A-828 объединенный институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна.

P6 - 4246

19/11-69

Р.Арльт, Г.Байер, Г.Музиоль, Л.К.Пекер, Х.Штрусный

УРОВНИ "ПОЛУМАГИЧЕСКОГО" ЯДРА¹⁴²Nd 60 82

1969

ALEPHALX NPOBLEA

AASOPATOPH

P6 - 4246

Р.Арльт, Г.Байер, Г.Музиоль, Л.К.Пекер, Х.Штрусный

chister

уровни "полумагического" ядра $\frac{142}{60}$ Nd 82

Направлено в "Известия АН СССР"

6656 BERGERSS EDON CHERRON BOUNDED BLIEFOLD **国际编辑的**1783A

1. Введение

Исследование уровней чётно-чётных "полумагических" ядер, у которых заполнена протонная или нейтронная оболочка, в частности ядер с N=82, представляет по различным причинам большой интерес. Главная из них заключается в том, что при формировании квазичастичных уровней таких ядер (вплоть до энергии возбуждения 3-3,5Мэв)) основную роль играют протоны и поэтому экспериментальные сведения об этих уровнях позволяют получить наиболее полное представление об остаточном взаимодействии протонов в ядрах. Не менее интересны экспериментальные сведения о коллективных и октупольных вибрационных уровнях полумагических ядер.

До сих пор были известны состояния ¹⁴²Nd, возбуждающиеся при неупругом рассеянии протонов и дейтронов, а также при бета-распаде ¹⁴²Pr : 1575,6 кэв (2⁺); 1970 кэв; 2084,4 кэв (3⁻); 2210 кэв (0⁺); 2390 кэв/1,2,3'. В реакциях типа (γ , \mathbf{n}) в ядре ¹⁴²Nd возбуждается также изомерное состояние с энергией 2200 кэв, при распаде которого ($T_{1/2} = 16,5$ мксек) излучается каскад гамма-переходов с энергиями 108, 525 и 1565 кэв/4'. При β^+ -распаде ¹⁴² Pm \rightarrow ¹⁴²Nd вследствие экспериментальных трудностей, связанных с наличием весьма интенсивного аннигиляционного излучения, до сих пор удавалось наблюдать только два гамма-перехода/5/. На основании измерений $\beta^+ - \gamma$ -совпадений в более ранней работе нами было показано, что при β^+ -распаде ¹⁴² Pm в ядре ¹⁴² Nd заселяется уровень с энергией 1572 кэв/⁶/.

Как следует из теоретических расчётов на основании двухквазичастичной модели^{7,8}, в ядре ¹⁴² Nd, помимо уровня I^π = 1⁺ и ряда состояний с I^π = 2⁺, должны существовать два уровня с характеристиками 0⁺ при энергии ниже ~ 3 Мэв. Можно ожидать, что эти уровни будут хорошо заселяться при распаде ¹⁴² Pm, обладающего в основном состоянии характеристикой I^π = 1⁺ и достаточно высокой энергией распада Q_{β^+} , равной (4820±100) кэв^{/9/}. Настоящая работа была посвящена поискам этих уровней.

2. Экспериментальная методика и результаты

Непосредственное изучение распада ¹⁴² Рm затруднено из-за короткого периода полураспада, составляющего всего 40 сек^{/.10/.} Поэтому нами изучался распад цепочки ¹⁴² Sm \rightarrow ¹⁴² Pm \rightarrow ¹⁴² Nd (¹⁴² Sm T_{1/2} = 73 мин, что достаточно для проведения необходимых измерений). Присутствие ¹⁴³ Sm в препарате, как показал опыт, не очень мешает, ибо в его гамма-спектре нет интенсивных гамма-переходов, кроме того, вследствие относительно низкого значения энергии распада $a\beta^+$, равного 2050 кэв^{/9/}, существование гамма-переходов с энергией $E_{\gamma} > 2 M$ эв вообще исключается.

