²¹¹ At(a_{743} и a_{670}). Слабые линии намечаются при энергиях 4780, 5013, 5030,5223, 5243 и 5270 кэв, но идентифицировать их мы пока не можем.

На рис. 2 видны альфа-группы 207 At (a_0) ; 209 At (a_0) ; 211 At (a_0) 210 At $(a_0, a_{60}, a_{83}, a_{140}, a_{167})$; 210 Po (a_0) ; в районе 5,10-5,25 Мэв пов-

Рис.1. Участок альфа-спектра, снятый в разное время в диапазоне энергий 4,78-5,31 Мэв (источник один и тот же). а). Спектр снят через 12 часов после конца облучения, время экспозиции (T_{3KCR}) 8 часов, при телесном угле(Ω) 8 х 10⁻⁴ от 4 π . 6). Спектр снят через 29,5 часов после конца облучения; T_{3KCR} = 8 час., Ω = 8 х 10⁻⁴ от 4 π . в). Спектр снят через 75 дней после конца облучения; T_{3KCR} = 30 час., Ω = 4 х 10⁻⁴ от 4 π .

\$

5

Рис.2. Участок альфа-спектра в диапазоне энергии 5,05-5,90 Мэв, снятый с одним и тем же источником. Экспозиция №1 сделана через 7 час.10 мин. после конца облучения в течение 5 мин. Время экспозиций №2,3,4 – 8 часов; на них видны распад альфа-групп ²¹¹At (a_{670} a_{743}), ²¹⁰At(a_{398} .) и ²⁰⁹At(a_{541}) во времени. Начало экспозиций № 2,3,4 соответственно через 19 мин, 8ч. 54 мин. и 16 ч. 56 мин после окончания эксп. №1. У всек экспозиций $\Omega = 4 \times 10^{-8}$ от 4π

Рис.3. Участок альфа-спектра от 5,80 до 7,00 Мэв и основная альфагруппа²¹¹ Ро (0,56 сек). Экспозиция № 1,3,4 делались по 8 часов (эксп. №2, идентичная эксп. №1, на рис. не указана); они начинались соответственно через 16 час, 32 час.18 мин. и 41час. 14 мин. после конца облучения. Альфа-группы²¹¹ At(a₀) и ²¹¹ Ро (a₀) снимались в коротких экспозициях: времена экспозиций 10 и 15 мин., через 52 часа 14 мин. и 53 часа 10 мин после конца облучения. Эксп. №3-4 показывают распад альфа-групп ²¹¹ Ро(a₁a₂)во времени. Во всех экспозициях источник и телесный угол один и тот же (Ω = 4 x 10⁻⁴ от 4 π).

\$

торяются те же альфа-линии, что и на рис. 1а. Между линиями изотопа ²¹⁰ Аt а₈₈ и а₁₄₀ видны две слабые не идентифицированные альфагруппы с энергиями 5400 и 5418 кэв.

На рис. З показаны альфа-группы тонкой структуры²¹¹ Ро (0,56сек) и а -группа а о²¹¹ At.

Энергии альфа-групп и периоды спадания их интенсивностей приведены в таблице 1. Идентификация большинства групп осуществлялась путем сопоставления энергии и периода полураспада альфа-групп с литературными данными. При определении погрешности энергии альфа-частиц учтены статическая погрешность измерений, точность калибровки и погрешность энергии калибровочной альфа-группы.

В таблице 2 приведены данные об альфа-группах изотопов²⁰⁹ At, ²¹⁰ At , ²¹¹ At и ²¹¹ Po . Для энергии возбужденных состояний дочерних ядер указаны литературные значения, за исключением уровня 541кэв

²⁰⁵ Ві и уровня 140 кэв ²⁰⁶ Ві , которые впервые предлагаются в данной работе; для них указаны эначения, вытекающие из *а* -спектра. Для относительных интенсивностей альфа-групп каждого изотопа даны средние значения, полученные по разным сериям измерений. Парциальные периоды полураспада альфа-групп определены по относительным интенсивностям, полученным в настоящей работе, с использованием данных ^{/1,8/} о периодах полураспада и долях альфа-распада. Доля альфа-распада изотопа ²¹⁰ Аt определена по интенсивности альфа-распада дочернего изотопа ²¹⁰ Ро ; из трех серий измерений получено значение (0,175 + 0,020) %.

Коэффициенты запрета (F) альфа-переходов рассчитаны по формуле Таагепера и Нурмия ^{/9/}.