¹⁴² Sm был получен в реакции глубокого расщепления мишени из металлического гадолиния на внутрением пучке протонов синхроциклотрона ОИЯИ с энергией 680 Мэв/10/. Время облучения составляло 2-4 часа, время хроматографического разделения-1-2 часа. Измерения начинались после дополнительной очистки фракции самария. Активность препаратов достигала ~ 100 мкюри.

Измерение гамма-спектра проводилось на Ce(Li)-детекторе с чувствительным объемом 6,3 см³ и энергетическим разрешением 4,2 кэв для гамма-перехода с энергией 1333 кэв. Высокое энергетическое разрешение спектрометра сохранялось вследствие специального формированияимпульсов в спектрометрическом тракте при работе с высокой загрузкой/12/. Верхний предел допустимой загрузки определялся только мертвым временем 4096-канального анализатора (частота кодовых импульсов составляла 12 Мгц).

Измерения гамма-спектра в каждом опыте проводились в двух экспозициях по 6-10 часов до полного распада ¹⁴² Sm . Расстояние препарата от детектора постоянно сокращалось, чтобы обеспечить постоянную загрузку электронного тракта. Для измерения высокоэнергетической части гамма-спектра применялся фильтр, состоящий из 3 слоев: свинцового (13 мм), кадмиевого (1 мм) и медного (1 мм). Перед фильтром или при измерении мягкой части гамма-спектра перед детектором прикреплялся плексигласовый поглотитель толщиной 15 мм. Радиоактивный препарат Sm находился на тонкой лавсановой фольге (2 мг/см²). Таким образом удалось существенно уменьщить число отсчётов от аннигиляционного излучения.

При обработке к цепочке распада с A = 142 были отнесены все гамма-переходы, которые во второй экспозиции не наблюдались. Это было сделано на том основании, что ¹⁴² Sm получался в реакции типа Gd(p,xp,yn) с большим выходом по сравнению с другими изотопами самария и, кроме того, периоды полураспада для изотопов с массовыми числами 145, 143 и 140 составляют 340 дней, 8,9 мин, 21 мин и 14 мин, соответствен.но/10,6,13/. После дополнительной хроматографической очистки самариевой фракции в препарате не содержалось примесей других фракций.

Для градуировки спектрометра как по энергиям, так и по интенсивности, применялся препарат с изотопом ²²⁶ Ra с максимальной энергией гамма-переходов 2448 кэв. При определении энергии в области выше 2,4 Мэв привлекался пик двойного вылета аннигиляционного излучения гамма-переходов. Результаты измерения гамма-спектра приведены в табл.1.

Помимо гамма-спектра, нами на магнитном бета-спектрометре с трехкратной фокусировкой на угол $\pi \sqrt{2}$ измерялся спектр конверсионных электронов. Были обнаружены К -и L -конверсионные линии E0 -перехода с энергией (2219±2) кэв с К/L = 7,5±1,0.

Схема уровней 142 Nd

На основании данных о гамма-спектре ¹⁴² Рт мы вводим ряд новых уровней ¹⁴² Nd с I < 2⁺, которые могут заселяться

при β^+ -распаде ¹⁴² Рm, имеющего в основном состоянии характеристики I^π = 1⁺ (см. рис. 1). Всем уровням, которые связаны гамма-переходами непосредственно с основным состоянием, приписаны эначения спина 1 или 2. Уровень при энергии 2218 кэв связан с основным состоянием только конверсионным переходом типа E0 (гамма-, переход не наблюдается). Поэтому мы смогли приписать этому уровню характеристики I^π = 0⁺.

Гамма-переход с энергией 1345 кэв может быть направлен только ¹⁴²Nd с энергиями 0 кэв (0⁺), 1576,0 кэв (2⁺) и 2218 кэв на уровни (0⁺), поскольку он довольно интенсивен. На основное состояние этот переход, однако, идти не может, ибо известно, что энергетическая щель в полумагических чётно-чётных ядрах в области около 142 Nd больше 1.5 Мэв. Направление же указанного перехода на уровень с энергией 2218 кэв (0⁺) исключается тем, что не обнаружен соответствующий параллельный гамма-переход в основное состояние с I^π = 0⁺. По причинам аналогичного типа нельзя направить гамма~переход с энергией 1345 кэв на уровень при 2385 кэв (I^π = 2⁺). Эти соображения позволяют ввести уровень при энергии 2921 кэв. Так как он связан гаммапереходом 1345 кэв только с первым возбужденным уровнем с характеристиками 2+ (1576,0 кэв), но не связан с основным состоянием с Ι 7 $= 0^+$, то ему можно приписать спин и чётность 1^{π} = 0+.

Другой вариант квантовых характеристик уровня при 2921 кэв: $I^{\pi} = 2^+$. При этом нужно предполагать, что существует не обнаруженный нами сильно задержанный гамма-переход в основное состояние. По расчётам/7/ ожидается второй уровень $I^{\pi} = 2^+$ с сильно задержанным гамма-переходом в основное состояние при энергии ≈ 2300 кэв, то есть на 0,5 Мэв ниже обсуждаемого уровня. Второй уровень с $I^{\pi} = 2^+$ мы наблюдали при энергии 2385 кэв, который, однако, разряжается интенсивным гамма-переходом в основное состояние, гамма-перехода на уровень с $I^{\pi} = 4^+$ при энергии 2101 кэв не обнаружено.

В схеме уровней ¹⁴² Nd нами были, помимо ряда более высокоэнергетических уровней, введены два уровня при энергии 2209 и 2101кэв с характеристиками 6⁺ и 4⁺, соответственно. Мы считаем, что разрядка изомера с периодом полураспада 16,5 мксек^{/4/} происходит не через каскад 5⁻ \rightarrow 3⁻ \rightarrow 2⁺ \rightarrow 0⁺, как раньше предполагалось/10/, а через каскад 6⁺ \rightarrow 4⁺ \rightarrow 2⁺ \rightarrow 0⁺, Это предположение можно сделать на основании более точного определения энергий *у* –переходов. Гамма-переход с энергией (525±10) кэв, найденный в работе^{/4/}, вероятнее всего, не идентичен с переходом 3⁻ 2⁺, энергия которого равна (508,8±0,5) кэв^{/3/}. Поэтому изомерный каскад происходит между уровнями с характеристиками (2209±15) кэв, 6⁺; (2101±11) кэв, 4⁺; (1576±0,5) кэв, 2⁺ и 0 кэв, 0⁺. Аналогичный изомерный каскад существует в соседнем ядре

Обсуждение схемы уровней ¹⁴² Nd

Полумагическое ядро ¹⁴² Nd имеет заполненную нейтронную оболочку с N = 82. В таких ядрах (с N = 82), как было показано в ряде работ/7,8/, нижние возбужденные состояния должны иметь в основном двухквазичастичный протонный характер. На рис. 2 сравниваются экспериментальные значения энергией возбужденных состояний с результатами вычислений, сделанных на основе двухквазичастичной модели/8/. Видно, что вычисленные квазичастичные спектры в основном хорошо отражают действительное расположение уровней: в области энергий 1,5 - 3,3 Мэв предсказывается 5 уровней с $I^{\pi} = 2^{+}$ и один уровень с $I^{\pi} = 1^{+}$. В эксперименте обнаружено было 7 уровней с $I \leq 2$, часть из которых, однако, может иметь отрицательную чётность. В области энергий возбуждения меньше \approx 3 Мэв предсказывается существование двух состояний типа 0⁺. Такие уровни были найдены при энергии 2218 и 2921 кэв. Наконец, расположение низкоэнергетических уровней типа 2⁺ и 4⁺ хорошо согласуется с предсказанными энергий.

Единственный уровень с $I^{\pi} = 1^+ (g_{7/2}, d_{5/2})$ ожидается в области энергий около 2800 кэв/15/.