141	Данная работа		Данные других работ				Идентификация	
ПП У -	Еод. (кэв)	T _{I/2}	Еод (кэв)		Ĩ 1/2			
I.	7450 <u>+</u> 3	7, I <u>+</u> 0, 2 ч	7448,0 <u>+</u> I,9	/7/	7		2IIpo do	
2.	6892,5 <u>+</u> 2,5	7,0 <u>+</u> 0,3 "	6890,7 <u>+</u> 2,5	/I4/	7,21*ч	/1/	••••••••••••••••••••••••••••••••••••••	
3.	6570,0 <u>+</u> 2,5	7,0 <u>+</u> 0,3 "	6569	/17/				
4.	5866 <u>+</u> 2	7,2 <u>+</u> 0,2 "	5868 <u>+</u> 3	171	7,21 "	/1/	211At XO	
5.	5759 <u>+</u> 3	2 •	5756 <u>+</u> 8	171	106 мин	/8/	207 At CO	
6.	5647 <u>+</u> 2	5,2 <u>+</u> 0,3 "	5648 <u>+</u> 4	17/	5,4I u	/8/	209 At 0.0	
7.	5524,0 <u>+</u> I,5	7,9 <u>+</u> 0,5 "	5526	/17/	8 , 3 ч.	/1/	210 At Co	
8.	5465,0 <u>+</u> I,5	7,7 <u>+</u> 0,6 "	-	-	-			
9.	5442,0 <u>+</u> I,5	7,5 <u>+</u> 0,6 "	5444	/17/	8,3 "	/1/	• 0.2	
10.	5386 <u>+</u> I	8,3 + 0,6 "	-	-	-	-	* CL3	
II.	5377 <u>+</u> I	4,7	5379 <u>+</u> 4	/16/	3,5 "	/16/	204 _{Po} Co # #	
12.	536I <u>+</u> I	8,I <u>+</u> 0,5 "	5362	/17/	8,3 "	/1/	210 At Qy	
13.	-	большой	5304,5 <u>+</u> 0,5	171	I38,4д	/1/	210 Ро ОСо калиор.	
I4.	5223 <u>+</u> I,5	-	5224 <u>+</u> 5	/16/	8,8 д	/1/	206 Po Xo **	
15.	5210 <u>+</u> 1,5	7,I <u>+</u> 0,6 "	-	_	<u> </u>		$211_{AL} \alpha$,	
16.	5I4I <u>+</u> 2	} 7,9 <u>+</u> I,5 "	-	-	- '		• 0/2	
17.	5I3I <u>+</u> 2) –	-	-	- 1		210 At X5	
18.	5II6 <u>±</u> 2	5,4 <u>+</u> 0,5 " + 0075008	5II8 <u>+</u> 5	/16/	7		209 At d, 208 Po do	
19.	4883 <u>+</u> 3	большой	4883 ± 8	/7/	103 г. /	'I/	209 _{Po} 20	

<u>ТАБЛИЦА І</u>

Идентификация альфа-групп, присутствующих в альфа-спектре

*- в равновесии с ²¹¹At

★★ - Эти линии не видны на приведенных рисунках, но они проявились при наиболее благоприятных для них экспозициях.

8

<u>ТАБЛИЦА 2</u> Данные об альфа-группах изотопов ²⁰⁹, ²¹⁰, ²¹¹ At и ²¹¹Ро

Альфа-излучатель		Энергия альфа-	Энергия сост.	Относительная интен-		Парциальный	Коэффици-
Изотоп	oҲ⊸группы	-r pynn (x38)	(кэв)	Данной работн	Литер. данных	групп (час)	F
²⁰⁹ AŁ	а. «	5647 <u>+</u> 2 5116 <u>+</u> 2	0 54I <u>+</u> 3	100 0,10 <u>+</u> 0,05	100 /3/	(1,3 <u>+</u> 0,2).10 ² (1 <u>+</u> 0,7).10 ⁵	3 <u>;2</u> ± 5 45±30
^{2 IO} AŁ	ಳೆ. ಸ್ಕ ಸ್ಕ ಸ್ಕ ಸ್ಕ	$5524,0 \pm 1,5$ $5465,0 \pm 1,5$ $5442,0 \pm 1,5$ 5386 ± 1 5361 ± 1 5131 ± 2	0 59,9 /l/ 82,9 /l/ 140 <u>+</u> 2 167 /l/ 398,3 /l/	$100 26 \pm 2 95 \pm 6 14 \pm 2 83 \pm 6 1,2, \pm 0,4 $	100 /2/ 97 /2/ 115 /2/	$(1,5\pm0,2) \cdot 10^4$ (6 ± 2) $\cdot 10^4$ (1,6±0,4) $\cdot 10^4$ (1,1±0,4) $\cdot 10^5$ (1,8±0,4) $\cdot 10^4$ (1,0±0,6) $\cdot 10^6$	870±120 1600±500 330±80 1200±400 150±30 350±200
211 AL	ರ. ಜ, ಸ್ನ	5866 <u>+</u> 2 5210,0 <u>+</u> 1,5- 5141 <u>+</u> 2	0 669,5 /I/ 742,5 /I/	$100 (1,3\pm0,2).10^{-2} (4 \pm 2).10^{-3} $	100 /2/ - -	$17,3\pm0,2$ (1,3±0,3).10 ⁵ (4 ± 2).10 ⁵	45,8 <u>+</u> 0,5 I48 <u>+</u> 35 200 <u>+</u> I00
211 _{Po}	X. X, X, (3)	7450 <u>+</u> 3 6892,5 <u>+</u> 2,5 6570,0 <u>+</u> 2,5 5880 - 6430	0 569,6 /I/ 897,3 /I/ -	100 0,57 <u>+</u> 0,05 0,59 <u>+</u> 0,05 42.10 ⁻³	100 /2/ 0,50 /2/ 0,53 /2/ -	0,56 <u>+</u> 0,04 cex (1,0 <u>+</u> 0,2).10cex (1,0 <u>+</u> 0,2).10 ² cex	1480 <u>+</u> 110 3170 <u>+</u> 630 189 <u>+</u> 38

õ

ų,

Обсуждение Изотоп ³⁰⁹ At ($T_{1/2} = 5.4$ часа)

В работе ^{/3/} была сделана попытка обнаружить тонкую структуру альфа-распада ²⁰⁹ At . Она была безуспешной; в работе ^{/3/} указан верхний предел интенсивности а -групп тонкой структуры; 2,5% интенсивности основного перехода.

В настоящей работе наблюдалась а -группа с энергией 5116+2 кэв. В экспозиции, снятой через 75 дней после облучения, эту группу естественно считать главной а -группой ²⁰⁸ Ро ($T_{\frac{1}{2}} = 2,93$ года ^{/1/} $E_a = 5118 \pm 5$ ^{/7/}). Однако в более ранних экспозициях эта группа была более интенсивна, чем следует для линии ²⁰⁸ Ро(a_0), причем интенсивность зависела от времени. После вычитания доли, принадлежащей ²⁰⁸ Ро , остаток оказался спадающим с периодом 5,4±0,5 часа и был

приписан ²⁰⁹ At , у которого $T_{\frac{1}{2}} = 5,41$ часа ^{/8/}; интенсивность группы – (0,10+0,05)% от интенсивности главной группы ²⁰⁹ At (5647 кэв).

Об уровнях возбуждения дочернего ядра²⁰⁵ Ві пока нет никаких сведений. Спин основного состояния ²⁰⁵ Ві измерен ^{/1/}: І = 9/2 (такой же, как и у ²⁰¹ Ві , ²⁰³ Ві и ²⁰⁹ Ві ^{/22/}); по модели оболочек это состояние $h_{9/2}$. Величина коэффициента запрета (табл.2) основного *а* -перехода ²⁰⁹ Аt позволяет предположить, что у основного состояния ²⁰⁹ At также І^{*π*} = 9/2⁻. У соседнего ²¹¹ At спин измерен ^{/22/} и равен 9/2.

Первые возбужденные состояния у нечетных изотопов $^{207, 209, 211}_{83}$ Ві имеют энергию более 400 кэв и предполагаемые квантовые характеристики I^{π} = 7/2[–] – (состояния f_{7/2}).

Естественно предположить, что найденная нами а -группа ²⁰⁹ At с E_a = 5116 кэв направлена на уровень 541 кэв (7/2⁻) ²⁰⁵ Bi . Хотя

интенсивность а -группы 5116 кэв в тысячу раз меньше интенсивности главной группы, ее коэффициент запрета близок к коэффициенту запрета главной группы.

Предполагаемая схема распада изображена на рис. 4.