На рис. З спектр уровней ¹⁴² Nd сопоставлен с уровнями других чётно-чётных изотопов с N = 82. Энергия первого возбужденного уровня с $1^{\pi} = 2^+$ возрастает по мере заполнения протонной оболочки и достигает относительного максимума в ядре ¹⁴⁰ Се s2 с заполненной $1_{\rm G_{7/2}}$ подоболочкой. Интересно, что этот максимум возникает только у изотовов с N = 82 и отсутствует у изотонов с N = 80, и 84,как видно из рис. 4. Известные нам дзиные о расположении уровней с $1^{\pi} = 2^+$, 4^+ и $3^$ в изотопах Nd представлены на рис. 5 в виде кривых. Обращает на себя внимание тот факт, что максимум для коллективных уровней с $1^{\pi} = 3^$ менее резкий, чем для первых возбужденных уровней с $1^{\pi} = 2^+$.

Как было показано выше, трудно объяснить второй уровень с і^{*n*} = 2⁺ при 2385 кэв в рамках модели, выбранной в работе^{/7/}. Другая возможность – интерпретация этого уровня как аналога гамма-вибрационного уровня.

В работе /16/ предполагается, что таким уровнем в ядре ¹⁴⁰Се является уровень при 2548 кэв с I^{π} = 2⁺. В ¹⁴²Nd его следует ожидать при E ≈ 2300-2400 кэв, так как экстраполяция величины R = E2^{+'} (гаммавибрационный уровень) /E2⁺(1-ый возбужденный уровень) дает значения 1,5 (R = 2,0; 1,7 и 1,6 для ¹³⁸Хe , ¹³⁸Ba , и ¹⁴⁰Сe , соответственно). Поэто-84 82 , ⁵⁶ 82 , ⁸² 82 Му мы отождествляем уровень при энергии 2385 кэв с ожидаемым в ¹⁴²Nd "гамма-вибрационным" уровнем.

В заключение авторы считают своим приятным долгом поблагодарить Н.Лебедева за химическое выделение фракции самария, Ж.Желева за предоставление возможности измерения на бета-спектрометре, В.Калинникова и Н.Ненова за помощь в работе и обсуждении результатов. Большую благодарность авторы выносят профессору К.Ф.Александеру за критические замечания при чтении рукописи.

1. John C. Hill and M.L.Wiedenbeck NPH, A113, 598 (1968).

2. P.R.Christensen and Fu-Chia Jang, NPH ,72, 657 (1965).

3. S.Raman. NPH, A113, 603 (1968).

4. H.Krehbiel, Phys. Lett., <u>13</u>, 65 (1964).

5. H.J.Bleyl KFK 534, Karlsruhe, 1967.

6. Р.Арльт, Г.Байер, Г.Музиоль, Л.К.Пекер, Г.Пфреппер, Х.Штрусный,

Д.Христов. Препринт ОИЯИ, Р6-3540, Дубна, 1967.

7. M. Rho. NPH 65, 497 (1965).

8. R.J.Lombard. NPH, A117, 365 (1968).

9. T.V.Marshall, UCRL - 8740 (1960).

10.G.M.Lederer, J.M.Hollander and I. Perlmann, Table of Isotopes (Sixth Edition), New York, 1967.

- Ф.Молнар, А.Хорват, В.А.Халкин, В.А.Волков. Радиохимия, <u>8</u>, 183 (1966).
- Р.Арльт, А.И.Калинин, Г.Музиоль, Х.Штрусный. Препринт ОИЯИ, 13-3769, Дубна, 1968.
- 13. Э.Херрманн, Г.Пфреппер, Д.Христов. Препринт ОИЯИ, Р-2647, Дубна, 1966.

14.H.W.Baer, J.J.Reidy, M.L.Wiedenbeck. NPH, A113, 33 (1968). 15. R.H.Lombard. Phys. Rev.Lett., <u>21</u>, 102 (1968).

16. Л.К.Пекер. Изв. АН СССР, сер.физ., <u>31</u>, 1585 (1967).

Рукопись поступила в издательский отдел 10 января 1969 года.

Рис. 1. Схема уровней ¹⁴²Nd .

Рис. 2. Сопоставление экспериментально найденных уровней в ядре ¹⁴²Nd с предсказанными на основании двухквазичастичной модели/7,8/.