<u>Изотоп</u> At (Th/ = 8.3 часа)

Хофф ^{/2/}, изучая тонкую структуру изотопа ²¹⁰ At на магнитном альфа-спектрографе, обнаружил три альфа-группы, возникающих при распаде ²¹⁰ At ; их энергии и интенсивности: 5519 кэв (32%), 5437 кэв (31%) и 5355 кэв (37%). Кроме перечисленных, нами были найдены еще три ранее не известные более слабые линии с энергиями 5465; 5386 и 5131 кэв, у которых период спадания интенсивности совпадает с периодом ранее известных групп.

Альфа-группы, указанные в работе $^{/2/}$, определяют возбужденные уровни 206 Bi (T $_{\frac{1}{2}}$ = 6,3 д) с энергиями 82 и 164 кэв. Найденные нами *а* -группы указывают на существование уровней с энергиями 59,0 + 2,0; 140+2 и 401 + 4 кэв.

Арбман /19/ изучал распад ²⁰⁶ Ро ²⁰⁶ Ві (Т_{1/2} = 8,8 дня); он нашел 33 перехода между уровнями ²⁰⁶ Ві и среди них переходы с энергиями 59,9; 82,9 и 140,6 кэв, которые могут быть направлены на основное состояние ²⁰⁶ Ві , а также переходы с энергиями 106,1 и 338,4 кэв, которые могут быть уложены между указанными уровнями ²⁰⁶ Ві . Кроме того, в этой работе наблюдалась электронная линия с энергией 168,2 кэв, которая может быть интерпретирована как К258,7; переход с такой энергией точно укладывается между уровнями 398,3 и 140,6 кэв. Все эти переходы указаны на схеме (рис. 5); если размешение переходов на рис. 5 правильно, то энергии уровней имеют значения, приведенные слева.

LL.

Рис.4. Схема альфа-распада ²⁰⁹ At.

При распаде ²⁰⁶ Ро \rightarrow ²⁰⁶ Ві возбуждаются многие уровни, не указанные на рис. 5. Среди них наиболее низко лежат уровни 230,7кэв (3⁺,4⁺) и 512,8 кэв (4⁺); мы не наблюдали их возбуждения при распаде ²¹⁰ At (*a*-группа, направляющаяся на уровень 230,7 кэв, перекрывается с группой a_0^{210} Ро).

Спин основного состояния ²⁰⁶Ві измерен: $I^{\pi} = 6^+$. Согласно расчетам Вальборна ^{/20/}, у состояния с энергией 59,9 кэв $I^{\pi} = 4^+$, а у состояния 398,3 кэв $I^{\pi} = 3^+$.

Коэффициенты запрета F для разных групп имеют отличающиеся значения (рис. 5 и табл. 2).

<u>Изотоп ²¹¹ At</u> ($T_{2}^{1} = 7.21$ часа)

Из работы Хоффа ^{/2/} известна основная альфа-группа с энергией 5862 кэв; уточненное значение энергии – 5868 кэв ^{/7/}. Мы обнаружили, помимо этой, еще две группы тонкой структуры альфа-спектра ²¹¹ At с энергиями 5210 и 5141 кэв; эти линии отнесены к изотопу ²¹¹ At по периоду полураспада. С добавлением энергии ядерной отдачи разность их энергий и энергии основного перехода 668 ± 2,5 и 739 ± 3 кэв - точ-но совпадает с энергиями возбуждения первого и второго уровней 669,8 и 742,9 кэв ^{/21/207} Ві , которые известны из распада ²⁰⁷ Ро ($T_{\frac{1}{2}}$ = 5,7 часа).

Значения спина и четности уровня 742,9 кэв – 7/2⁻ и возможные значения для уровня 669,8 кэв (7/2⁻, 9/2⁻ или 11/2⁻) приведены в работе ^{/21/}. Схема распада показана на рис. 5.

Изотоп²¹¹ Po (
$$T_{\frac{1}{2}} = 0,56$$
сек)

Альфа-распад изотопа²¹¹ Ро исследован в работах /2,11/. При измерениях с помощью ионизационной камеры было обнаружено три

Рис.5. Схема альфа-распада ²¹⁰ At.

9/1-) 211 12 85 At 7,214. 7эз. X41,8±0,2% Q-5,979 мэв **Ја** (отн.) Е∝ (Кэв) Е (Кэв) (4±2)×10⁻³ 5440±3 200 $\frac{1}{2}$ (1,3±0,2)×10⁻² 5210±1,5 **48** 5866±2 100 45.8 6698 0 (9/2) ·207 83 BL 301

Рис.6. Схема альфа-распада 211

At.

альфа-группы тонкой структуры с энергиями 6,90 Мэв (0,57%),6,57 Мэв (0,48%) и 6,34 Мэв (0,07%). Хофф ^{/2/} нашел две первых линии -6,895 Мэв (0,5%) и 6,569 Мэв (0,53%), но не нашел третьей и указал, что нет альфа-групп, составляющих по интенсивности 0,02% от основной группы в диапазоне энергий от 6,26 до 6,57 Мэв.

В дальнейших работах /12,13,14/ удавалось обнаружить только первую альфа-группу тонкой структуры ²¹¹ Ро.

В нашей работе в альфа-спектрах линий тонкой структуры ²¹¹ Ро (0,56 сек) 6892 и 6570 кэв четко проявились, верхний предел интенсивности линий в интервале 5,88-6,43 Мэв ≈ 2.10⁻³%.

Расчеты, проведенные в работе /15/, показали, что ожидаемая интенсивность альфа-группы для перехода на возбужденный уровень 207 Ві с энергией 1633,1 кэв ($E_a \approx 5845$ кэв), равна (3-50)·10⁻⁵% от основной группы; в наших измерениях обнаружить ее было невозможно из-за того, что она находится на спаде очень интенсивной основной альфа-линии 211 At($E_a = 5866$ кэв).

Литература

- 1. C.M.Lederer, J.M.Hollander and J.Perlman. Table of Isotopes. J.Wiley and Sons. N.Y., 1967.
- 2. R.W.Hoff. Report UCRL-2325 (1953).
- 3. J.P.Hummel. Report UCRL-3456 (1956).
- Ю.В. Норсеев. Кандидатская диссертация. ОИЯИ-ЛГУ (1965).
 Б.Н. Беляев, Ван Юн-юй, Е.Н. Синотова, Л. Нэмэт и В.А. Халкин. Радиохимия, <u>2</u>, 603 (1960).
- 5. Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин. Радиохимия, 8,487 (1966).

- Н.А. Головков, К.Я. Громов, Ю.Н. Денисов, Б.С. Джелепов, Ж.Желев, С.А. Ивашкевич, В.М. Лачинов, Б.Махмудов, В.И. Прилипко, Ю.И.Сусов, В.Г. Чумин, П.Т. Шишлянников. Препринт ОИЯИ Р13-3340, Дубна, 1967.
- 7. A.H.Wapstra. Nucl. Phys., 57, 48 (1964).
- 8. Л. Гуэтх, Ш. Гуэтх, Э. Дароци, Б.С. Джелепов, Ю.В. Норсеев, В.А. Халкин. Препринт ОИЯИ Р6-4079, Дубна 1968.
- 9. R.Taagepera and M.Nurmia, Ann. Acad. Sci. Fennicae ser. A VI Physica 78 (1961).
- 10. E.Arbman and P.A.Tove. Arkiv för Fys. 13, 61 (1957).
- 11. H.M.Neuman and J.Perlman. Phys. Rev., <u>81</u>, 958 (1951).
- 12. C.R.Cothern and R.D.Connor. Bull. Am. Phys. Soc., 10, 83 (1965),
- 13. W.F.Davidson, C.R.Cothern and R. D.Connor. Can. J. of Phys. <u>45</u>, 2295 (1967).
- R.J.Valen, V.Nedovessov, G.Bastin-Scoffier. Nucl. Phys., <u>35</u>, 232 (1962).
- 15. H.D.Zeh and H.J.Mang. Nucl. Phys., 29, 529 (1962).
- 16. E.Tielsch-Cassel, Nucl. Phys., A100, 425 (1967).
- 17. Nucl. Data Sheets, <u>5</u>, 115 (1963).
- 18. F.Asaro. Report UCRL-2180 (1953).
- 19. E.Arbman. Nucl. Phys., 3, 625 (1957).
- 20. S.Wahlborn, Nucl. Phys., 3, 644 (1957),
- 21.E.Arbman, J.Burde and T.R.Gerholm. Arkiv Fys. 13, 501 (1958).
- 22. И. Линдгрен. Приложение №1 к книге "Возмущенные угловые корреляции" Атомиздат 1966.

Рукопись поступила в издательский отдел 25 апреля 1969 года.